Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Действие дополнительных анионов

    В теоретической и практической химии ЩЭ большое значение имеют их гидроокиси, относящиеся, как известно, к числу оснований, наиболее сильных из существующих и называемых щелочами (растворимые гидроокиси). Причиной отсутствия заметной ассоциации в разбавленных водных растворах ионов M+ aq и ОН -ая с образованием ионных молекул или даже ионных пар типа [Na+ aq] [OH- aq] является, как и в случае растворов солей, слабое поляризующее действие однозарядных катионов ЩЭ. В ряду Ы—Сз оно ослабевает (если раствор разбавлен и анион не проявляет дополнительного эффекта поляризации). Таким образом, самым сильным из неорганических оснований нужно считать СзОН. Соли, отвечающие этому основанию, гидролизуются в минимальной степени. По силе основных свойств с СзОН могут конкурировать только основания, в которых роль однозарядного катиона играют очень большие по размерам органические частицы. Примером могут быть производные четвертичных аммониевых оснований. [c.16]


    Все упоминавшиеся до сих пор силикаты построены из дискретных анионов. Другой класс силикатов содержит бесконечные цепочки связанных между собой кремнекислородных тетраэдров. В некоторых минералах содержатся отдельные силикатные цепочки, описываемые формулой (8Юз) " . Одна из форм асбеста имеет двухцепочечную структуру, показанную на рис. 14-31. Двойные цепочки связываются друг с другом электростатическими силами, действующими между этими цепочками и упакованными вокруг них катионами На , Ре и Ре . Разъединение цепочек осуществляется гораздо легче, чем разрыв ковалентных связей внутри отдельной цепочки. Это объясняет нитевидную легко расщепляемую текстуру асбеста. В кремнекислородных тетраэдрах до одной четверти ионов кремния может замещаться ионами алюминия. Однако каждое такое замещение требует добавления одного положительного заряда путем введения другого катиона (например, К чтобы скомпенсировать заряд на силикатных атомах кислорода. Физические свойства силикатных минералов очень сильно зависят от того, какая доля ионов замещена ионами А1 и сколько дополнительных катионов необходимо в связи с этим для компенсации заряда. [c.634]

    Поскольку для анионов характерны большие размеры и малый заряд, а их электронная структура, как правило, отвечает структуре благородного газа, они обладают сильной поляризуемостью, а их поляризующее действие на катион обычно невелико, и им часто можно пренебречь, т. е. считать, что поляризация носит односторонний характер. Однако, если катион легко деформируется, то возникающий в нем диполь усиливает его поляризующее действие на анион анион в свою очередь оказывает дополнительное действие на катион и т. д. Это приводит к появлению дополнительного поляризационного эффекта, который тем больше, чем значительнее поляризуются катион и анион. [c.120]

    V. Действие дополнительных анионов [c.165]

    Так как для анионов характерны большие размеры и малый. заряд, а их электронная структура, как правило, отвечает структуре благородного газа, то поляризующее действие аниона нз катион обычно невелико поэтому им часто можно пренебречь, т. е. считать, что поляризация носит односторонний характер. Если, однако, катион легко деформируется, то возникший в нем диполь усиливает его поляризующее действие на анион тот в свою очередь оказывает дополнительное действие на катион и т. д. [c.216]

    При взаимодействии двух противоположно заряженных ионов наблюдается их взаимная деформация. Но так как поляризующее действие аниона и деформируемость катиона обычно малы, то можно в большинстве случаев пренебречь поляризующим действием аниона на катион и учитывать только поляризующее действие катиона на анион. Однако в ряде случаев, именно, когда сильно поляризующий катион одновременно является сильно деформируемым, наблюдается и обратное явление. При взаимодействии такого катиона с анионом в последнем возникает индуцированный диполь, значительно увеличивающий поляризующее действие аниона под действием этого диполя катион начинает заметно деформироваться. Диполь, возникающий при этом в катионе, в свою очередь усиливает его поляризующее действие на анион и т. д. В конечном счете, благодаря этому дополнительному поляризационному эффекту, общая поляризация ионов оказывается большей, чем она была бы при меньшей деформируемости катиона. [c.141]


