Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Литература по анализу воздуха

    Составлением настоящего практического руководства авторы попытались восполнить этот пробел в литературе по анализу воздуха. [c.11]

    Литература по анализу воздуха [c.436]

    ЛИТЕРАТУРА ПО АНАЛИЗУ ВОЗДУХА [c.358]

    Анализ имеющихся в литературе опытных данных о скорости окалинообразования на сплавах железа показал, что для сплавов с хромом при высоких температурах в воздухе и в водяном паре они удовлетворительны, для кремнистого железа и стали, содержащей одновременно хром и кремний, хорошо согласуются с теоретическими выводами, а для сплавов железа с никелем имеется качественное согласование. [c.102]


    Существуют и другие методы анализа, например биологические. К последним можно отнести метод определения содержания сероводорода в воздухе по изменению интенсивности свечения некоторых бактерий, а также метод анализа некоторых веществ, основанный на наблюдении за движением мелких червей, гибнущих после добавления известной дозы этих веществ. Физико-химические и физические методы, главк-Ум образом в зарубежной литературе, называют инструментальными, так как они обычно требуют применения приборов, измерительных инструментов. На первый взгляд, разные методы химического анализа не имеют между собой ничего общего, настолько различны их приемы, аппаратура и применение. На самом же деле принцип определения химического состава любыми методами один и тот же состав вещества определяется по его свойствам. Дело в том, что каждое вещество, отличающееся от других веществ своим составом и строением, обладает некоторыми индивидуальными, только ему одному присущими свойствами. Например, спектры испускания, поглощения и отражения веществом излучений имеют характерный для каждого вещества вид. По растворимости и форме кристаллов также можно узнать данное вещество. [c.9]

    При рассмотрении кинетики газожидкостной смеси, образовавшейся во флотационном резервуаре после дросселирования предварительно насыщенной воздухом воды, важное значение имеет правильная количественная оценка равновесной концентрации газов во вновь возникшей системе пузырек -жидкость. До настоящего времени этот вопрос недооценивался в практике флотационной очистки воды и в технической литературе отсутствуют надлежащие рекомендации. В связи с этим ннже приводится анализ равновесной концентрации газов при напорной флотации [44]. [c.90]

    Чаще всего низкотемпературная разгонка проводится для анализа газообразных образцов. В других случаях требуется разделение, идентификация или же очистка одного вещества. Результаты разгонки выражаются обычно кривой разгонки, как это показано на рис. 3. Большая часть настоящей главы посвящена анализу, в особенности анализам углеводородных газовых смесей, так как, вообще говоря, требования, предъявляемые к такого рода анализам, являются наиболее характерными и они получили наиболее широкое применение и развитие. Приборы и способы работы в этом случае вполне сходны с приборами и способами работы аналитических разгонок при комнатной и повышенной температурах. Однако охлаждение, теплоизоляция и работа с газообразными образцами и фракциями приводят к ряду особенностей низкотемпературной разгонки, требующих особого внимания. Промышленные разгонки жидкого воздуха и заводские разгонки легко сжижаемых газов под давлением выше атмосферного здесь не обсуждаются, однако ссылки на новейшую литературу в этой области можно найти в библиографии на стр. 387. [c.329]


    Необходимость создания такой системы обусловлена гигиенической и экономической целесообразностью замена высокоопасных химических веществ на стадии разработки новой технологии более целесообразна, чем реконструкция действующих производств. На стадии теоретического проекта технологической схемы проводится предварительная токсикологическая оценка используемых химических веществ, включающая анализ данных литературы и расчет показателей их токсичности и опасности на основе сопоставлений химической структуры, химических и физических свойств с биологическим действием, интерполяцией и экстраполяцией в рядах соединений. Если принимается решение о лабораторной разработке нового химического соединения, то встает вопрос о более глубокой оценке его токсичности, опасности и характере вредного действия на организм человека с целью разработки гигиенического норматива допустимого содержания в воздухе рабочей зоны. Как следует из табл. 4, проводятся специальные токсикологические исследования по разработке ОБУВ, устанавливаемых на ограниченное время (3 т.), а затем ПДК. [c.862]

