Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции и ход анализа смеси ионов

    Приступая к работе по качественному анализу, студент вначале практически знакомится с наиболее важными и типичными реакциями катионов первой группы. Когда свойства ионов и образуемых ими соединений будут хорошо изучены, студент сам готовит смесь ионов этой группы и производит их осаждение групповым реактивом, а затем производит их разделение и обнаружение по приводимой ниже схеме. [c.57]


    Систематический метод анализа основан на том, что сначала с помощью групповых реагентов разделяют смесь ионов на группы и подгруппы, а затем уже в пределах этих групп и подгрупп обнаруживают каждый ион характерными реакциями. Групповыми реагентами действуют на смесь ионов последовательно и в строго определенном порядке. [c.120]

    Систематический ход качественного анализа заключается в том, что смесь ионов с помощью особых групповых реактивов предварительно разделяют на отдельные группы. Затем из этих аналитических групп каждый ион выделяют в определенной последовательности, а потом уже открывают характерной для него аналитической реакцией. [c.58]

    Чтобы подвергнуть анализу смесь нескольких веществ, близких по химическим свойствам, приходится их предварительно разделять и только затем проводить характерные реакции на отдельные вещества (или ионы). Качественный анализ охватывает не только отдельные реакции обнаружения ионов, но и методы их разделения. [c.26]

    Однако эти способы эффективны только тогда, когда в растворе находится одна или небольщое число солей. Если же раствор представляет собой сложную смесь ионов, обнаружение одного из них является более трудной задачей, так как присутствующие в растворе посторонние ионы, вступая в реакцию с реагентом, мешают обнаружению. Анализ сложной смеси ионов проводят систематическим или дробным методами. [c.7]

    Систематический метод качественного анализа основан на том, что вначале с помощью групповых реагентов разделяют смесь ионов на группы и подгруппы, а затем уже в пределах этих подгрупп обнаруживают каждый ион характерными реакциями. [c.7]

    Применение капельных реакций на фильтровальной бумаге дает возможность повысить чувствительность реакции и разделить смесь ионов [16]. Капельный метод анализа основан на использовании капиллярно-поверхностных свойств пористых тел (бумаги, волокна). Различная сорбируемость, а также различная капиллярная активность ионов и скорость диффузии вызывают локальное размещение ионов, вследствие чего происходит накопление и разделение веществ на бумаге в виде концентрических зон. Бумага в водном растворе заряжена обычно отрицательно. Поэтому большое значение для разделения имеет также адсорбция и диффузия коллоидных частиц, которые несут электрический заряд. [c.53]


    Систематический ход качественного анализа в отличие от дробного анализа заключается в том, что смесь ионов с помощью особых реактивов предварительно разделяют на отдельные группы. Из этих групп каждый ион выделяют в определенной последовательности, а потом уже открывают характерной для него аналитической реакцией. Следовательно, в систематическом ходе анализа применяют не только реакции открытия отдельных ионов, но также и реакции отделения их друг от друга. Другими словами, при выполнении систематического хода анализа к открытию ионов приступают главным образом лишь после удаления из анализируемого раствора в результате последовательных операций всех других ионов, мешающих открытию искомых ионов. [c.68]

    Для получения вещества с максимальной каталитиче- ской активностью необходимо проводить реакцию при = нагревании до возможно более полного восстановления хромового ангидрида. Если вместо кипячения реакцион- ную смесь нагревать при циркуляции на паровой бане в течение 16 час. без перемешивания, вся она оседает в виде черного геля, который можно раздробить, профильтровать и высушить обычным путем. Полученный катализатор обнаруживает при ароматизации нормаль- ного гептана активность, выражаемую цифрой 140. При термохимическом анализе этот гель обнаруживает ела- бую, но, несомненно, экзотермическую реакцию при 215—220°. Хромат трехвалентного хрома, приготовлен-ный обработкой раствора нитрата хрома аммиачным раствором хромата аммония или добавлением избытка аммиака к раствору, содержащему нитрат хрома (3) и хромовый ангидрид, обнаруживает сильно экзотермическую реакцию при нагревании до 215—220°. При приготовлении геля окиси хрома по описанному методу, можно считать, что ионы Сг+++, образовавшиеся в процессе восстановления, соединяются с неизмененной хромовой кислотой, образуя хромат трехвалентного хрома. Для восстановления этого соединения требуются более жесткие условия (при термохимическом ана- лизе приготовленный по описанному методу гель не обнаруживает экзотермической реакции при 215— 220°). [c.186]