    Ион водорода — протон, имея ничтожно малые размеры, в противоположность всем другим катионам, действует на анион не снаружи, а проникает внутрь его электронной оболочки, оказывая на последнюю сильное поляризующее действие. Так как при этом внутри аниона появляется дополнительный положительный заряд, то следствием этого является резкое уменьшение полярности водородных соединений по сравнению с аналогичными соединениями других катионов. [c.142]

    Однако положение существенно меняется, если сильно поляризующий катион является одновременно и легко деформируемым. Так как индуцированный им в анионе сравнительно большой диполь (Л, рис. 5 Х1П-56) значительно усиливает поляризующее действие аниона, последний начинает уже заметно деформировать катион ( , рис. Х1П-56). Но возникающий в катионе диполь усиливает его поляризующее действие на анион и т. д. В результате благодаря такому дополнительному поляризационному эффекту общая поляризация аниона оказывается значительно большей, чем она была бы при меньщей деформируемости катиона, а общая поляризация катиона значительно большей, чем она была бы при меньшей деформируемости аниона В, рис. ХП1-56). Оба иона, так сказать, черпают дополнительную поляризующую силу в своей собственной слабости. [c.281]

    Несомненно, что для стабилизации неустойчивого состояния Со (III) в твердых соединениях необходимо пэ крайней мере два условия 1) закрепление ионов Со + в прочной кристаллической структуре и 2) окружение Со + анионами наиболее электроотрицательных элементов— фтора и кислорода, способных противодействовать сильному окисляющему действию Со +. С этой точки зрения интересно, что, например, хлорид Со (III) не существует, хотя электроотрицательность хлора довольно велика. Стабилизация Со (III) в сильном поле лигандов связана с созданием низкоспиновой Зй -электронной системы, придающей комплексному соединению дополнительную термодинамическую устойчивость (см. с. 143). [c.142]

    Оствальда, которые, как предполагалось, зависят только от положения соответствующих лигандов. Теперь приведем некоторые соображения по поводу того, что в действительности определяет соответствующие р-множители в различных случаях. Для многоосновных кислот взаимодействие кислотных групп, расположенных одна от другой значительно дальше, по своей природе является почти исключительно электростатическим, так что здесь 3-множители определяются главным образом зарядом отдельных кислотных групп и расстоянием между ними. Аналогично электростатический эффект наблюдается в комплексных акво-кислотах или в системах комплексов, где лигандами служат отрицательно заряженные анионы. Но здесь появляется дополнительный остаточный эффект, которым нельзя пренебречь. Этот остаточный эффект, который один определяет лиганд-эффект в системах с нейтральными молекулами, до некоторой степени, возможно, вызван отталкиванием диполей, индуцированных в лигандах центральным ионом (или постоянных диполей, ориентированных в поле центрального иона). Но, по мнению автора, вообще невероятно, чтобы это взаимодействие составляло значительную, не говоря об основной, часть остаточного эффекта. Более вероятно предположить, что остаточный эффект во всех системах комплексов прежде всего обусловлен влиянием лигандов на энергию связи с центральной группой. Это толкование также лучше согласуется с обычным представлением о том, что силы связи действуют главным образом между центральной группой и лигандами. Кроме того, это единственное непосредственное объяснение того факта, что остаточный эффект часто является отрицательной величиной в системах комплексов. [c.51]

