Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние высоких давлений на химические реакции

    Для переработки тяжелых нефтяных остатков и дистилля-ционного сырья используют установки термического крекинга. Б отличие от атмосферной и вакуумной перегонки, при которых нефтепродукты получают физическим разделением нефти на соответствующие фракции, отличающиеся по температурам кипения, термический крекинг является химическим процессом, происходящим под влиянием высокой температуры и давления. При термическом крекинге одновременно протекают реакции распада, уплотнения и перегруппировки. [c.82]


    Кинетика химических реакций при высоких давлениях является весьма молодой отраслью физической химии, ибо лишь в течение последних нескольких десятков лет были поставлены серьезные исследования. В отличие от проблемы химического равновесия вопрос о влиянии давления на скорость химических реакций никак не может считаться в принципе решенным, [c.172]

    Выше было рассмотрено влияние высокого давления на равновесие и кинетику химических реакций. В ряде случаев возникала необходимость истолкования результатов исследований сложных процессов (например, крекинга) при высоких давлениях. Целесообразно проанализировать данные об изменении состава продуктов сложных (параллельных и последовательных, а также цепных) реакций под действием давления, учитывая, что подобного рода сложные процессы представляют существенный практический интерес. Естественно, что состав продуктов сложных реакций определяется равновесием и скоростью составляющих их простых реакций. [c.141]

    В этой книге мы попытались рассмотреть и проанализировать, закономерности многообразного влияния высокого давления на протекание химических реакций. В ряде случаев такие закономерности еще не выявлены, или же причины, лежащие в их основе, пока неясны. Однако нельзя не отметить, что за последние годы теория химических эффектов высокого давления получила существенное развитие. Нахождение зависимостей между структурными (стерическими) и полярными факторами в химических реакциях и кинетическими эффектами давления привело к широкому применению высокого давления для изучения переходного состояния и механизмов многих реакций. Перспективы применения высокого давления для осуществления химических процессов, практически не протекающих в обычных условиях, также приобрели большую определенность. [c.400]

    Термические превращения непредельных углеводородов. В сырье для крекинга ненасыщенные углеводороды отсутствуют, но роль их в химии крекинга очень велика, так как они всегда образуются при распаде углеводородов других классов. Для непредельных углеводородов характерно большое разнообразие химических превращений. На примере олефинов особенно легко проследить решающее влияние температуры на направление превращения. Низкие температуры и высокие давления стимулируют реакции уплотнения низкомолекулярных олефинов [c.176]


    Измерения в таком же сосуде, но с диспергированием газа в жидкости также показали, что при высокой интенсивности перемешивания скорость абсорбции пропорциональна давлению кислорода. Скорость абсорбции оставалась неизменной при использовании кобальта вместо меди (с той же концентрацией). Это свидетельствовало о независимости скорости абсорбции от скорости химической реакции и о влиянии на нее лишь скорости переноса от поверхности в массу жидкости. По данным Филлипса и Джонсона, значения киа при 600 и 4500 оборотах ъ I мин составляли около 0,044 и 0,88 eк соответственно. [c.256]

    На основании изложенных в первых двух частях книги общих теоретических положений о влиянии высокого давления на равновесие и скорость химических реакций оказывается возможным в ряде случаев удовлетворительно интерпретировать наблюдающуюся зависимость состава продуктов сложных химических процессов от давления. Тем самым высокое давление приобретает значение и как один из методов исследования механизма сложных процессов. [c.186]

    Современное состояние химической науки характеризуется все более широким использованием различных физических факторов, оказывающих существенное влияние на протекание химических реакций. Одним из таких факторов является высокое давление, завоевавшее обширную область применения в химии. [c.190]

    Метод переходного состояния позволяет также оценить влияние высоких давлений Р на скорость поверхностных реакций [17, 155, 156] с учетом сжимаемости активированных комплексов. Для этого рассматриваются изменения химических потенциалов активированных комплексов и адсорбированного слоя [c.92]