    Растворимость солей не является обязательным условием анализа достаточно, чтобы в воде растворялись соответствующие кислоты. Если водную смесь почти нерастворимой соли встряхивать с катионитом в Н-форме, содержащим сульфокислотные группы, то между ионитом и солью происходит реакция, в результате которой катионы поглощаются ионитом, а эквивалентное количество ионов водорода переходит в раствор. Этот принцип использовался, например, для определения фосфат-иона в фосфате кобальта [22]. [c.21]

    Реакция борной кислоты со спиртами. Реакцию осуществляют в фарфоровом тигле или чашке. Для реакции берут сухое вещество, а если для анализа дан раствор, то его предварительно выпаривают досуха. К сухому испытуемому веществу прилейте немного спирта и концентрированной серной кислоты, смесь перемешайте стеклянной палочкой и подожгите. При наличии ВО3 -ионов пламя окрашивается в зеленый цвет. Бораты и борная кислота в сернокислой среде со спиртами образуют эфиры борной кислоты [c.377]

    Фильтрат после отделения катионов IV и V групп, содержащий катионы остальных трех групп, нагревают в фарфоровой чашке до кипения (для полного удаления сероводорода). Затем раствор переносят в пробирку, прибавляют хлорида аммония, 0,5 мл нитрата циркония и водного аммиака до щелочной реакции. Полученную смесь в течение нескольких минут нагревают на кипящей бане. При этом образуется 2Гз(Р04)4 избыток ионов циркония выладает в виде Zr(OH)i, а катионы П1 группы образуют осадок гидроокисей. После этого к смеси приливают б н. раствор НС1 до кислой реакции (рН=3) и нагревают смесь до полного растворения гидроокисей. При этом Zr(0H)4 превращается в нерастворимую метациркониевую кислоту HjZrOg, а Гз(Р04)1—в 2г(НР04)г. Осадок отделяют на центрифуге, раствор испытывают на полноту отделения POi -ионов. Раствор используют для обнаружения катионов I, П и "П1 аналитических групп. В растворе остается немного 2г+++-ионов, которые в случае необходимости отделяют, хотя они особенно и не мешают дальнейшему анализу. [c.433]

    Приемник, где пятна окрашивались в следующие цвета (порядок перечисления соответствует возрастанию Си + темно-коричневый, РЬ + коричневый, желтый, ВР+ коричнево-черный и Нд2+ коричнево-черный. Разделение ионов тяжелых металлов (таллия, меди, свинца, мышьяка, кадмия, сурьмы, висмута и ртути), производимое при судебных экспертизах, исследовалось Кюнци и сотр. [12, 13]. На том же адсорбенте, что и в работе [2], с применением различных комплексообразующих реагентов и органических растворителей, обнаружено, что наилучшим растворителем является смесь 100 мл бензольно-ацетонового раствора (3 1), насыщенного винной кислотой и 6 мл 10 %-ной азотной кислоты. Однако в этом растворителе пятно ртути может налагаться на пятно висмута и пятно свинца налагается на пятно меди, а кадмий дает три пятна. С помощью смеси метанол—ацетонитрил—азотная кислота (пропорции не указаны) можно селективно отделить таллий (i 0,72) от остальных ионов, которые перемещались с фронтом или вблизи фронта растворителя. Отмечается [2, 12, 13], что не следует обращать внимание на абсолютные значения Rj, так как они зависят от состава разделяемой смеси. Для оценки результатов важны только относительная последовательность пятен ионов и их цвет после опрыскивания различными обнаруживающими реагентами. С растворителем Кюнци пятна разделяемых ионов располагаются в следующей последовательности Hg>Bi> Sb> d>As>Pb> u>Tl. Некоторые цветные реакции для различных ионов этой группы указаны в табл. 33.1. Сотрудники Кюнци применили разработанный метод для решения практических задач по количественному определению содержания некоторых металлов, например мышьяка в муке, таллия в крови, ртути в моче и мышьяка и кадмия в чае. Для количественной оценки размеры полученных пятен сопоставляли с размерами пятен при работе со стандартными растворами. Стандартное отклонение при определении содержания мышьяка и кадмия в чае составляло 10%, а при определении ртути в моче —0,5 мг-7о причем для проведения анализа требовалось всего 3 ч, в то время как анализ электролитическим методом занимал 12 ч, а стандартное отклонение для последнего метода составляло 0,4—0,5мг-%. [c.481]