    В литературе описано [1] лишь хроматографическое определение следов ТХА в воздухе, но этот метод не пригоден для анализа продуктов теломеризации. [c.291]

    Наиболее широко используется в анализе именно такое пламя. Внутренний конус пламени полый, он ограничен слоем толщиной от нескольких сотых до нескольких десятых долей миллиметра. В литературе приведены следующие данные для толщины слоя, образующего внутренний конус пламени 0,03 мм для пламени смесей ацетилена с воздухом и кислородом, 0,05 мм для пламени смеси водорода с воздухом и 0,3 мм для пламени смеси окиси углерода с воздухом . [c.18]

    Источниками загрязнения при химическом обогащении следов примесей в веществах высокой чистоты являются лабораторный воздух, вода, реактивы, посуда и даже сам экспериментатор (золотые зубы, кольца, парфюмерные кремы и т. д.). Вопросы измельчения анализируемого материала, отбора средней пробы, уменьшения возможности попадания загрязнений при обогащении неоднократно рассматривались в литературе [3, 13, 14, 16, 54, 65], а также в настоящем сборнике (см. стр. 16). Следует подчеркнуть, что, поскольку предварительное концентрирование — решающий этап в большинстве методов определения следов примесей в чистых веществах, величина холостого опыта обычно определяет чувствительность анализа. [c.13]

    Газовую хроматографию используют также и в других отраслях промышленности, техники и научных исследований. Трудно перечислить все уже описанные в литературе примеры применения газовой хроматографии, причем области применения ее постоянно расширяются. В геохимии и геологии газовую хроматографию используют для поиска нефти и газа, определения гелия в природных газах в металлургии — для анализа растворенных газов в металлах в сварочной технике —для контроля газового состава сварочных камер в санитарной химии — для определения загазованности воздуха и контроля примесей в сточных водах [30], анализа остатков пестицидов в пище, почвах и кормах [30] в химии полимеров— для контроля состава и летучих выделений полимеров [31] применяется в криминалистике, в фармацевтической и парфюмерной промышленности, для анализа выхлопных газов и т. д. [c.19]

    Если в качестве газа-носителя использовать азот или воздух, теплопроводность которых гораздо ближе к теплопроводности анализируемых веществ, чем теплопроводность водорода или гелия, то при количественном определении низкокипящих углеводородов сталкиваются с дополнительными затруднениями, обусловленными зависимостью поправочных коэффициентов от температуры. При этом может измениться не только значение, но и знак сигнала детектора (это, в частности, наблюдается для углеводородов С2). Кроме того, коэффициент чувствительности зависит от концентрации вещества. В связи с указанными обстоятельствами при определении К для низкокипящих углеводородов целесообразно проводить предварительную калибровку и обязательно в том же режиме, что и последующий анализ. Приведенные в литературе [15] данные, как указывают сами авторы, справедливы лишь в пределах 20—50 °С при использовании катарометров с термисторами. С повышением молекулярного веса анализируемых углеводородов температурная зависимость коэффициентов уменьшается, что позволяет применять имеющиеся данные в более широком интервале температур [22]. [c.223]

    Указанные методы служат для определения загрязнений воздуха, сточных БОД, выделений из полимерных материалов, а также для исследования самих полимерных материалов. Все они рассчитаны на использование преимущественно отечественных физико-химических приборов или приборов, изготавливаемых предприятиями стран — членов СЭВ. Их разработка производилась на основе опубликованных в различных периодических изданиях результатов физикохимических исследований объектов окружающей среды, а также результатов исследований авторов. Каждая методика построена по схеме лабораторной работы вначале описывается сущность метода, затем необходимая аппаратура, реактивы и материалы, далее ход анализа и расчет его данных. В случае необходимости приводятся рисунки лабораторных установок, графики, таблицы, спектры и хроматограммы. Существенной особенностью предлагаемых методов является то, что они позволяют определять весь букет токсичных ингредиентов из одной пробы. Учитывая ограниченность литературы по теории рассматриваемых методов, рассчитанной на контингент химиков-аналитиков, занимающихся вопросами охраны окружающей среды, авторы сочли необходимым предпослать каждой группе методик основные теоретические положения метода, границы его применимости, расчетные формулы, особенности определения и т. д. [c.15]