    Следует отметить, что в ряде работ установлено влияние высокого давления на структурную и пространственную направленность химических реакций. [c.11]

    С.С. Кутателадзе и А.И. Леонтьев разработали приближенный метод решения сложных задач теории пограничного слоя. Преимущество этого метода состоит в том, что с его помощью можно относительно просто проанализировать влияние на теплоотдачу и трение таких факторов, как граничные условия на стенке, высокая неизотермичность пограничного слоя, сжимаемость газа (число Маха), градиент давления, химические реакции в потоке газа, вдувание или отсос газа через пористую стенку и др. Рассмотрим основные положения метода Кутателадзе—Леонтьева. Подробно он излагается в [19, 46]. [c.209]

    Главной в довоенные годы была для меня работа по генератору и высоковольтным устройствам. В летнее время — экспедиции, изучение космических частиц и спектров солнца. К тому же еще — изобретательство. Казалось бы, хватит. Но тут появляется искуситель — Н. Н. Семенов. С 1931 г. он — директор Института химической физики, который помещается через квартал от физтеха. И Семенов говорит, что у него есть очень интересная работа — изучение влияния высоких давлений на протекание органических реакций. Исследования при таких давлениях должны дать очень интересные результаты для физики, для химии и для хими- [c.73]

    В настоящее время высокие давления нашли широкое применение в различных химических и смежных с ними производствах (синтез аммиака, метилового спирта и мочевины, гидрогенизация угля и тяжелых нефтяных остатков, гидратация олефинов, многочисленные полимеризационные процессы, получение карбонилов некоторых металлов, гидротермальный синтез кварца и др.). Осуществление в промышленности процессов под давлением порядка сотен атмосфер стало обычным явлением. Оно, в свою очередь, обусловило проведение широкого круга научных исследований для выяснения основных термодинамических и кинетических параметров промышленных процессов при высоких давлениях (данные Р — V — Г, химические и фазовые равновесия, явления переноса, влияние давления на скорость и направление реакций и т. п.). [c.5]

    Обычно химические реакции в различных процессах протекают в условиях, отличных от стандартных. Поэтому оказывается необходимым приводить стандартную теплоту реакции к реальным условиям. Теплота химической реакции сравнительно мало меняется с изменением давления, так что в технических расчетах обычно влияние давления не учитывают. При высоком давлении в особо точном расчете поправку на давление необходимо учитывать. Влия- [c.62]

    При исследовании многих радиационно-химических реакций, в газовой фазе сделано важное наблюдение, согласно которому присутствие инертного газа часто не оказывает влияния на величину MIN даже если парциальное давление инертного газа. столь велико, что большая часть ионизации должна происходить в нем, а не в реагирующем веществе [6]. Так, на разложение воды и двуокиси углерода и на полимеризацию ацетилена не влияет присутствие азота или ксенона под значительным давлением. Здесь возможны различные объяснения. Линд с сотрудниками считают, что образуются смешанные сольватные оболочки. В тех случаях, когда инертный газ В имеет более высокий потенциал ионизации 1ц, чем потенциал реагирующего вещества А (/а), может происходить перенос заряда к реагенту [7]  [c.54]


    Допустим, наконец, что реакция протекает при других (нестандартных) давлениях и температурах. Так как тепловые эффекты химических реакций не сильно зависят от давления, то, за исключением редких случаев, когда необходимо знать тепловой эффект при очень высоких давлениях, можно вообще пренебречь влиянием давления. Достаточно учесть, какие агрегатные состояния будут устойчивы, и рассмотреть дополнительные стадии процесса (переходы из одного состояния в другое), как это было сделано для перехода воды из жидкого состояния в газообразное. [c.79]