    Метод Ван-Сляйка и Хиллера [18], по которому для проведения колориметрической реакции применяется смесь фенолята и гипохлорита натрия, был усовершенствован Расселом [19], в результате чего этот метод может быть использован для определения ионов аммония в количествах порядка нескольких миллимикрограммов. Кроме того, этот метод можно применять в сочетании с диффузионными методами, аналогичными диффузионным методам, описанным в литературе или в этой книге, которые должны быть приспособлены для работы в еще меньшем масштабе. Предел чувствительности при работе с капиллярной кюветой емкостью 200 X составляет приблизительно 0,5 ту азота аммиака поэтому практически анализ можно проводить в тех случаях, когда количество аммиака превышает приблизительно 1,0 ту. [c.311]

    При анализе раствора, содержащего смесь ионов AF, Сг , Zv , обнаружению катионов алюминия дробным методом мешают ионы цинка и хрома (П1). Поэтому на первом этапе дробного анализа необходимо удалить мешающие ионы, в данном случае, связать в комплекс ионы цинка, добавив в раствор гексацианоферрат (П) калия KJFe( N)g], а катионы Сг окислить до СгО " действием пероксида водорода HjOj в щелочной среде. Затем, на втором этапе, уже можно обнаружить ионы алюминия качественной реакцией с ализарином. [c.157]

    Литиевые соли бензиловых эфиров типа 85 быстро перегруппировываются в инертных растворителях с образованием алкоголятов 36 Является ли эта реакция меж- или внутримолекулярной Для ответа на этот вопрос нагревали смесь двух литиевых солей 39 и 40, которые перегруппировываются с близкими ско- ростями. Анализ продуктов реакции показал, что хотя реакция преимущественно внутримолекулярна, на > 7% она протекает за счет перехода групп между молекулами. Этот результат можно рассматривать как доказательство образования в ходе реакции тесной , ионной пары типа 37. При этом два иона удерживаются вместе в клетке молекул растворителя и реагируют друг с другом с образованием, продукта внутримолекулярной реакции. Небольшой процент, ионов может диффундировать из клетки и реагиро вать межмолекулярно. Механизм, включающий образование радикальной пары вместо ионной, также будет согласовываться с этими результатами. Вместе с тем приведенные факты не согласуются ни с полной диссоциацией эфира на ионы или на радикалы, ни С прямой внутримолекулярной перегруппировкой,, [c.37]

    Активацию катионита проводят следующим образом. К смеси высушенного сульфокатионита дауэкс 50w Х 4 и хлористого этилена добавляют при перемешивании раствор хлорсульфоновой кислоты в хлористом этилене. Смесь охлаждают, поддерживая температуру около 15 °С. После того как реакция в основном закончится, охлаждение прекращают и температуру повышают до 26 °С. Катионит отфильтровывают, промывают хлористым этиленом и суспендируют в 37%-НОЙ соляной кислоте при 20 °С. К этой смеси добавляют небольшими порциями в течение 2 ч гранулированное олово, после чего температуру поднимают до 80 °С для растворения олова. Катионит опять отфильтровывают, промывают 10 о-ной соляной кислотой до полного удаления солей олова, а затем водой — до полного удаления соляной кислоты. Катионит обезвоживают, отгоняя азеотропную смесь воды с бензолом последний удаляется из катионита при высушивании в вакууме. На активированном таким образом ионите проводили синтез дифенилолпропана в статических условиях (80 °С, 6 ч). Анализ показал повышение степени конверсии фенола по сравнению с опытами, в которых использовали неактивированный катионит дауэкс 50 w X 4. [c.153]

