Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение ванадия в различных растворах

    Кулонометрическое титрование имеет в ряде случаев значительные преимущества перед обычным титрованием. Не нужно заранее готовить рабочие растворы и устанавливать их точную концентрацию. В качестве генерирующих титрующих веществ могут применяться вещества, мало устойчивые в обычных условиях и непригодные поэтому для приготовления рабочих растворов. Различные окислители легко определять генерированными ионами двухвалентного олова, одновалентной меди, трехвалентного титана, двухвалентного хрома и др. Так титруют, например, хром, марганец, ванадий, уран, церий и некоторые другие элементы после предварительного перевода их в соединения высшей валентности. Для титрования восстановителей, например, трехвалентных мышьяка и сурьмы, одновалентного таллия, двухвалентного железа применяют генерированные свободный бром и иод, ферри-цианид и др. Подбирая соответствующие индикаторные системы для установления конца электролиза, можно также определять два или более окислителей или восстановителей в смеси, если их потенциалы восстановления различны. Известны, например, методы кулонометрического титрования урана и ванадия, хрома и ванадия, железа и ванадия, железа и титана в смеси. Наконец, кулонометрический метод допускает автоматизацию процесса титрования и управление им на расстоянии, что имеет важное значение при определении, например, различных искусственных радиоактивных элементов. [c.273]


    Ниже описан спектральный метод определения ванадия, никеля [11], железа, цинка, меди и хрома в различных органических веществах. Этот метод включает в себя соответствующую химическую подготовку образца с целью обогащения его анализируемыми элементами. Обогащение производится при нагревании навески в 1—10 г образца с концентрированной серной кислотой [12]. Нагревание образца производится до образования кокса и полного испарения серной кислоты. Кокс дожигается в муфеле нри температуре 500—600°. Полученная зола растворяется в минимальном количестве серной кислоты — в нескольких каплях водного раствора кислоты 1 1 но объему. Далее раствор выпаривается досуха, сухой остаток растворяется в 1 жл водного раствора, содержащего 5% серной кислоты (по объему), 0,5% хлористого натрия и 0,005% кобальта (кобальт является внутренним стандартом). [c.8]

    В [155] для нахождения примесей никеля, железа, ванадия в сырье для крекинг-установок 10 г пробы озоляли в тигле в присутствии 10 мл бензолсульфокислоты с добавлением 2,5-10 г кобальта и 2,5-10 хрома как внутренних стандартов. Для повышения чувствительности определения ванадия, никеля в нефти путем получения и сжигания кокса рекомендуют предварительно пропитывать электроды раствором уксуснокислого лития [156]. Многоэлементный спектральный анализ коксов и золы использован рядом авторов для изучения состава минеральной части нефтей различных месторождений [2, 157—163]. [c.51]

    Например, при определении ванадия в виде комплекса с перекисью водорода наблюдается иногда следующее явление. Два раствора, содержащие одно количество ванадия, имеют совершенно одинаковую окраску при наблюдении ее глазом, но при измерении посредством фотоэлемента дают различное отклонение гальванометра. Это обстоятельство связано с наличием в одном из растворов мелких пузырьков кислорода вследствие разложения перекиси водорода. Аналогичные явления наблюдаются и в тех случаях, когда в одном из растворов присутствуют волокна фильтра. [c.194]

    Методы спектрофотометрического анализа основаны на качественном и количественном изучении спектров поглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 0,76 до 500 мк), видимой (от 0,76 до 0,4 мк) и ультрафиолетовой (от 0,4 до 0,01 мк). Задача спектрофотометрического анализа — определение концентрации вещества путем измерения оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома исследуют оптическую плотность раствора хромата желтого цвета, поглощающего свет в сине-фиолетовой части видимого спектра. При проведении фотометрического анализа необходимо создать оптимальные физико-химические условия (избыток реактива, светопреломление растворителя, pH раствора, концентрацию, температуру). Фотометрический анализ применяют для определения соединений различных типов окрашенных анионов кислот, перманганата, гидратированных катионов меди (II), никеля (II), роданидных комплексов железа (III), кобальта (II), различных гетерополикислот фосфора, мышьяка, кремния, перекисных соединений титана, ванадия, молибдена, лаков различных металлов с органическими красителями и др. Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 25). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бутиловый, амиловый спирт), хлорпроизводные (хлороформ, четыреххлористый углерод) и др. Иод можно извлечь бензолом, сероуглеродом, хлорное железо — этиловым или изопропиловым эфиром. [c.568]