    При протекании реакций в жидких средах влияние давления на скорость взаимодействия оказывается весьма неоднозначным. Естественно, что скорость химической реакции под давлением будет зависеть от многих факторов стерических особенностей реагентов, вязкости реакционной среды, изменения каталитического действия и т. д. В настоящее время еще не удается построить теорию химической кинетики при высоких давлениях с учетом всех действующих на процесс факторов. Поэтому кинетические закономерности в средах под высоким давлением приходится выводить с помощью ряда приближений. Сейчас в кинетике химических реакций используются два метода метод активных соударений и метод переходного состояния. [c.172]

    Окружающий нас мир представляет собой материю, существующую в бесконечном разнообразии видов, которые непрерывно переходят друг в друга. Например, в недрах звезд и нашего Солнца прк температурах 10— 20 млн. градусов происходит превращение водорода в гелий. При этом освобождаются колоссальные количества энергии, которые в виде излучения достигают Земли. Под влиянием энергии солнечного света растения превращают диоксид углерода в сложные органические соединения и освобождают кислород. Кислород участвует в процессах окисления, которые всегда идут с выделением тепла. Из этих примеров видно, что материя и энергия неразрывно связаны. Все процессы, совершающиеся в природе, в ходе которых изменяется состояние материи, сопровождаются и изменение энергии. Большинство подобных процессов включают в себя химические реакции. Образование залежей каменных углей и нефти связано с цепью сложных химических реакций, в которых участвовали остатки растений и морских животных и другие вещества, находившиеся миллионы лет под воздействием тепла Земли и высоких давлений. Происхождение залежей руд также связано с протеканием многочисленных химических реакций. По мере остывания расплавленного вещества Земли тяжелые металлы, взаимодействуя с кислородом и серой, образовали сульфидно-оксидный слой, расположившийся над железо-никеле- [c.13]

    Современные прикладные физико-химические основы неорганической технологии в нашей стране и за рубежом созданы усилиями многих школ и отдельных ученых. Достаточно высок уровень разработок термодинамического анализа равновесия химических реакций [89, 92], предварительного вычисления характеристики свойств индивидуальных веществ и химических систем [42, 91, 1001, меж-фазового равновесия [8, 41, 105, 153, 184], учета влияний высоких температур и давлений [57, 92, 100]. [c.5]

    Гидролиз [131, 140, 141, 143, 158] в промышленном масштабе применяется для получения глицерина и жирных кислог, идущ,их на производство мыла. В первом этапе процесса идет химическая реакция между глицеридом и водой, во втором—экстрагирование образующихся молекул глицерина из масляной фазы в водную [134, 138]. Химическая реакция сначала идет медленно, благодаря слабой растворимости воды и масла, и носит гетерогенный характер. По мере накопления в масляной фазе продуктов реакции (кислот и глицерина) растворимость в воде увеличивается, растет скорость реакции, приобретающей гомогенный характер. Образующиеся молекулы глицерина сейчас же растворяются в водной фазе, что благоприятно влияет на скорость реакции в масляной фазе. Таким образом, количество воды, введенной в процесс, имеет большое влияние на его ход. Для ускорения реакции пользуются катализаторами, например окисью цинка или алкиларилсульфоновой кислотой. Процесс проводится под атмосферным давлением при 100 С в присутствии кислого катализатора или при —230 С и соответственно под повышенным давлением (не менее 30 ат, т. е. —3-10 н/м ) без катализатора. Верхним пределом является температура 290—340 С (в зависимости от рода масла), при которой достигается полная взаимная растворимость воды и масел. Выгоднее проводить процесс противотоком, так как это обеспечивает самую высокую степень гидролиза. [c.409]

    Рассмотренные закономерности влияния давления на состояние химического равновесия справедливы для реакций с участием газовой фазы при не очень высоких давлениях, когда газ достаточно [c.230]

    При рассмотрении влияния давления на равновесие химических реакций следует различать влияние давления на величину константы равновесия и на смеш ение равновесия. При высоком давлении константы равновесия обратимых реакций изменяются при умеренных давлениях, когда можно считать, что газовые системы подчиняются законам идеальных газов, константа равновесия практически постоянна и не зависит от давления. [c.17]