    Метод атомно-абсорбционного спектрального анализа, несмотря на ряд преимуществ, еще не нашел широкого распространения в гигиенических исследованиях. В литературе имеются данные об определении при помощи этого метода микроэлементов в почвах [7], паров ртути в воздухе [8], рубидия [3], кадмия и цинка [9], ртути в моче [10], свинца [И] и нике.чя в биологических материалах, кадмия в биологических объектах [12], кальция в почве, марганца в морской воде [13] и др. [c.517]

    Литература по анализу фторсодержащих соединений, вероятно, самая многочисленная, превосходящая по числу ссылок литературу по анализу любого другого элемента. Причина этого кроется как в важности информации о содержании фтора в воде, воздухе, биологических материалах, инсектицидах, удобрениях, полимерах и т. д., так и в характерных особенностях химии фтора, отличной от химии других галогенов и делающих анализ фтора чрезвычайно сложной задачей. [c.331]

    Несмотря на обширную литературу, посвященную описываемому методу анализа, исследование метода гравиметрического определения сульфата в виде его бариевой соли продолжается. Например, вместо прокаливания и других операций, связанных с нагреванием осадка, предложено [26] высушивать осадок, помещенный в керамический тигель, промывая его этанолом или эфиром. Промытый осадок подсушивают воздухом 20 мин, выдерживают в эксикаторе 5—10 мин и затем взвешивают. Значительное сокращение продолжительности анализа приводит к повышению воспроизводимости определений. Результаты анализа, полученные описываемым методом, хорошо согласуются с данными, полученными при использовании обычной гравиметрической методики. Например, для образца пирита получено среднее содержание серы 54,1% по методу [26] и 54,0% с помощью гравиметрической методики, включающей прокаливание осадка. [c.523]

    Присутствие в воздухе промышленных предприятий следовых количеств (порядка 0,001 см м ) углеводородов, в том числе ароматических, создает опасность взрыва установок получения сжиженных газов. Для количественного определения следовых количеств веществ наиболее пригодны газохроматографические методы [1]. Однако большинство описанных в литературе методик газохроматографического анализа примесей ароматических углеводородов в воздухе не обеспечивают требуемую чувствительность [2, 3]. [c.87]

    Колориметрирование с дитизоном или ди-Р-нафтилтиокарбазо-ном более надежно [619, стр. 213]. При определении кадмия в воздушных пылях и дымах используют и полярографический метод [732]. Литература по анализу воздуха дана также в работах 172а, 219а]. [c.179]

    Одно из наиболее давних представлений в науке-это понятие об элементарных веществах, из которых состоят все остальные. За 500 лет до начала нашей эры древнегреческий философ Эмпедокл выполнил то, что можно назвать первым описанным в литературе химическим анализом. Он заметил, что при горении дерева сначала поднимается дым, или воздух, а затем возникает пламя, или огонь. Пары воды конденсируются на холодной поверхности, оказавшейся вблизи пламени. После сгорания дерева остается зола, или земля. Эмпедокл объяснил горение как разложение горящего вещества на четыре составных элемента землю, воздух, огонь и воду. Он и более поздние авторы обобщили эти выводы и считали, что все вещества состоят из указанных четырех элементов, взятых в различных пропорциях (рис. 6-1). Вначале в этих идеях не было ничего метафизического, они всего лишь были попыткой объяснить наблюдаемое. Однако позже греки, арабы и средневековые алхимики наполнили эти представления мистицизмом. Затем землю, воздух, огонь и воду перестали считать элементами. и разные алхимики выбирали в качестве элементарных веществ природы различные наборы того, что мы сейчас назвали бы элементами или простыми веществами. [c.269]

    Неоднократно в литературе высказывались мнения, что замена воздуха каким-нибудь инертным газом может оказать существенное влияние на результат исследования, так как воздух может сильно окислять смолы, увеличивая их вес. Гунн, Фишер и Блеквуд. (463) показали, однако, что замена воздуха азотом или углекислотой не вносит существенных изменений. Однако, Бриджмен и Олдрич (464) показали, что в случае замены воздуха азотом или углекислотой, остаток смол весит почти всегда больше. Эти же авторы нашли, что-скорость продувания воздуха кмеет малое значение. Но если воздух не продувать, остаток всегда весит больше, откуда следует, что сравнение методов простого испарения в стеклянной чашечке и испарения из нее же, но с. проду-ва.ннем воздуха, дает несравнимые лор а-зания. Преимущество в скорости анализа остается за методом с продуванием воздуха. [c.174]