    Для построения калибровочного графика пользуются раствором вольфрамата натрия, приготовленного по навеске. В реакционный сосуд вносят различные объемы этого раствора с таким расчетом, чтобы после всех разбавлений концентрация вольфрама находилась в пределах 0,02—0,1 мкг мл (4—5 точек). Калибровочный график строят так же, как описано в методике определения ванадия (см. стр. 105).  [c.106]

    Последовательное определение ванадия и железа раствором соли двухвалентного хрома может быть осуществлено различными способами. [c.138]

    Поглощенные анионитом фосфат-ионы извлекают 100 мл 2 к. раствора соляной кислоты. В аликвотной части фильтрата определяют содержание фосфат-ионов радиохимическим методом. Средние из пяти определений при различном соотношении ванадия к фосфат-иону даны в табл. 3. [c.13]

    ОПРЕДЕЛЕНИЕ ВАНАДИЯ В РАЗЛИЧНЫХ РАСТВОРАХ [c.50]

    Большинство других методов определения ванадия основано на титровании его перманганатом после восстановления различными способами. Из этих методов можно указать 1) метод, в котором ванадий восстанавливают до четырехвалентного выпариванием с соляной кислотой, лучше в присутствии железа (III) и серной кислоты. После этого к раствору прибавляют, если это нужно, серную кислоту, выпаривают до появления паров последней и титруют ванадий в сернокислом растворе 2) метод, основанный на восстановлении ванадия в редукторе Джонса до двухвалентного состояния и вливании этого раствора в раствор, содержащий избыточное количество сульфата железа (III) (стр. 127) 3) восстановление ванадия до четырехвалентного сероводородом, избыток которого удаляют кипячением, нри непрерывном продувании через раствор тока углекислого газа 4) восстановление ванадия до четырехвалентного встряхиванием со ртутью солянокислого или сернокислого анализируемого раствора, содержащего достаточное количество хлорида натрия, чтобы связать образующуюся ртуть (I). Раствор затем фильтруют и титруют перманганатом 5) восстановление перекисью водорода в горячем сернокислом растворе . Интерес представляет также метод, основанный на восстановлении пятивалентного ванадия до четырехвалентного титрованным раствором соли Мора с применением гексацианоферрата (III) калия илн дифенил- [c.474]

    Осаждение гидроокисей. Осаждение гидроокисей широко применяется и в качественном, и в количественном анализе для открытия, отделения и определения катионов. В некоторых случаях разделение катионов основано на амфотерном характере некоторых окислов металлов. Так, например, железо отделяют от ванадия, молибдена, алюминия и т. п. элементов, обрабатывая раствор избытком ш,елочи. В других случаях разделение элементов основано на различной растворимости гидроокисей. Так, при анализе многих руд, металлов, шлаков, известняков и т. п. материалов, для отделения алюминия и железа от марганца, магния, кальция и других элементов используют то обстоятельство, что гидроокиси большинства трехвалентных металлов значительно менее растворимы, чем гидроокиси многих двухвалентных металлов. Слабые основания, как, например, гидроокись аммония, пиридин (С Н Н) и др., количественно осаждают гидроокиси алюминия и железа, тогда как ионы кальция, магния и многих Других двухвалентных элементов остаются в растворе. [c.94]

    Титрование растворами солей пятивалентного ванадия. Соединения пятивалентного ванадия являются окислителями, причем ванадий может восстанавливаться до различной валентности (4, 3 и 2) это обстоятельство представляет некоторые неудобства, так как необходимо каждый раз принимать во внимание строго определенные условия. [c.392]