    Измерив на опыте эквивалентную электропроводность исследуемого раствора X, нетрудно определить степень диссоциации <1. Следует заметить, что любой способ измерения электропроводности растворов связан с изменениями и( параметров, при этом значения степени диссоциации, определяемые различными методами, оказываются довольно близкими между собой только лишь для слабых электролитов. Для сильных же электролитов, степень диссоциации которых весьма высока, прищлось создать особую теорию, учитывающую влияние на скорость движения ионов сил электростатического притяжения и отталкивания. Согласно этой теории принимают диссоциацию сильных электролитов 100%-ной. Если принять такое предположение, то возникает вопрос почему же измерение электропроводности осмотического давления, понижение температуры замерзания или повышение температуры кипения растворов приводит к заключению о якобы неполной диссоциации сильных электролитов. Основу такого несоответствия эта теория видит в неучтенных силах электростатического притяжения и отталкивания между ионами. Действительно, в результате наличия между-ионовых сил каждый ион окружен ионной атмосферой (рис. 43), т. е. щарообразным слоем из противоположно заряженных ионов. Действующие на данный ион силы притяжения взаимно уравновешиваются в том случае, когда на раствор не действуют внешние электрические силы, не происходит диффузии, химических реакций и других подобных процессов. [c.77]

    В разделе 5 было рассмотрено влияние давления иа длину зоны реакции. На основании этого можпо объяснить результаты данных опытов следующим образом. Анализируя график рис. 37в, видим, что восстановительная зона сокращается с повышением давления, в то время как кислородная зона остается почти неизменной. Состав газа в конце кислородной зоны при болео высоком давлении несколько ухудшается за счет большого количества двуокиси углерода, но в конце восстановительной зоны оп заметно улучшается. Температура в слое мало изменяется и это попятно, так как она зависит в основном от весового расхода воздуха, остающегося в данном случае постоянным. Следовательно, не изменяются и кинетические константы скоростей химических реакций. Точно так же не изменяется и критерий Рейнольдса, так как он остается постоянным при постоянной весовой скорости дутья. Как известно, суммарная константа скорости реакции к оиределяется из следующего соотношения  [c.468]

    Тот факт, что влияние давления на скорость химических реакций в существенной степени зависит от природы растворителя, известен уже давно, однако первое удовлетворительное объяснение этому явлению было дано лишь в 1953 г. Букананом и Хэй-манном [436]. В табл. 5.25 в виде схемы представлены эффекты давления и природы растворителя в зависимости от заряда уча- ствующих в них реагентов, установленные Даком [27, 239]. Как показывают приведенные в табл. 5.25 данные, влияние полярности растворителя на АУ" обусловлено более высокой сжимаемостью менее полярных растворителей, благодаря чему под влиянием ионных или биполярных растворенных веществ их объ-. ем уменьшается в большей степени, чем объем более полярных растворителей. Меньшая сжимаемость последних объясняется сильными межмолекулярными взаимодействиями, реализующимися и в отсутствие растворенных веществ. Путем аналогичных рассуждений нетрудно прийти к выводу о том, что между и энтропией активации должна существовать корреляция. Действительно, обусловленное интенсификацией электрического поля вокруг молекул растворенного вещества повышение электрострикции соответствует уменьшению как объема, так и энтропии системы из-за частичной потери свободы движения в рас- [c.393]

    Давление — один из основных факторов, определяющих скорость и направление химических превращений. Знание объемных характеристик реакций, получаемых из зависимости скорости реакции от давления, дает возможность уточнить структуру переходного состояния и механизм реакции. Для пероксидных соединений изучение влияния высокого давления на их термические превращения имеет особый практический интерес вследствие реализации в промышленности в больших масштабах радикальной полимеризации этилена под высоким давлением, в которой широко используют пероксидные инициаторы — диал-килпероксиды, пероксикарбонаты и др. [28—34]. Получение полиэтилена с применением радикальных инициаторов осуществляют при давлении 150 300 МПа и температурах до 280 °С в среде конденсированного мономера — этилена. [c.214]