    Невозможно, да и бесполезно указывать все случаи, когда может оказаться необходимым или желательным применение сложных плавней, описываемых на стр. 928, или отдельных плавней, достаточно лишь нескольких замечаний дополнительные указания можно найти в главах, посвященных отдельным элементам и группам минералов. Плавни, описываемые на стр. 928, применяются главным образом нри анализе сульфидов и арсенитов перекись натрия и хлорат натрия, если их применять в чистом виде, без разбавления, слишком энергично действуют на такие вещества. Целью применения этих плавней является окисление серы до сульфата, а мышьяка и сурьмы до арсената и антимоната. Большую часть упомянутых выше минералов можно, правда, окислить и мокрым путем, но сплавление со щелочами имеет, как выше указано, то преимущество, что при обработке плава водой происходит отделение анионов от многих элементов, которые могли бы помешать впоследствии их определению. Кроме того, этот метод делает возможным непосредственное определение некоторых элементов без предварительного их осаждения, например мышьяка без выделения его сероводородом. [c.923]

    Как показывают эти примеры, поляризуемость элементарного аниона вследствие образования соединения с положительно заряженным ионом понижается тем сильнее, чем меньше радиус и чем выше положительный заряд последнего и чем сильнее свободный анион поляризуем. Чем более сильное поляризующее действие оказывает положительный ион на связанный с ним анион, тем меньшему дополнительному влиянию этот анион подвергается со стороны другого электрического поля. [c.348]


    Особенно велика поляризационная составляющая теплот образования у водородных соединений, что обусловлено особыми свойствами иона Н+. Представляя собой имеющий ничтожно малые размеры голый протон, ион Н+ в противоположность всем остальным катионам действует на анион не снаружи, а проникает внутрь его электронной оболочки. Например, при радиусе I в 1,81 А расстояние между ядрами водорода и хлора в молекуле НС1 равно лишь 1,28 А. Водородный ион проникает, следовательно, в глубь С1 приблизительно на треть его эффективного радиуса и только на этом расстоянии общее притяжение Н+ электронами С1" оказывается компенсированным отталкивающим действием его ядра. Е стественно, что подобное самопроизвольное внедрение Н+ в электронную оболочку аниона должно сопровождаться дополнительным (по сравнению с другими катионами) вы- делением энергии, что и сказывается на теплотах образования водородных соединений, сильно повышая их против тех величин, которых следовало бы ожидать без учета этого обстоятельства. [c.77]

    Для ряда сплавов было установлено, что менее благородные металлы Ме (Са, Сг, 8 , Т1, 1.] и Мп в меди) образуют легко различимые отдельные слои (прилегающие к поверхности сплава), на которых образуется окисел более благородного легируемого металла Mt (закиси меди Си О). Для того чтобы эти промежуточные слои оказывали защитное действие, необходимо выполнение следующих условий-. I) промежуточный слой должен образовывать когерентное (сцепленное) покрытие на металле без образования таких дополнительных каналов диффузии, как трещины или проницаемые межзеренные границы 2) скорости диффузии катионов (Ме"+ и М "+) и анионов в этом слое должны быть малы 3) пов.ерхност-ные окислы не должны образовывать легкоплавких эвтектик. [c.108]

    Минимальным поляризующим действием в ряду Ь —Сз должен был бы обладать Сз. Однако согласно последним сведениям иону Сз+ в некоторой степени свойствен эффект дополнительной поляризации. Поэтому в соединениях, включающих наряду с Сз+ сильно поляризующиеся анионы, благородно-газовая электронная оболочка иона Сз+(4с( °5525Р ) испытывает деформацию, приводящую к возникновению химической связи катион—анион, включающей значительную ковалентную составляющую. По-видимому, только фторид цезия СзР свободен от такого рода поляризационных взаимодействий. Уже для СзС1 теоретический расчет показывает значительный перенос заряда с хлора на цезий, в результате чего эффективный положительный заряд на атоме цезия много меньше чем -Ь1. Поляризационными эффектами может быть объяснен своеобразный характер изменения температуры плавления безводных галогенидов ЩЭ (подробно см. в работе [1,. с. 35])  [c.14]