    Химические реакции между элементами, растворенными в твердой стали используют для улучшения ряда ее эксплуатационных свойств. Для этого, в частности, применяют различные методы термической обработки, основанные на выделении из твердых растворов химических соединений в виде избыточных фаз. Так, выделение карбидных, карбо-нитридных и подобных фаз в стали в виде мелкодисперсных частиц повышает ее твердость. Например, в стали легированной ванадием при определенных концентрациях и температурах происходит выделение карбида V V + -f =V .. [c.157]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]


    С медью в нейтральном, кислом и щелочном растворах образует желто-коричневый осадок или коллоидный раствор бурого цвета. Образует устойчивые внутрикомплексные малорастворимые соединения со многими элементами. Диэтилдитиокарбаминаты металлов извлекаются органическими растворителями с образованием окрашенных в разные цвета экстрактов. Применяют для отделения, концентрирования, а также фотометрического определения следов элементов (меди, висмута, кобальта, никеля, хрома, ванадия и др.). В присутствии маскирующих веществ (тар-трата, цианида, комплексона П1 и др.) при различных значениях pH диэтилдитиокарбаминаты металлов обладают различной устойчивостью, что используется для их разделения. [c.151]

    Железо (П). Ион Fe , обычно генерируемый восстановлением Fe + на платиновом катоде в сернокислых растворах, используется в качестве титранта при определении различных окислителей, главным образом неорганических. Известны методы определения церия [110, 350, 510, 511], урана [292, 512], плутония [202, 513, 5141, ванадия [110, 515—518], хрома [110, 137, 151,, 516, 517, 519, 5201, теллура [521], марганца [110, 366, 517, 520, 522, 5231, хлора [330, 523, 524], перйодатов [525], щавелевой кислоты и 2-нафтиламина [350]. [c.62]

    При потенциалах более положительных, чем +0,6 в, например при +1,2 в, в сильнокислой среде на платиновом электроде возможно и восстановление ванадия (V), и окисление железа (И). Поэтому в данном случае до конечной точки титрования наблюдается катодный ток ванадата, величина которого, однако, сравнительно незначительна, так как потенциал +1,2 в соответствует не области диффузионного тока, а начальной части волны восстановления ванадата (кривая 1, рис. 24, i4). После точки эквивалентности, когда в титруемом растворе появятся избыточные ионы железа (II), наблюдается анодный ток их окисления и кривая титрования примет вид, изображенный на рис. 24, д. Если уменьшить кислотность раствора, то электрохимическое восстановление ванадия (V), как указано выше, совсем не имеет места. Тогда при титровании при лотенциале +1,2 в вначале нет никакого тока лишь после конечной точки за счет избыточных Ре2+-ионов возникает анодный ток. Кривая титрования будет иметь вид, изображенный на рис. 24, е. Этот тип титрования находит широкое применение при определении различных окислителей солью Мора (см. гл. VII). [c.78]

    С целью проверки влияния железа па определение ванадия были проведены опыты с добавлением Ге в различных концентрациях к стандартному раствору ванадата и последующим определением поглощения фосфорновольфрамованадиевого комплекса из этого раствора. Опыты показали, что железо в небольших количествах не мешает определению ванадия. Влияние начинает сказываться лишь с концентрации, равной 1 лег в 1 ли. конечного раствора. [c.187]

    За последние годы предложено несколько вариантов этого метода для определения ванадия в различных объектах в металлическом ванадии, в хромитев урансодержащих веществах по-прежнему много внимания уделяется этому методу при анализе легированных сталей причем особенно для одновременного определения нескольких компонентов — ванадия, хрома и марганца Предложен этот метод и для определения ванадия и хрома в силико-алюминиевых катализаторах крекинга нефти, причем вместо обычного в таких случаях селективного окисления хрома пользуются восстановлением его до трехвалентного при помощи азида натрия хром (III) не мешает титрованию ванадия солью Мора. Можно селективно определять ванадий и железо при совместном их присутствии в растворе сперва титруют ванадий солью Мора, затем — общее содержание железа аскорбиновой кислотой. Из общего содержания железа вычитают то количество железа, которое было израсходовано (в виде соли Мора) на титрование ванадия [c.181]