    Как уже отмечалось выше, фильтры обеспечивают практически количественное улавливание неорганических компонентов, тогда как органические соединения, имеющие значительно большую упругость пара, могут частично теряться. Известно, что в почве, обработанной ХОП, концентрация последних с течением времени понижается не только вследствие химических превращений, но и из-за их испарения, т е, час-тично пестициды переходят в газовую фазу. Для всех случаев определения ХОП опубликованные в литературе данные, полученные при отборе проб только с применением фильтров, следует считать заниженными. Этот вывод справедлив и для ПАУ. В частности, в образцах пыли из воздуха, отобранных летом, по сравнению с зимними пробами содержание бенз(а)-пирена заметно меньше, что объясняется его испарением при более высоких летних температурах (соответственно 2 и 8 нг/м ) [22]. Анализ наиболее важных причин потерь ПАУ, ХОП и ПХБ при пробоот 1оре из атмосферы рассмотрен в работах [5-7,23,24 . [c.172]

    В литературе [15] описан метод изучения кинетики сушки, в котором измерение текущего влагосодержания материала осуществляется по величине влажности уходящего сушильного агента. Порция исследуемого влажного материала вбрасывается в предварительно прогретый псездоожиженный слой такого же, но сухого продукта. Сушильный агент, проходящий через слой частиц, увеличивает свою влажность только за счет влагоотдачи влажной порции материала. Динамику изменения влажности сушильного агента на выходе из слоя определяют психрометрическим способом, а текущее значение влагосодержания материала рассчитывают по соотношениям материального баланса. Здесь не нужно производить отбор проб материала и его длительный анализ. Однако чувствительность Нсихрометрнческого способа измерения влажности воздуха требует применения значительных по массе порций вбрасываемого материала, что может заметно из.менить температуру сушильного агента в пределах псевдоожиженного слоя. Кроме того, частицы исследуемой навески материала в процессе сушки контактируют в слое с предварительно высушенными прогретыми частицами, что не соответствует условиям непрерывной сущки, когда каждая частичка в псевдоожиженном слое контактирует с частицами, имеющими различные значения температуры и влагосодержания. [c.266]

    Случай Б. Структура определяемого соединения не известна, но оно обладает тем или иным специфическим эффектом, благодаря которому его можно детектировать в течение всего анализа. Природа этого эффекта может быть химической, биологической или физической. К этой категории принадлежат работы по первичной идентификации физиологически активных веществ, например лекарственных препаратов, ядов, галлюциногенов и т. п., в образцах биологического происхождения. Сюда же относятся работы по выделению гормонов или других соединений, обладающих мощным биохимическим эффектом. Другим примером может служить выделение неидентифицирован-ных пахучих веществ из воды, воздуха, пищевых продуктов и других источников при решении экологических проблем. Обычно после выделения определяемого соединения его идентифицируют, или устанавливают его строение. Такие аналитические задачи встречаются в литературе реже, и их решение значительно более трудоемко, чем задач, относящихся к случаю А. [c.26]

    В литературе также имеются указания на использование профиля парофазных хроматограмм для распознавания наркотиков [16], хемотаксономии хлебных злаков [17], оценки качества пищевых продуктов [18, 19], загрязненности воздуха [20] и почвы [9], идентификации остатков летучих воспламеняющихся материалов при расследовании причин пожаров [21]. В этих своеобразных и многообразных приложениях парофазного анализа оказывается особенно важной не столько точность и полнота извлечения летучих компонентов, сколько воспроизводимость профиля хроматограмм и высокая чувствительность. Для этих целей нет необходимости устанавливать коэффициенты распределения или полностью извлекать летучие компоненты, так что становится необязательным соблюдение условий равновесия, но, конечно, должны строго регламентироваться и соблюдаться все технические детали и условия отбора проб, их обработки и хроматографирования. Требование максимальной чувствительности заставляет в большинстве случаев проводить предварительное концентрирование паров, и притом из минимального количества исследуемого материала, что особенно важно для приложений к медицине, физиологии и криминалистике. Между тем парофазный анализ при малых объемах образца дает обычно неудовлетворительные результаты и нуждается в дальнейшем усовершенствовании техники концентрирования. Одним из последних достижений является микротехника, разработанная в лаборатории проф. Златкиса [22] и применимая для получения парофазных отпечатков пальцев одной — двух капель водных образцов. 25—200 мкл образца вводят в стеклянную трубку диаметром 2 мм и длиной 70 мм, содержащую 0,3 мл пористого гидрофильного силикагельного [c.229]

