Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активированный уголь, разделение

    На рис. 133 приведена схема адсорбера для разделения углеводородных газов, в частности для выделения этилена. В качестве адсорбента применяется гранулированный активированный уголь. Подъем [c.258]

    Применение цеолитов для извлечения непредельных углеводородов, в том числе этилена, имеет преимущество перед мелкопористыми углями типа СКТ и АР-2. В отношении адсорбции парафиновых углеводородов предпочтительнее применять активированный уголь. Практически цеолиты типа КаА не адсорбируют парафиновые углеводороды, начиная с пропана. Это является важным фактором при извлечении непредельных углеводородов из газов нефтепереработки. Присутствующие в газе пропан и более высокомолекулярные углеводороды загрязняют этилен и пропилен при выделении их в стационарном, движущемся или кипящем слое активированного угля, применяемого при разделении углеводородных газов, и усложняют схему последующего фракционирования. Активированный уголь в первую очередь поглощает пропан и этан, а концентрация адсорбированного на угле этилена при равновесном состоянии лишь не бо- [c.112]


    При разделении малоконцентрированных суспензий тонкодисперсных твердых частиц проникание этих частиц в поры фильтровальной перегородки можно предотвратить путем использования так называемых фильтровальных вспомогательных веществ. Это — тонкозернистые или тонковолокнистые материалы, которые наносят на фильтровальную перегородку либо предварительным фильтрованием, либо добавляют к разделяемой суспензии. К таким материалам относятся, в частности, диатомит, перлит, асбест, целлюлоза. Независимо от того, образовался ли слой вспомогательного вещества при предварительном фильтровании или в процессе разделения суопензии, он обладает задерживающим действием по отношению к твердым частицам разделяемой суспензии. Наиболее широко применяются диатомит и перлит, которые отличаются достаточно высокой задерживающей способностью, значительной прочностью, хорошей проницаемостью по отношению к жидкости и устойчивы к действию химически агрессивных жидкостей. Активированный уголь и отбеливающая земля, кроме задерживающей способности по отношению к твердым частицам, обладают также адсорбционным действием они адсорбируют растворенные в жидкости вещества, например вещества, окрашивающие жидкость. [c.16]

    Методы разделения углеводородов стали более разнообразными. Простая ректификация была дополнена азеотропной и экстракционной перегонками. Для концентрирования и очистки некоторых видов сырья, из которых производят продукты химической переработки нефти, была применена экстракция растворителями, уже освоенная нефтеперерабатывающей промышленностью (селективная очистка нефтепродуктов). Были внедрены непрерывные методы адсорбции твердыми поглотителями (активированный уголь и силикагель). [c.21]

    При разделении суспензий с небольшой концентрацией тонкодисперсной твердой фазы часто применяют фильтровальные вспомогательные вещества, препятствующие прониканию твердых частиц в поры фильтровальной перегородки. В качестве вспомогательных веществ, представляющих собой тонкодисперсные или тонковолокнистые материалы, используют диатомит, перлит, асбест, целлюлозу, активированный уголь, древесную муку. [c.188]

    Сорбцию применяют в основном для очистки и разделения веществ. Специальная аппаратура, используемая для этих целей, была описана в соответствующих разделах. Важное значение имеют такие адсорбенты, как активированный уголь и силикагель (см. табл. Е.З). Большую роль играют сорбционные процессы при осаждении и промывании осадков, имеющих большую поверхность, а также при загрязнении этих осадков примесями (см. разд. 38.3.4). [c.489]


    Возможность применения фронтального способа для определения количественного состава, как уже говорилось, ограничена из-за неполноты разделения. Классон (Швеция), разработавший теорию этого способа, предложил ряд формул для расчета количественного состава сложной смеси, однако практическое применение этих формул затрудняется необходимостью точного предварительного определения объемов удерживания и изотермы адсорбции отдельных компонентов. Необходимо также отметить, что этот способ может быть эффективен лишь в случае выпуклой и линейной формы изотермы адсорбции компонентов исследуемой смеси, так как лишь тогда получаются четкие крутые ступени на выходной кривой. Из этого следует, что для осуществления фронтального способа наиболее подходящими должны быть высокоактивные адсорбенты, например активированный уголь, силикагель. [c.15]