    Для аналитического определения ванадия используется экстракционно-фотометрический метод, основанный на экстракции соединения, образующегося при взаимодействии пятивалентного ванадия с бензоилфеннлгпдро-ксплампном (БФГА) П—51. Экстракция возможна из рас-створов с pH О—6 Ц] и из растворов соляной и серной кислот вплоть до 10 12—5] в качестве растворителя применяют главным образом хлороформ. Ф. Г. Жаровский и А. Т. Пилипенко [1] методом изомолярных серий установили, что при pH 3 и общей концентрации компонентов 2 10 А1 отношение БФГА V равно 2 1. Авторы предполагают, что соединение имеет формулу У. ОдА , где А — анион БФГА, а ванадий пятивалентен. Отношение 2 1 нашел тем же методом Риан, экстрагировавший ванадий из 5—9 N НС1 [2]. Индийские химики [4] пришли к выводу, что в зависимости от кислотности образуются, по-видимому, различные комплексы — фиолетовый в сильнокислых растворах (выше 2 Л ) и оранжево-красный в слабокислых (ниже 0,1 М) в 0,1--2,0 N соляной кислоте существует смесь комплексов. [c.69]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    В другой работе [291Гописан метод определения ванадия в нефти и нефтепродуктах с применением хроматографического силикагеля в качестве катализатора озоления пробы. Для этого 150 г силикагеля с зернами максимального размера 0,08 мм сушат в течение 5 ч при 200 °С в фарфоровой чашке и заливают дистиллированной водой так, чтобы над силикагелем был слой воды толЩ,ииой 1 мм. Затем в чашку наливают 375 мл водного раствора азотнокислого кобальта (внутренний стандарт), содержащего 0,04% кобальта. Воду выпаривают при постоянном перемешивании на водяной бане. После этого еще 2 раза силикагель заливают водой и выпаривают ее. Высушенный и растертый катализатор тщательно перемешивают в банке встряхиванием. Аналогичным способом к силикагелю добавляют различное количество водного раствора ванадата аммония (0,01% ванадия) и получают серию эталонов с содержанием ванадия 0,025—0,8%. [c.162]

    Определение ванадия в нефтепродуктах представляет некоторые трудности, связанные с различной летучестью его соединений. При озолении пробы возможны потери легколетучей пятиокиси ванадия, что вынуждает иногда применять специфические методы озоления (см. гл. 1). Во время испарения золы из канала угольного электрода пятиокись ванадия быстро восстанавливается до металлического ванадия, который хорошо растворяет углерод, образуя мололетучие карбиды [8]. При испарении смеси пятиокиси ванадия с угольным порошком из канала угольного электрода основная масса ванадия поступает в облако дуги во второй половине экспозиции (рис. 83). Пятиокись ванадия в смеси с углем при температуре красного каления можно хлорировать с образованием окситрихлорида ванадия УОС1з с т. кип. 127,2 °С [423]. [c.203]

    Основными условиями применения в фотометрическом анализе комплексов титана, ванадия, ниобия и тантала с перекисью водорода является силь номи слая среда и достаточный избыток перекиси водорода. Хлориды и сульфаты мало влияют на оптические свойства этих комплексов, хотя по ряду данных они присоединяются к окрашенным комплексам Ме—Н2О2, образуя смешанные комплексы, иногда анионного типа. С другой стороны, комплексы титана и ванадия с Н2О2 вследствие своей невысокой прочности сравнительно легко подвергаются действию различных анионов, связывающих центральный ион. Например, щавелевая кислота резко ослабляет окраску или совсем обесцвечивает раствор перекисноводородного комплекса титана. При этом образуется смешанный комплекс, причем полоса поглощения постепенно сдвигается в ультрафиолетовую область спектра. Известно, что титан образует с фтором более прочный комплекс по сравнению с ванадием. Поэтому в смеси перекисных соединений этих элементов, при действии умеренных количеств фторидо В, можно обесцветить комплексное соединение титана, тогда как окрашенное соединение ванадия не разрушается. Это является основанием одного из методов колориметрического определения ванадия и титана при совместном присутствии. [c.254]