    Конечный результат структурной перестройки зависит от размеров иона. Если ион имеет сравнительно небольшой радиус и может поместиться в центре тетраэдра, образованного молекулами воды, то структура воды изменяется сравнительно мало, но молекулы, находящиеся по углам тетраэдра, получают дополнительную поляризацию в направлении к центральному иону. Форслинд показал, что тетраэдрические ионы хлорной кислоты (анионы С104 ), близкие по размерам к тетраэдрам воды (равно как и катионы аммония), могут в известной мере имитировать эти тетраэдры и вследствие этого почти не искажают структуру воды. Относительно характера действия того или иного иона на структуру воды полного единогласия нет. [c.252]

    Нами [121] был предложен новый метод расчета ионных рефракций для кристаллического состояния. Расчет поляризуемости проводился также по формуле Кирквуда, а влияние поля Маделунра учитывалось в виде поправки к 2 свободных ионов. Если представить свободные ноны в виде точечных зарядов, окружение катиона анионами можно уподобить как бы новой, дополнительной электронной оболочке, которая будет понижать 2 катиона и, следовательно, увеличивать ею поляризуемость [см. формулу (2.2)]. Действие катионов на анионы будет увеличивать эффективные заряды ядер анионов и, следовательно, уменьшать их электронную поляризуемость. Часть конкретных результатов таких расчетов приведена в табл. 36. [c.69]

    Сочетание сильного поляризующего действия со сравнительно легкой деформируемостью особенно характерно для малозарядных катионов с 18-электронными внешними слоями. Так как деформируемость их при переходе в одной и той же подгруппе периодической системы сверху вниз (например, Zn +->Hg +) сильно увеличивается, в том же направлении быстро возрастает дополнительный поляризащ онный эффект. Поэтому суммарное поляризующее действие однотипных 18-электронных катионов по мере увеличения их радиусов (при переходе в подгруппе сверху вниз) может не только не ослабевать, но даже заметно усиливаться. Из только что изложенного следует, что подобное отклонение хода изменения поляризующего действия в подгруппе от нормального должно проявляться тем резче, чем больше деформируемость аниона, взаимодействующего с данным рядом 18-электронных катионов,  [c.425]

    R = 0А1С1з, Более вероятно, по-видимому, что эти ионы образуют комплекс с анионами или молекулами растворителя. Хлористый (или бромистый) алюминий в отсутствие растворителя является, вероятно, наиболее реакционноспособным реагентом и действие его может быть несколько уменьшено путем применения таких растворителей, как сероуглерод, нитробензол или нитрометан. Применение этих растворителей дает дополнительные преимущества,, поскольку комплексы, образуемые хлористым алюминием, переводятся в раствор. С другой стороны, ацилирование таких активных ароматических колец, как в анизоле, тиофене или полициклических углеводородах, может быть осуществлено при помощи иода, а в некоторых случаях вообще, в отсутствие катализатора [2]. В литературе описано очень большое число самых различных катализаторов. [c.121]

    Это соединение относится к группе кристаллогидратов, в которых имеются дополнительно молекулы воды кроме тех, которые координированы вокруг металла [215]. Эти добавочные молекулы воды действуют как вторичные цепи, соединенные посредством Н-связей, с одной стороны, с молекулам,и воды, координированными катионом, а с другой — с атомами кислорода анионов. Кристаллогидрат Ре304-7Н20 имеет моноклинную син-гонию [205]. Ион Ре + окружен октаэдрически шестью молекулами воды каждый Эти шесть молекул воды образуют водородные связи с атомами кислорода тетраэдрической сульфатной группы и седьмой молекулой воды, не координированной катионом На рис. 34 изображена схема водородных связей рассматриваемой системы [c.73]

    Адамантилметил-катион, который можно получить, действуя кислотой на адамантилкарбинол или азотистой кислотой на соответствующий амин, претерпевает скелетную перегруппировку в гомоадамантил-катион, включающий одно дополнительное звено СНа и стабилизующийся захватом аниона из среды (Ф. Н. Степанов)  [c.585]