    Работы английских ученых П. В. Бриджмена и Д. Б. Кенента по влиянию высоких давлений в интервале 120-2000 МПа на химические реакции послужили для исследователей фирмы Ай-Си-Ай основой проведения работ по полимеризации этилена под высоким давлением. В опытах по взаимодействию бензальдегида и этилена при давлении 140 МПа и температуре 170 °С они в марте 1933 г. впервые наблюдали образование твердого полиэтилена. Опыты с этиленом без бензальдегида постоянно Приводили к термическому разложению этилена с образованием водорода, метана и углерода. В дальнейшем после проведения работ по улучшению [c.7]

    В настоящее время необычайно возрос интерес к исследованиям в области высоких давлений. Несомненно, в значительной мере это вызвано крупными успехами промышленного синтеза алмаза, боразона и бурным равитием производства полиэтилена высокого давления. Быстро растущее число исследований в этой области физики и химии связано также с успехами техники высоких давлений, равитие которой привело к тому, что для различного рода научного эксперимента стали доступными давления до 100—150 тыс. атм, а для технологии органического синтеза и синтеза полимеров становится возможным создание крупных промышленных установок на давления порядка 10 тыс. атм. Появились реальные перспективы использования высоких давлений для резкой интенсификации промышленных химических процессов и, в особенности, синтеза полимеров. Сейчас в научной литерутуре среди большого числа исследований реакций полимеризации при высоких давлениях свыше ста работ относятся к изучению механизма и кинетики полимеризации. В области радикальной полимеризации накоплен обширный фактический материал, который позволяет с достаточной полнотой сформулировать основные закономерности влияния высоких давлений на жидкофазную радикальную полимеризацию. [c.317]

    Между тем такого рода исследования бесспорно представляют значительный интерес, ибо можно ожидать, что повышение давления при деструктивной гидрогенизации положительно отразится как на скорости процесса, так и на характере образуюнщхся продуктов. Известно, например, что скорость гомогенного деструктивного гидрирования толуола в первом приближении пропорциональна давлению водорода. При деструктивном гидрировании этилбензола повышение давления водорода приводит к существенному изменению соотношения содержания бензола и толуола в продуктах реакции [3]. Можно было бы привести много примеров, показывающих влияние высокого давления не только на равновесие и скорость химических реакций, но и на состав продуктов сложных химических процессов [4]. [c.669]

    Давление влияет на направление и скорость химических реакций, протекающих при крекинге, но это влияние изменяется в зависимости от условий процесса. Если крекинг протекает в л<идкой фазе — при использовании тял<елого сырья н при умеренных температурах (420—470° С), то давление практически не оказывает влияния па скорость и направление мономолекулярного распада. Одпако как только образующиеся продукты распада или исходное сырье переходят в паровую фазу, роль давлеиия повышается. При этом большое значение имеет абсолютная величина даиления. При умеренных давлениях скорость мономолекулярного распада практически ие изменяется. Поскольку крекинг протекает по радикально-цепному механизму, характер реакции обрыва цепе] изменяется в зависимости от абсолютной величины давления. М. Г. Гоникберги В. В. Воеводский показали, что при невысоких давлениях (порядка нескольких атмосфер) повышение его способствует увеличению константы скорости крекинга, а при высоких (порядка сотен атмосфер и более) наблюдается обратное явление. Так, по данным А. И. Динцеса , в процессе термического крекинга бутана при 575° С и глубине распада около 9—13% повышение избыточного давления с 3,9 до 10,8 ат вызывает увеличение константы скорости реакции с 0,007 до 0,022, т. е. примерно втрое. Г. М. Панченков и В. Я- Баранов , подвергая крекингу фракцию 300—480° С грозненской парафинистой нефти при 510° С и избыточном давлении 1 10 и 50 ат, установили, что максима.яьпое значение констант скорости реакции соответствует давлению около 10 ат-, дальнейшее повышение давления сопровождается снижением скорости разложения. [c.41]