    Более 100 лет назад Фридель и Крафте установили [32], что при добавлении небольшого количества безводного алюминийхло-рида к амилхлориду на холоду начинается мгновенное и бурное выделение газа. Этот газ представляет собой смесь хлористого водорода с насыщенными углеводородами, которые не поглощаются бромом. Природа этих углеводородов была не вполне понятна. В ходе настоящего исследования в ряде случаев появлялись продукты прямого восстановления алкилхлоридов. Хотя имеется много данных о поведении алкилхлоридов в кислой и сверхкис-лой средах, можно полагать, что превращение низших алкилхлоридов (С,—Сз) в соответствующие парафины (как было найдено при анализе парвичиых газообразных продуктов) наблюдается впервые. Реакция протекает с достаточно высоким выходом (до 34%) путем прямого переноса гидрид-ионов. [c.157]

    Затем к пробе анализируемого раствора ( 30 капель) осторожно, по каплям прибавляют разбавленный раствор соды для нейтрализации раствора до слабо щелочной реакции, после чего добавляют еще 30 капель раствора соды. Смесь натревают до кипения и кипятят около 5 мин, периодически добавляя по каплям дистиллированную воду по мере упаривания раствора, поддерживая объем жидкой фазы приблизительно постоянным. Полученную смесь центрифугируют, центрифугат отделяют от осадка (который сохраняют для дальнейшего анализа — в случае необходимости). К большей части центрифугата осторожно, при перемешивании, по каплям прибавляют разбавленную уксусную кислоту до pH я 7 для удаления избытка карбонат-ионов  [c.513]

    Это повышает специфичность применяемых реакций. Для маскировки мешающие вещества переводят в прочные комплексные соединения с маскирующим реагентом, мало растворимые или недиссоциирующие соединения или изменяют pH раствора, или применяют сложную смесь реагентов. Дробный метод исключает примененне сероводорода и значительно ускоряет анализ. Особенно удобен дробный анализ в том случае, когда нужно обнаружить несколько (не более пяти) различных ионов в их смеси. Дробные реакции позволяют оценить на глаз количество присутствующего иона (очень много, много, мало, следы). Количество присутствующего иона находят по объему выделившегося осадка или по интенсивности окраски раствора после действия на испытуемый раствор соответствуюш,им реагентом. [c.131]

    Исследованы закономерности жидкофазного хлорирования хлоролефинов С1-С4 при низких температурах (О-ЮО С). Анализ экспериментальных результатов показал, что образуется сложная смесь про.цуктов присоединения и замещения, В соответствии с современными концепциями можно предположшъ схему превращений, включающую три направления молекулярное, приводящее к образованию продуктов присоединения и продуктов замещения, свободно радикальное и ионное с образованием только продуктов присоединения. Установлены взаимосвязь этих механизмов в общем потоке хлорирования в зависимости от структуры исходного олефина и условий реакции И влияние их на состав получающихся продуктов [c.7]

    Хотя наибольший объем информации при исследовании механизма химических реакций был получен и сейчас продолжает получаться в результате изучения их кинетики, тем не менее следует иметь в виду, что интерпретация кинетических данных не всегда столь проста, как это может показаться с первого взгляда. Это связано, в частности, с тем, что эффективно действующие частицы, концентрация которых реально обусловливает скорость реакции, могут значительно отличаться от тех частиц, которые мы вводим в реакционную смесь и изменения концентрации которых в процессе реакции мы реально измеряем. Так, например, эффективными частицами в реакциях ароматического нитрования, непосредственно атакующими молекулы ароматического соединения, являются обычно ионы нитро-ния N02 (см. стр, 141), хотя нитрующим агентом, который мы вводим в реакционную смесь и изменение концентрации которого мы измеряем, является НЫОз соотношение же между концентрациями N02 и НЫОз и, следовательно, между скоростью реакции нитрования и концентрацией HNOз зависит от многих факторов и является довольно сложным. Таким образом, даже в тех случаях, когда механизм исследуемой реакции сравнительно несложен, его выяснение па основании анализа наблюдаемых на опыте величин может оказаться далеко не простой задачей. [c.63]

    Для анализа иодозо- и иодосоединений применяется следующая методика. В колбу для титрования емкостью 200 мл с притертой пробкой помещают 100 мл воды, 10 мл 6 н. раствора серной кислоты, 2 г иодистого калия, свободного от ионов йодноватой кислоты, 10 мл хлороформа и, наконец, навеску вещества, содержащую около 0,25 г. Смесь взбалтывают в течение 15 мин. (или дольше, если реакция не закончится) и титруют 0,1 н. раствором тиосульфата натрия. Если образец чистый, то о конце титрования можно судить по изменению цвета хлороформенного слоя, если же образец содержит примеси, то к нему следует добавить раствор крахмала, так как примеси окрашивают хлороформенный раствор в буроватый цвет. Применение хлороформа в качестве растворителя наиболее желательно, так как он облегчает реакцию с подпетым калием, растворяя продукты реакции. Иодозобензол можпо отличить от иодобензола на основании того, что первый восстанавливает ионы иода в насыщенном растворе борнокислого натрия, в то время как иодобензол такого действия не оказывает . Метод анализа основан на следующих реакциях  [c.265]