    И одновалентной меди. Шестивалентный молибден и двух валентная медь в отдельности восстанавливаются в сереб ряном редукторе до пятивалентного молибдена и однова лентной меди при последующем добавлении раствора молиб дата аммония развивается интенсивная синяя окраска Алюминий, трехвалентный хром и свинец не экстраги руются в форме карбаматов при рекомендованных уело ВИЯХ. Марганец экстрагируется не полностью. Трехвалент ное железо, пятивалентный ванадий, никель, кобальт, шестивалентный молибден, двухвалентная медь, цинк и четырехвалентное олово экстрагируются, но полнота экстракции различна для разных металлов и, вероятно, ни в одном случае не протекает количественно. Однако остаточные количества металлов дают небольшую или вообще не дают ошибки при определении кремния. Из обычно встречающихся элементов только ванадий может мешать определению. Ванадий, остающийся в растворе после экстракции, обычно дает поглощение, эквивалентное поглощению [c.47]

    Комплексы с перекисью водорода. За последние годы в этой области не достигнуто заметного увеличения чувствительности реакций. В основном велись работы по применению методов к анализу различных объектов и по выяснению состава и прочности этих комплексов. Рекомендуется применение перекисноводо-родных комплексов для определения ванадия [31] и титана [32] в различных материалах. Значительно больший интерес представляют, по-видимому, тройные комплексы ванадий — перекись водорода — комплексен III и аналогичный комплекс титана и железа. Для этих комплексов е 500, но здесь возможны поиски новых третьих компонентов, которые резко увеличат светопогло-щение растворов. [c.99]

    При очень малых концентрациях элемента возрастает влияние различных мешаюп их факторов. В воде, очищенной ионообменным способом, содержатся комплексообразующие органические примеси, которые могут затруднять экстракцию это наблюдалось, например, для соединения олова с кверцетипом [196]. При нгазких содержаниях элемента увеличивается вероятность неконтролируемого изменения его валентного состояния, в частности за счет присутствия ничтожных примейей окислителей или восстановителей. Показательны в этом отношении результаты экстракции ванадия с бензоилфенилгидроксиламином. При концентрациях порядка 10 —10 М, используемых при фотометрическом определении, ванадий экстрагируется в пятивалентном состоянии из кислого раствора. Однако попытка использовать те же условия для выделения радиоизотопа присутствующего в более низких концентрациях, оказалась неудачной, поскольку ванадий при этом восстанавливался до четырехвалентного, извлекающегося при меньшей кислотности [197]. [c.69]

    Из физико-химических методов определения малых количеств ванадия наибольшее развитие получили спектрофотометрические, основанные на окислительно-восстановительных реакциях или реакциях комплексообразования ионов ванадия различной валентности со многими органическими соединениями. Продукты реакций при этом дают яркоокрашенные растворы. Наибольшей избирательностью к соединениям ванадия обладают фталеинкомплексоны, особенно крезолфталексон [47]. [c.35]

    Для построения калибровочной кривой применяют руду, не содержащую ванадий, но аналогичную по составу в отношении других компонентов. После переведения руды в раствор прибавляют определенное количество стандартного раствора соли ванадия. Еще лучше для построения кал1 бровочной кривой применять стандартные образцы с различным содержанием ванадця. [c.274]

    Диантипирилметан взаимодействует с титано.м (IV) в солянокислых растворах с образованием окрашенных соединений и применяется для его фотометрического определения в различных сплавах (см. стр. 141). Этот реагент принадлежит к числу наиболее селективных и выдокочувствительных реагентов на титан. Он применяется для определения титана в ванадии и хлорокиси ванадия, в ниобии, в молибдене, алюминиевых и магниевых сплавах, сталях, жаропрочных сплавах на никелевой и железной основах. [c.135]