    В настоящее время теория химической кинетики при низких давлениях еще далека от совершенства, В еще большей степени это относится к кинетике химическеих реакций при высоких давлениях. Если принять простейшее положение, что в газовых системах влияние давления скажется только на изменении концентрации реагирующих веществ, то окажется, что в мономолекулярных реакциях скорость не будет зависеть от давления, в бимолекулярных будет пропорциональной давлению, а в тримо-лекулярных — пропорциональной квадрату давления. Опыт свидетельствует, что эти заключения справедливы, но с очень большим числом исключений. [c.172]

    Реакции в системах газ — жидкость под давлением имеют значительное распространение в неорганической и особенно в органической химии. Достаточно хотя бы упомянуть гидрирование в жидкой фазе и синтезы на основе окиси углерода при умеренных температурах и высоких давлениях, гидратацию олефинов и многие другие процессы. Следует, однако, иметь, в виду, что во многих реакциях (например, жидкофазного гидрирования) равновесие уже при атмосферном давлениия практически полностью смещено в сторону продуктов реакции, и высокое давление применяется для ускорения процесса. Подобные реакции будут поэтому рассматриваться во второй части книги, посвященной выяснению влияния давления на скорость химических реакций. [c.60]

    Выше мы уже отмечали, что высокое давлопие может применяться и как новый метод исследования вопросов механизма химических реакций. Прп этом существенно, что в случае реакций, протекающих через промежуточные стадии, влияние давления на скорость реакцш определяется не только изменением констант скорости наиболее медленных стадий реакции [c.160]

    В этой книге мы попытались рассмотреть различные приложения высокого давления в химии и проанализировать. основные закономерности многообразного влияния давления на протекание химических реакций. Во многих случаях такие закономерности еще не выявлены илп же причины их остаются пока неясными. Тем ие менее, по мере развития исследований в этох области все более четко выступают спе-дифические особенности эффектов высокого давленпя в химии. Дальнейшее изучение этих особенностей и использование их для решения практических задач, главным образом для интенсификации химических процессов, а также для выясненпя механизма химических реакций будет, несомненно, тхрпобре-тать все более широкое развитие. [c.246]

    Находящиеся в равновесии фазы могут содержать такие вещества, которые при контактировании фаз, всех или некоторых, химически взаимодействуют. В таких случаях состояние равновесия зависит от химической природы компонентов и их коэффищ1ентов распределения между фазами, а также от температуры, давления и полного состава системы. Скорость достижения химического равновесия имеет важное практическое значение. Более быстрому установлению равновесия способствуют высокие температуры, соответствующее изменение давления и обычно присутствие катализаторов. Влияние температуры часто бывает двойственным ее повыщение ускоряет достижение равновесия, однако при этом состав системы может оказаться нежелательным. Рещая практические задачи, необходимо прежде всего найти такие равновесные условия, которые благоприятствуют получению требуемого состава, а затем изыскивать пути проведения реакции с приемлемой скоростью. В данной главе будет рассмотрена только зависимость состава и распределения фаз при равновесии от температуры и давления. Обсуждение начнем с теории единичных и мультиплетных химических реакций, происходящих в одной фазе, а после этого рассмотрим многофазные процессы. [c.474]