    В тех случаях, когда после вышеуказанной обработки все же остается еще неразложившийся остаток, исследуйте его на присутствие сульфатов, фторидов, силикатов и окислов. Пользуясь небольшими порциями остатка, произведите определение сульфат-ионов, как указано в 48, ионов фтора — по 47 и сплнкат-ионов — по 44, в. При обнаружении какого-либо из этих ионов возьмите 10—20 Л1г хорошо промытого и высушенного остатка и сплавьте его с карбонатом натрия, как указано на стр. 125. Более подробные сведения относительно анализа сульфатов, фторидов и силикатов см. Анализ сульфатов (стр. 132), Анализ фторидов (стр. 133), Анализ силикатов (стр. 140). Если же вышеуказанные реакции дали отрицательный результат, то нерастворимый остаток представляет собой окисел или смесь окислов. Сплавьте его с пиросульфатом калия- и исследуйте, как описано в главе Анализ окислов . [c.118]

    Анализ нерастворимых бромидов. В про бирку берут немного сухого исследуемого вещества, прибавт ляют разбавленную (1 4) H2SO4 и гранулу цинка, встряхивают смесь и дают раствору отстояться. Восстановлен- ный металл и остаток цинка отфильтровывают. В фильтрате обнаруживают ион Вг по реакции с хлорной водой или перманганатом калия. [c.80]

    Изучение аналитических реакций ионов создает возможнс для проведения анализа неизвестных веществ или их сме Качественный анализ неизвестных веществ можно вести следующей схеме 1) предварительные испытания 2) растворе образца 3) анализ катионов 4) анализ анионов. [c.194]

    Анализ Me eii BrO - и ВгО - ионов [596 . К 25 мл раствора, содержащего до 0,5 г КВгО и имоющого нейтральную реакцию, добавляют 0,3—0,5 г KJ и избыток 0,1 Л NajAsOj. Смесь кипятят 10—15 мин. и после охлаждения титруют 0,1 N раствором иода по крахмалу. Для определения ВгО" к оттитрованной пробе добавляют еще х i г КЗ и 10 мл 2 N НС1, а затем титруют выделившийся иод раствором тиосульфата натрия. [c.99]

    В связи с таким поведением алюмосиликатов при прокаливании возникает вопрос, не может ли началом, действующим при каталитическом действии алюмосиликатов при крекинге углеводородов, являться не монтмориллонит или подобное ему соединение, а смесь аморфных окислов алюминия и кремния. Такая смесь заключает в себе значительное количество энергии, которая, как известно, проявляется при кристаллизации компонентов данной аморфной смеси и констатируется в виде экзотермического эффекта на кривых нагревания при термографическом анализе. Эта энергия, по моему предположению, и обусловливает (ускоряет) реакцию расщепления углеводородов по радикальному механизму. Действующим началом при всех вторичных реакциях крекинга являются неагре-гированные молекулы свободной окиси алюминия, как это, например, было доложено Г. М. Панченковым при превращении циклогексена. Эти вторичные реакции крекинга протекают по ионному механизму за счет хемосорбции воды окисью алюминия. [c.172]

    Далее в реакционную смесь во время развившегося процесса окисления бутана в стеклянном реакторе был введен тяжелый остаток от вакуумной перегонки смеси продуктов окисления бутана, полученной в реакторе из нержавеющей стали. Этот остаток содержал смолу и соли металлов, перешедшие в раствор в результате коррозии реактора. При этом мы ожидали, что каталитический эффект ионов металлов превысит ингибирующее действие полимерного продукта. Действительно, как видно из рис. 4 (кривая 2), сразу же после вброса остатка от перегонки наблюдается резкое увеличение скорости поглощения кислорода. При анализе продуктов коррозии в оксидате, полученном при окислении бутана в металлическом реакторе, было обнаружено 10 —10 г-ион л Ре " " и следы ионов и Ре " ". Введение таких количеств ацетата трехвалентного железа не оказало заметного влияния на скорость окисления бутана в стеклянном реакторе (см. рис. 4, стрелка 3 ). Резкий скачок скорости реакции был воспроизведен только при дополнительном введении (рис. 4, стрелка 3") микроколичеств остальных компонентов стали Х18Н12М2Т — хрома, молибдена, никеля, марганца и титана. Это указывает на сложный характер катализатора, ответственного за резкое ускорение реакции. [c.68]