    На практике в качестве анодных ингибиторов используются анионы, однако не следует считать, что только анионы функционируют при анодном ингибировании. Например, в случае нержавеющих сталей ингибированию может способствовать окислительно-восстановительная система Ре 7Ре за счет пассивирования.. При низких концентрациях и активных значениях потенциалов восстановление служит дополнительной катодной реакцией и увеличивает скорость растворения. Однако, как в примерах, приведенных в разд. 2.8, если катодная плотность тока превысит критическую плотность тока анодной реакции, то наступает пассивирование металла. Эта ситуация представлена диаграммой (фиг. 70), иллюстрирующей влияние концентрации ингибитора и скорости потока на коррозию феррнтной нержавеющей стали в присутствии сульфата трез валенТного железа [91]. Этот тип ингибирования, который вызывает пассивность, несколько отличается от ингибиторного действия хроматов и нитритов, так как последние теряют кислород в процессе восстановления. Поскольку некоторые авторитетные специалисты называют такие ингибиторы пассиваторами то этот термин должен включать не только окислительно-восстановительные системы типа Ре /Ре , пример которой приводился выше, но также систему Нг/Н на нержавеющей стали, содержащей благородные легирующие добавки (разд. 2.8). [c.145]

    Внутримолекулярная нуклеофильная атака амидной группой играет важную роль в процессах рацемизации оптически активных аминокислот. Амидный зтом кислорода (1) Ы-ацил.амино-кислот внутримолекулярно. атлкует карбонильный атом углерода (5) с отщеплением НХ, приводя к оксазолону 10.18 [схема (10.28)]. Оксазолон 10.18 под действием основания легко теряет протон при атоме углерода С-4, превращаясь в соответствующий анион, который дополнительно стабилизирован за счет резонанса, как показано на схеме (10.29). Рацемизация аниона,, таким образом, протекает весьма легко. Образование омсазоло Иов было доказано различными методами и является важней шим маршрутом рацемизации аминокислот. Следует отметить что к рацемизации также приводит и непосредственный отрыв [c.267]

    Пирролы, имидазолы, пиразолы и бензоконденсированные аналоги, обладающие NH-группой, способны депротонироваться (значение рА а лежит в интервале 14-18). Следовательно, эти соединения могут быть полностью превращены в соответствующие анионы при действии сильных оснований, таких, как гидрид натрия или -бутиллитий. Незамещенный пиррол ( рК . 17,5) проявляет кислотные свойства в гораздо большей степени, чем соответствующий насыщенный аналог пирролидин (рА 44). Кислотность индола (рА 16,2) значительно выше, чем кислотность анилина (рА 30,7). Такое различие в кислотности можно объяснить возможностью делокализации отрицательного заряда в анионе ароматического гетероцикла. Введение электроноакцепторных заместителей или дополнительного гетероатома, особенно иминного атома азота, существенно повышает кислотные свойства гетероциклических соединений. Прекрасный иллюстрацией такого влияния может служить тетразол, рА которого (4,8) имеет тот же порядок, что и рК карбоновых кислот [c.47]

    Градиенты концентрации в граничных слоях показаны на фиг. 1. Катионообменная мембрана легко проницаема для катионов (т.е. 7 близко к 1) и почти непроницаема для анионов (т.е. Ц близко к п ). Катионы переносятся через мембрану быстрее, чем они могут двигаться под действием электрической силы иэ раствора справа от мембраны или в раствор слева от нее. Поэтому концентрация правее границы уменьшается, а концентрация левее границы увеличивается, пока градиенты концентрации не гфимут таких значений, при которых необходимые для поддержания установившихся в граню -ных слоях условий дополнительные потоки ионов обеспечиваются диффузией. [c.38]

    Дополнительные сведения, подтверждающие важное значение мостовых связей, мы находим в описании результатов экспериментов по определению фильтруемости сфлокулироваиных осадков и изучению влияния интенсивности перемешивания воды на флокуляцию. В опытах по фильтрации [190, 191] показано, что по мере увеличения дозы ВМФ (синтетических и природных, катионных и анионных) удельное сопротивление осадков уменьшается, а скорость фильтрации соответственно возрастает (пропорционально дозе ВМФ). Причина состоит в образовании пространственной сетки и гидрофобизации поверхности частиц под действием адсорбировавшихся полимеров. Под давлением флокулы проявляют пластические свойства. [c.304]