    Особый интерес представляет механическая активация твердых тел и реакций с их участием, так как установлено, что часть механической энергии, подведенной к твердому телу во время активации, усваивается им в виде новой поверхности, линейных и точечных дефектов. Кроме того, известно, что химические свойства кристаллов определяются наличием в них дефектов, их природой и концентрацией. С помощью механической активации удается использовать в химии ряд физических явлений, происходящих в твердьгх телах при больших скоростях деформации. К ним относятся изменение структуры твердьгх тел ускорение процессов диффузии при пластической деформации образование активных центров на свежеобразованной поверхности возникновение импульсов высоких локальных температур и давлений и т. д. Впервые к использованию этих эффектов в химии подошли исследователи, изучавшие влияние ударных волн и высоких давлений со сдвиговыми деформациями на свойства твердых тел. Однако указанные эффекты можно получить и с использованием измельчительного оборудования, что с практической точки зрения более целесообразно и осуществимо, особенно для непрерывных процессов. В результате совершенствования этого оборудования появились аппараты с высокой интенсивностью подвода энергии, и роль этих эффектов при измельчении сильно возросла. [c.803]

    Влияние давления на скорость крекинга—самый спорный, вопрос. С теоретической точки зрения, константа скорости мономолекулярной реакции крекинга должна быть независимой от давления. Однако вторичные би- и полимолекулярные реакции крекинга (полимеризация и конденсация), как будет показано ниже, ускоряются под влиянием давления. Немного сделано по кинетике разложения чистых химических соединений в жидкой фазе при высоких давлениях. Виллиаме, Перрин и Гибсон[5бб] исследовали разложение бромистого фенилбензил-метилаллиламмония в растворе хлороформа при давлениях от 1 до ЗОСЮ кг1см . Влияние давления было ничтожным. Давление слегка замедляло реакцию. Полагают, что давление является одним из важных факторов при крекинге, сильно увеличивая выходы крекинг-бензина. Лесли и Потткофф [29] первыми изучали влияние давления на кинетику образования бензина при крекинге. Давление, созданное добавлением азота, не влияло на крекинг. В других опытах давление поддерживалось при помощи разложения нефти от 14 до 35 кг/см при 42Т С, [c.119]

    Объяснение аномально коротких периодов индукции, по-ви-димому, нужно искать в газодинамических явлениях в ударных трубах [58, 59]. Из независимых экспериментов известно, что газ за отраженной ударной волной испытывает дополнительный подогрев, постоянно возрастающий по мере удаления от торца ударной трубы [90, 91]. Это явление связано главным образом с взаимодействием отраженной ударной волны с развивающимся за падающей ударной волной пограничным слоем и наиболее отчетливо выражено в газовых смесях с малой величиной отношения удельных теплоемкостей у. Несомненное влияние этого вида газодинамической неидеальностн в ударных волнах на значительное уменьшение задержек воспламенения против ожидаемых величин видно на шлирен-фотографиях воспламенения в неразбавленных водородно-кислородных смесях. Оказалось, что первоначальное воспламенение происходит не вблизи торца ударной трубы, где газ нагревается раньше других слоев, а на некотором удалении от торца [58, 59]. В настоящее время можно сделать по крайней мере один вывод, что эксперименты на ударных трубах не обеспечивают правильного и надежного способа изучения медленного режима воспламенения смеси водорода с кислородом при низких температурах и высоких давлениях вследствие очень неблагоприятного сочетания больших химических задержек воспламенения с исключительно сильной зависимостью их от температуры. Следовательно, пока нельзя извлечь полезной информации о реакциях (т) и ( ) из экспериментов на ударных трубах. И даже данные о величине й/, полученные в опытах на ударных трубах малого диаметра для неразбавленных смесей Нг—Ог [46, 71], нельзя считать достоверными, поскольку в них не наблюдались явления, отмеченные на рис. 2.10. [c.171]


Смотреть страницы где упоминается термин Влияние высоких давлений на химические реакции: [c.2]    [c.376]    [c.88]    [c.53]    [c.380]    [c.181]    [c.239]    [c.267]    [c.603]   
Смотреть главы в:

Свободные радикалы в растворе -> Влияние высоких давлений на химические реакции




ПОИСК





Смотрите так же термины и статьи:

Влияние высокого давления

Химические реакции при высоком давлении

Химическое при высоком давлении



© 2025 chem21.info Реклама на сайте