    В отечественной и зарубежной литературе в наетоян1ее время не имеется достаточных научных обоснований по расчету и технологическому анализу работы напорных резервуаров (абсорберов) по насыщению воды воздухом, и это отрицательно сказывается на техническом уровне проектирования н эксплуатации флотационного оборудования но очистке сточных вод. Рекомендации нормативных документов Госстроя СССР носят общий характер [71] и не позволяют аналнзиро- [c.145]

    В литературе приводятся приемы анализа карбида кремния [423, 430]. При испарении карбида кремния из канала угольного электрода в атмосфере воздуха происходит разложение Si , окисление свободного кремния, в связи с чем спектр содержит молекулярные полосы SiOj и соединения углерода. Для предотвращения мешающего действия фона можно равномерно вводить тонкий слой пробы в дуговой разряд между медными электродами или проводить анализ в атмосфере аргона [433]. [c.124]

    В последние годы в зарубежной литературе появились сообщения о некоторых новых вариантах кулопометрического анализа. Например, предложен новый способ кулонометрии [650], в котором определяемые органические и неорганические вещества количественно адсорбируются на электроде, изготовленном из ацетиленовой газовой сажи , и подвергаются на нем электролитическому восстановлению или окислению. Такая методика исключает трудности, связанные с необходимостью обеспечивать тесный контакт между электродом и реагирующими веществами в процессе электролиза. Метод применим к веществам, плохо растворимым в водных растворах. Адсорбцию определяемого соединения можно осуществлять не только из жидкой, но такжр и из газовой фазы, что особенно важно для применения этого способа к определению малых количеств веществ в воздухе и газовых смесях. Анализируемый раствор пропускают через сажевый элект- [c.70]

    Метод выделения газа током другого газа применяют сравнительно редко, так как его использование затруднено подбором подходящего газа-носителя [304—307]. В литературе описано выделение растворенного кислорода из воды током азота [304] с последующим анализом образовавшейся смеси. Метод десорбции током углекислого газа используют для определения растворенного в пиве воздуха [306, 307]. Углекислый газ поглощается щелочью, а оставшийся воздух определяют волюметриче-ски. Этим же методом находят и суммарное содержание диспергированного и растворенного воздуха в пиве. [c.158]

    Мы попытались применить метод ДТА для оценки теплот образования лантаноидов и америция. Использовалась стандартная методика дифференциального термического анализа (ДТА) [1]. На термоаналитической установке ДТА-6Д получали кривые гидратов нитратов лантаноидов и америция. Поскольку предварительно было установлено, что характер разложения нитратов не зависит от того, в окислительной или инертной атмосфере производится нагревание, все опыты проводились на воздухе. С учетом различных скоростей нагревания и чувствительности установок наши сведения о термическом разложении нитратов лантаноидов согласуются с данными других авторов"(см. рисунок) [2]. Состав конечных твердых продуктов реакции термического разложения нитратов определяли с помощью рентгенофазового анализа (РФА). Было подтверждено наличие полуторных оксидов ЬпгОз во всех случаях, кроме нитратов Се и Ат, когда на рентгенограммах были отмечены рефлексы решеток СеОг и АтОз. При разложении нитрата Рг конечный продукт не анализировали по сведениям [2] в результате термического разложения Рг(ЫОз)з образуется оксид состава РГбОц. Данные РФА продуктов разложения нитратов совпали с имеющимися в литературе [2—4]. Известна лишь одна работа [5], в которой сообщается об образовании безводного нитрата европия при температуре 260°С в случае термического разложения его гидрата. [c.14]