    Метод выделения металлов в виде основных солей оказался во многих случаях очень эффективным. Уиллард рекомендует выделять алюминий в виде основной соли янтарной кислоты, железо и торий — в виде основных солей муравьиной кислоты, титан и галлий — в виде основных сульфатов. Анионы органических кислот наиболее пригодны, так как они, проявляя буферное действие, регулируют изменение pH, а кроме того, образованные ими основные соли можно легко прокалить до окислов. В этой связи интересны наблюдения Дюпюи и Дюваля которые показали, что основная алюминиевая соль янтарной кислоты, осажденная из гомогенного раствора, была доаедена до постоянной массы при 611° С, тогда как гидратированную окись алюминия обычно приходится прокаливать при 1100°С. В некоторых случаях для обеспечения оптимальной чистоты рекомендуется получить большую часть осадка при очень низком pH, но для обеспечения полноты осаждения закончить его при более высоком значении pH. Так, при выделении железа в виде основной соли муравьиной кислоты сначала кипятят раствор, содержащий мочевину, пока pH раствора не достигнет 1,8, затем отфильтровывают основную порцию осадка и продолжают кипячение до тех пор, пока pH не повысится до 3. Образующийся дополнительно небольшой осадок можно перенести на тот же фильтр. [c.163]

    Полярографический фон. Движение ионов в электрическом поле раствора может происходить не только под влиянием диффузии, как это упомянуто выше, но и под действием самого электрического поля—миграции ионов. Это дополнительное движение ионов затрудняет вывод количественных закономерностей при полярографическом анализе, и поэтому необходимо миграцию ионов уменьшить. Уменьшение миграционного движения ионов может быть осуществлено добавкой в раствор значительного из бытка посторонних индифферентных ионов, которые восстанав лнваются при более отрицательных потенциалах, чем определяе мый ион, и поэтому не мешают процессу полярографирования В качестве индифферентных электролитов, или, как их назы вают, фонов, в полярографии широко применяют соединения одно валентных ионов КС1, NagSOi, H I, NaOH и др. В качестве фо нов для определения и разделения различных катионов и анионов рекомендуется ряд растворов, приведенных в табл. 37. [c.443]

    Помимо катионов из сточных вод следует удалять и анионы. Для этого необходима разработка дешевых и доступных анионитов. Это особенно актуально в связи с тем, что химическая и термическая устойчивость анионитов ниже, чем катионитов [31J. Для получения недорогих анионитов изучали относительно простые химические способы обработки торфа. Бриттен [32] запатентовал получение торфа-анионита с помощью азотной кислоты. Получен амфотерный ионит в результате обработки гуминовых кислот фенилендиамйном и последующей поликонденсацией с альдегидом [33]. В работе [25] рассматривается действие этилендиамина (ЭДА) на торф, модифицированный серной кислотой. Алифатический амин был использован потому, что он является не таким слабым основанием, как ароматические амины. Модифицированный торф был выбран из-за наличия дополнительных карбоксильных групп, полученных при кислотной обработке. Недостатком этого метода является то, что торф выщелачивается в основных растворах. Поэтому для создания более мягких условий, чем кипячение с раствором ЭДА, желательно совместно использовать амины и амиды. Предложено использовать тионилхлориды для образования в модифицированном торфе до обработки ЭДА хлорангидридов. Были предприняты попытки создать сильноосновный ионит, получив четвертичное аммониевое основание при действии метилиодида и диметилсульфата на слабоосновные аминогруппы. Как и для катионитов, были изучены физические характеристики полученных анионитов, а именно обменная емкость. Было исследовано также выщелачивание и набухание в зависимости от pH. [c.255]