    Построение калибровочного графика. Калибровочный график строят по различным навескам стандартного образца (как при выполнении определения). При наличии руды, сходной по составу с анали 1и-руемой, но не содержащей ванадия, калибровочный график строят с добг > лением в раствор после выщелачивания определенного количества титрованного раствора ЫН УОз. [c.181]

    Нами было экспериментально установлено, что при повышении pH до 10 аммиаком, ион УОгУ количественно разрушается, ион РЬУ остается без изменения. Это различное поведение комплексонатов легло в основу раздельного определения ванадия и свинца. Повышая pH до 10 и титруя освободившийся трилон раствором соли цинка с кислотным хромтемносини.м, мы определяем содержание ванадия и по разнице двух титрований — свинец. [c.92]

    Для определения потенциала полуволн и обратимости процесса использовали логарифмический анализ полярографических кривых. Введение различных количеств ванадия в растворы глицинтимолового синего не приводит к изменению потенциала полуволны последнего, процесс окисления носит необратимый характер. [c.87]

    Из всех хелатов, которые ванадий в различной степени окисления образует с ЭДТА, наибольший интерес для аналитической химии представляет комплекс иона VO +(lg/(voY = 18,8). Флашка и Абдинописа-ли метод прямого титрования. Ванадий (V) восстанавливают при pH = 4 аскорбиновой кислотой и титруют VO + раствором ЭДТА, используя в качестве индикатора систему Си—ПАН [666] (см. также стр. 84). Метод можно применять для определения ванадия в сплавах вольфрама после маскирования вольфрама винной кислотой. [c.233]

    Некоторые элементы в определенных степенях окисления образуют ярко окрашенные соединения. Например, марганец (И) может быть окислен до марганцовой кислоты, растворы которой обладают интенсивным поглощением при X 525 нм. Ванадий в различных его степенях окисления образует ряд соединений, растворы которых обладают интенсивным поглощением в различных участках видимого спектра. Ион СгО (СгаО ) в воде или 0з04 и 2 в органическом растворителе обладают также значительным поглощением. [c.36]

    Ход анализа. Навеску 2 г металла растворяют при нагревании в смеси. 25 мл серной (1 5) а 5 мл фосфорной кислот, после растворения навески окйсляют железо азотной кислотой, упаривают до дыма, охлаждают, прибавляют 50 мл воды, 5 мл 1%-ного раствора нитрата серебра, нагревают до кипения и окисляют хром и могущий присутствовать в пробе марганец 10 мл 10%-ного раствора персульфата аммония. Избыток персульфата удаляют кипячением, а марганцевую кислоту восстанавливают хлоридом натрия (5 мл 5%-ного раствора). После охлаждения титруют раствором соли Мора, концентрация которого определяется количеством хрома в титруемом растворе. Можно титровать либо весь раствор, либо, переведя его в мерную колбу, титровать только аликвотную часть (в зависимости от содержания хрома и от взятой навески). Из этого же раствора можно определять и ванадий, как указано в соответствующем разделе. Описанным методом определяют от 0,03 до 0,15% хрома в различных чугунах, сталях и в стандартном образце стали № 20-Г. Метод считается наилучшим (по сравнению с колориметрическим или обычным объемным) методом определения хрома. [c.339]


Смотреть страницы где упоминается термин Определение ванадия в различных растворах: [c.147]    [c.251]    [c.86]    [c.72]    [c.546]    [c.165]    [c.174]    [c.371]    [c.369]    [c.180]    [c.123]    [c.245]   
Смотреть главы в:

Аналитический контроль в основной химической промышленности -> Определение ванадия в различных растворах




ПОИСК





Смотрите так же термины и статьи:

Ванадий определение

Ж- Различные определения



© 2025 chem21.info Реклама на сайте