    В литературе встречаются выводы, которые находятся в щротиворечии с этой зависимостью. Так, авторы работы [15] при анализе результатов испытания вихревой трубы на предварительно подогретом сжатом воздухе (7 с = 293...673К) сделали вывод, что с повышением температуры незначительно увеличивается [c.25]

    Выведенная формула отличается от приведенных до сих пор в литературе множителем Оз вместо Oi, а также, что более существенно, множителем ехр(+Я//сГ), который до сих пор не учитывали или которым пренебрегали. Это, однако, недопустимо, так как он соответствует величине в 5—7 порядков Случайно, однако, он компенсируется некоторым другим множителем, который мы также еще не принимали во внимание. Наш анализ включал предположение о том, что величина коэффициента конденсации а 1 сохраняется постоянной вплоть до самых малых агрегатов. Это ни в коем случае не верно. В то время как энергия конденсации молекулы пара, падающей на большую капельку, может распределиться по этой капельке и имеет достаточно времени, чтобы рассеяться в многочисленных соударениях с молекулами газа-носителя (например, воздуха), в случае очень маленьких образований из 1, 2,., , молекул вероятность отрыва их в актах соударений вследствие недостаточности отвода энергии будет больше. Так, в случае одноатомных паров для образования двухатомной частицы требуется тройной удар, что в уравнении для / означает появление множителя, уменьшающего результат. Этот множитель дается отношением времени жизни пары атомов, богатой энергией, к среднему времени, которое протекает между двумя соударениями молекул газа. В случае одноатомных газов время жизни такой пары равно обратному значению частоты колебаний, т. е. составляет примерно 2 с. При атмосферном давлении удары следуют один за другим приблизительно через 2 10 с., так что трудность первого акта присоединения должна быть учтена в формуле множителем по крайней мере порядка 10" . Следующий акт обусловливает введение нового множителя, который, однако, ввиду большей продолжительности жизни [45] трехатом- [c.124]

    Включение системы компрессоров в работу после остановок должно осуществляться последовательно, начиная с первого каскада. Включение компрессоров каждого последующего каскада должно осуществляться только после вывода на нормальный режим компрессоров предыдущего каскада и после достижения допустимого состава газа на линии нагнетания компрессора. Вероятность проникновения или подсосов горючих газов в работающие системы компримирования газов окислителей (воздуха, кислорода, хлора и др.) не велика, однако не исключается опасность образования взрывоопасных смесей в системах компримирования и транспорта газов окислителей. Она обусловлена возможностью образования смесей паров смазочных масел с газами-окислителями, а также случайным попаданием в системы горючих органических газов или жидкостей при ремонтных или других остановочных разовых работах. При эксплуатации таких систем наиболее часто взрывы возникали в аппаратуре и трубопроводах компрессорных установок воздуха, так как использовались не соответствующие по качеству смазочные масла и превышались регламентированные давление и температура. Анализы конкретных аварий, происщедших по этим причинам на компрессорных и воздушных станциях, подробно описаны в литературе (см. список литературы). Там же даны общие и частные рекомендации по повышению взрывобезопасности процессов компримирования воздуха, кислорода и хлора. [c.147]

    Очень эффективным методом анализа углеводородов оказался метод газовой хроматографии. В зарубежной литературе опубликованы работы по применению хроматографического метода для анализа галоидопроизводных углеводородов [2—6]. В работе Персиваля [7] приводятся количественные данные по разделению методом газо-жидкостной хроматографии двухкомпонентных смесей фреонов. Грин [8] разделял и количественно определял компоненты в смесях, содержащих фреон-13 (трифтор-хлорметан), фреон-12 (дифтордихлорметан), фреон-11 (фтортрихлорметан) и четыреххлористый углерод. Однако в случае анализа смесей, содержащих, наряду с фреоном-13, фреон-14 (тетрафторметан) и воздух, осуществить разделение двух последних компонентов на газо-жидкостной колонке невозможно, ввиду близких объемов удерживания. Келькер [9] для определения примесей низкокипящих газов во фреоне-12 применял в качестве адсорбента силикагель. Малые концентрации инертных газов, порядка 0,02% (по объему), можно определить с точностью от 1 до 3%. Однако в литературе не было работ по количественному анализу смесей, содержащих, наряду с фреоном-13, фреон-14 и воздух. [c.283]