    Для этого обычно используют реакцию алкилгалогенида или алкилсульфоната (или другого алкилирующего агента) с енолят-анионом, образующимся при действии сильного основания (см. разд. 5.2.4 обзор см. [36]). Метод дает удовлетворительные результаты с кетонами, которые могут енолизоваться только в одном направлении. О моно- и диалкилировании С-2 в тетрало-нах-1 см, [93]. Дополнительная активация а-метиленовой группы в кетоне, как в р-дикетонах и р-кетоэфирах (см. разд. 5.2.10 и [c.588]

    Диссоциированные растворы усиливают активность некоторых соединений на поверхности раздела фаз по сравнению с достигаемой в чистой воде, причем это влияние дополнительно увеличивается с возрастанием валентности ионов. Данное явление было обнаружено при измерениях поверхностного натяжения на границе раздела между разбавленными растворами солей и масел, содержащих парафиновые цепи [59]. Для системы чистое минеральное масло—0,005%-ный раствор соли жирной кислоты (игепои Т), содержащей сульфо- и замещенную амидную группу и образующей анионы с парафиновыми цепями, в отсутствие неорганических солей натяжение было равно 11 дин см. Хлористый натрий снижал поверхностное натяжение постепенно хлористый кальций — быстро (0,0025 н. раствор — до 0,8 дин см) в то же время 0,0001 н. раствор хлорида трехвалентного лантана снижал поверхностное натяжение на границе раздела фаз до 0,25 дин см концентрация соли жирной кислоты во всех опытах оставалась постоянной. Следовательно, валентность иона, по знаку противоположного длинноцепочечному иону поверхностно-активного вещества, имеет чрезвычайно важное значение, так как непосредственно определяет снижение поверхностного натяжения под действием длинноце- ючечного иона жирной кислоты. [c.141]

    Обратный процеос происходит а случае хромсодержащих глазурей, которые легко обтекают расположенные рядом свинцовые глазури, так как компонент СгОз вызывает необычно высокое отрицательное приращение поверхностного натяжения . Глазурь, содержащая хромат, имеет тенденцию обволакивать свинцовую глазурь, обладающую относительно высоким поверхностным натяжением. Дополнительное действие довольно низкой плотности расплава хроматной глазури я диффузия окрашенных анионов хромата при перегревании глазури вызывает много затруднений, особенно вследствие низкой энергии связи между ионами РЬ + и Сг04 -, также как и в случае анионов сульфата и ванадата, резко снижающих поверхностное натяжение. Поверхностное натяжение глазури, содержащей 3,2% СгОз, на [c.918]

    Поверхностно-активные кондиционирующие добавки обычно вводят в количестве 0,02—0,1% от массы необработанного удобрения. Добавки анионного типа (алкиларилсульфонаты) применяют в виде разбавленных растворов, для получения которых требуются значительные количества инертных порошкообразных материалов для поглощения дополнительно вводимой влаги. Добавки катионного типа (производные высших алкиламинов и их соли) нашли наибольшее применение, но они не являются биоразлагаемыми продуктами и загрязняют окружающую. среду. Поверхностно-активные добавки неионогенного типа (полиоксиэтилены, сложные эфиры, кремнийорганические жидкости) используют совместно с порошкообразными материалами (например, каолином), но они не получили еще широкого распространения из-за недостаточно высокой эффективности действия. В качестве инертных кондиционирующих добавок используют карбонат кальция, каолин, серу, диоксид кремния, кизельгур, воск, полиолефины, хлорсиланы. Эти добавки изолируют поверхность частиц друг от друга и предотвращают контакт между ними. Вводят их в количестве 1 — 10% от массы удобрения. [c.274]


Смотреть страницы где упоминается термин Действие дополнительных анионов: [c.424]    [c.319]    [c.370]    [c.76]    [c.278]    [c.520]    [c.36]    [c.36]    [c.36]    [c.119]    [c.409]    [c.520]    [c.404]    [c.279]   
Смотреть главы в:

Реакции координационных соединений переходных металлов -> Действие дополнительных анионов




ПОИСК





Смотрите так же термины и статьи:

Дополнительный код



© 2025 chem21.info Реклама на сайте