    Преимущества качественного масс-спектрометрического анализа значительно возрастают при условии, что один из исследуемых продуктов реакции получен из исходных веществ известного состава. Рассмотрим, например, реакцию циклопентанона с н-бутиламином в газовой фазе при 300—350° в присутствии катализатора и без него. Эта и другие аналогичные реакции являются частью исследования термического распада найлона 6,6 [566]. Не касаясь в настоящем разделе подробно вопроса относительно химизма этого процесса, остановимся лишь на масс-спектрометрической идентификации двух продуктов реакции. Циклопентанон имеет формулу sHgO и номинальный молекулярный вес 84 молекулярный вес бутиламина — 73, а формула — 4HiiN. Многие продукты реакции могут быть идентифицированы без выделения их из смеси и благодаря тому, что известна формула исходного соединения идентификацию можно осуществить только по пикам молекулярных ионов. Ранее упоминалось, что масс-спектрометрия позволяет устанавливать точную молекулярную формулу неизвестного соединения или каждого из соединений, присутствующих в смеси. Результаты можно сопоставить с данными элементарного химического анализа по соотношению С N Н О. Благодаря этому устанавливают, все ли присутствующие компоненты обнаружены. Другими словами, при исследовании одного типа молекул не обязательно исследовать всю смесь. Так, например, один из компонентов смеси дает большой молекулярный пик с массой 150, который может быть идентифицирован даже без точного измерения масс следз ющим образом. Рассматриваемое соединение не образовано двумя молекулами бутиламина, поскольку молекулярный вес его больше, чем 2 X 73 = 146 оно также не могло образоваться в результате взаимодействия молекулы циклопентанона и бутиламина (масса 157), поскольку для этого в процессе реакции оно должно было бы потерять семь атомов водорода и поскольку продукт имеет четный молекулярный вес, так что в молекуле должно присутствовать четное число атомов азота. Возможный путь образования такого соединения — взаимодействие двух молекул циклопентанона (масса 168) с выделением массы 18. Известно, что при дегидрировании паров циклопентанона при повышенной температуре над активированной окисью алюминия образуется 2-циклопентилиденциклопентанон [c.447]

    Эти реакции обратимы, поэтому любое из этих веществ может превращаться в соответствующих условиях в равновесную смесь продуктов через стадию образования DII. Поскольку удается осуществить удовлетворительный анализ таких перегруппировок в известных структурах, то аналогично можно использовать данные перегруппировок по карбоний-ионному механизму для изучения природных соединений с неизвестной стереохимией. [c.612]

    Применяя буферные схмесн при анализе, необходимо учитывать их емкость. Так, если хотят провести какую-либо реакцию, сопровождающуюся накоплением в растворе ионов Н+ при определенном практически постоянном pH, то недостаточно ввести в раствор буферную смесь, имеющую данный pH, но нужно также позаботиться о том, чтобы буферная емкость ее была достаточно велика, так как только в этом случае сохранится практическое постоянство pH раствора. Другими словами, нужно, чтобы компоненты буферной смеси присутствовали в растворе в подходящих, достаточно больших концентрациях. [c.85]


Смотреть страницы где упоминается термин Реакции и ход анализа смеси ионов: [c.271]    [c.180]    [c.36]    [c.224]    [c.310]    [c.844]    [c.50]    [c.109]    [c.257]    [c.70]    [c.455]    [c.114]    [c.70]    [c.295]   
Смотреть главы в:

Основы аналитической химии Курс лекций Изд2 -> Реакции и ход анализа смеси ионов




ПОИСК





Смотрите так же термины и статьи:

Анализ ионов

Анализ реакций

Реакции в смесях



© 2025 chem21.info Реклама на сайте