    Для большинства работ, не требующ их прецизионных измерений, можно по-прежнему применять дугу Пфунда и нормали длин волн, которые измерены для воздуха и приведены в литературе [11.9—11.13]. Анализ современного положения вопроса о нормалях дан Эдленом [11.4]. [c.281]

    Нельзя считать безнадежными и попытки использования атомной абсорбции для анализа газов по резонансным линиям, лежашим в вакуумной области спектра. В литературе описаны аналитические методики для определения концентрации водяного пара в воздухе [3], а также в азоте, кислороде и углекислом газе [3] по поглош,ению линии водорода Ь 1216 А) молекулярной полосой НгО с максимумом около 1220 А. Поэтому имеются все необходимые предпосылки для разработки [c.337]

    В угольной дуге постоянного тока проба обычно испаряется из анода, так как в дуге, горящей на воздухе, температура анода выше. Прикатодный слой может обогащаться на порядок величины элементами с относительно низким потенциалом ионизации (разд. 2.2.3 и 2.2.4 в [5а]). Это обеспечивает возможность испарения малых количеств материала (нескольких миллиграмм) из тонкого и глубокого канала угольного катода (см. электроды для метода фракционной дистилляции с микрократером на рис. 3.4). Щелочные металлы или большие количества других элементов уменьшают температуру плазмы и снижают прикатодный эффект усиления. Благоприятное пространственное распределение излучения плазмы в прикатодном слое (разд. 4.7.2) можно использовать, спроектировав увеличенное изображение прикатодного слоя на щель спектрографа (можно с помощью цилиндрического зеркала). Недостатки возбуждения в прикатодном слое обусловлены трудностями юстировки и слабым свечением прикатодного слоя. Кроме того, температура, близкая к температуре чистой угольной дуги, усиливает эмиссию ионных спектральных линий и циановых полос. Из-за указанных недостатков этот метод в практическом спектральном анализе применяется редко [I], хотя недавно неожиданно снова появился в литературе. При определении следов элементов в образцах горной породы методом прикатодного слоя был получен предел обнаружения от 10 до 10- % [8—10]. Для улучшения воспроизводимости результатов был проверен способ вращающегося катода [11]. [c.118]

    Результаты несложного анализа показывают [15—18[, что выражение (1) несовместимо с требованиями о постоянстве е = 8 по всему объему непрерывной фазы, если скорость в ней считать постоянной и равной хюо. нарушается материальный баланс потока. В литературе неоднократно подвергали критике и другие положения двухфазной теории [1, 17—20] и приводили экспериментальные данные, противоречащие ей. Так, Д. Харрисон и Л. С. Льюнг [6, 21], изучавшие минимально псевдоожиженный слой с автонолгаым подводом воздуха на образование пузырей, показали, что при псевдоожижении мелких частиц до 15% от объема пузыря люжет уходить [c.24]

    Промыпшенно-санитарная химия располагает достаточно надежными методами для определения индивидуальных органических загрязнений, но количественное раздельное определение органических веществ при совместном присутствии во многих случаях затрудняется близостью их химических свойств. Этот вопрос в ряде случаев может быть решен методом газо-жидкостной распределительной хроматографии. В литературе этот путь анализа воздушной среды освещен еще сравнительно слабо. Нам известны лишь работы Фаррингтона с соавторами [1], Бреннера и Эттра [2] и Веста с соавторами [3], посвященные определению содержания в воздухе некоторых индивидуальных органических примесей, например ацетилена, а также раздельному определению высших углеводородов, кетонов и сложных эфиров в их смесях. [c.269]


Смотреть страницы где упоминается термин Литература по анализу воздуха: [c.117]    [c.253]    [c.310]    [c.59]    [c.10]    [c.404]    [c.239]    [c.35]    [c.10]   
Смотреть главы в:

Химический анализ воздуха промышленных предприятий -> Литература по анализу воздуха




ПОИСК





Смотрите так же термины и статьи:

Анализ литературы



© 2024 chem21.info Реклама на сайте