    АДСОРБЕНТЫ — высокодисперсные природные или искусственные материалы с большой поверхностью, на которой происходит адсорбция веществ из соприкасающихся с ней газов или жидкостей. Наиболее важные А. активированный уголь, силикагели, алюмосиликагели, сажа, оксиды и гидроксиды некоторых металлов (главным образом, алюминия), губчатые металлы, природные минералы, глины (бентонит). А. применяют в противогазах, в качестве носителей катализаторов, для очистки газов, спиртов, масел, для разделения спиртов, при переработке нефти, в медицине для поглощения газов и ядов. [c.8]

    Для разделения смеси газов или соединений с низкой температурой кипения применяют следующие адсорбенты активированный уголь, силикагель, окись алюминия, природные и искусственные силикаты, а также молекулярные сита. Последние представляют собой дегидратированные, искусственно приготовленные цеолиты с геометрической однородностью структуры и постоянством межмолекулярных расстояний. Так, межмолекулярное расстояние сита типа 4А, представляющего собой кристаллический алюмосиликат натрия, составляет 4 А, а у сита типа 5А — кристаллический алюмосиликат кальция — 5 А. [c.279]

    Кислая среда (pH < 5) затрудняет работу цеолитов и сит на их основе. Поэтому для работы в кислых средах (также и для кислотных газов) лучше применять пористые стекла. Эти материалы обладают неоднородной пористостью. Мелкопористый активированный уголь применяют для разделения гидрофобных веществ. [c.350]

    Адсорбенты. Для разделения смеси газов или соединений с низкой температурой кипения применяют следующие адсорбенты активированный уголь, силикагель, окись алюминия, искусственные и природные силикаты. [c.52]

    Газовая хроматография. Эта хроматография представляет собой один из вариантов распределительной хроматографии. Одной из ее разновидностей является газожидкостная хроматография. Неподвижной фазой служит нелетучая жидкость (глицерин, поли-этиленгликоль, ланолин и др.), которой пропитывают твердый порошкообразный адсорбент (активированный уголь, целит, специальный огнеупорный кирпич и т. п.) до такой степени, чтобы он оставался на ощупь сухим и легко продувался газом. Таким адсорбентом, содержащим неподвижную жидкую фазу, равномерно заполняют колонку — стеклянную или медную трубку диаметром примерно 0,5 см и длиной до 20 м. Роль подвил<ной фазы выполняет какой-либо газ (водород, гелий, аргон, азот), в который вносится разделяемое вещество также в виде газа или пара. Полученная смесь газов подается в колонку под определенным давлением и при низкой температуре. Разделение смесей на компоненты происходит в общем так же, как и в случае адсорбционной хроматографии в колонке при выделении растворенных веществ. [c.173]

    Для адсорбционного разделения углеводородных газов наиболее широко применяется активированный уголь. Уголь обладает высокой способностью удерживать легкие углеводороды. Так, при обычных давлениях он способен поглощать этана в 20 раз больше, чем равное ему по весу количество легкого абсорбционного масла [45, 48]. Чтобы абсорбционная способность масла сравнялась с удерживающей способностью угля, требуется применение более высокого давления и дорогостоящего низкотемпературного охлаждения. Более тяжелые углеводороды поглощаются жидкими абсорбентами достаточно хорошо даже и при умеренных давлениях. Кроме того, при высоком содержании тяжелых углеводородов (выше пентана) и особенно способных полимеризоваться высококипящих ненредельных адсорбционная способность угля быстро падает, так как такие компоненты трудно удаляются с его поверхности. [c.177]

    Адсорбционная хроматография. В качестве адсорбентов используют как полярные вещества (окснды алюминия, магния, кальция, железа (III), сульфат и карбонат магния, гидроксид кальция, углеводы и др.), так и неполярные (активированный уголь, некоторые смолы). Для разделения нейтральных н основных растворов чаще [c.40]


    С самого зарождения нефтяной промышленности была признана важность облагораживания сырья и производства более ценных продуктов. В начальный период нефть разделяли периодической перегонкой на ряд фракций, различавшихся по температурам кипения и плотности. Природный газ пропускали через адсорбент (активированный уголь) для выделения газового бензина И получения сухого газа. Примитивные периодические установки постепенно вытеснялись трубчатками и абсорбционными установками непрерывного действия, которые, хотя и значительно более совершенны, чем прежние, все еще не обеспечивают достаточно четкого разделения. [c.48]

    Среди физических методов анализа особое место занимает метод адсорбции, характеризующийся сравнительной простотой разделения сложной газовой смеси на компоненты. Этот метод применяется главным образом для определения концентрации газов, отличающихся по своим критическим температурам. В качестве адсорбента чаще всего применяют активированный уголь. Концентрацию горючего газа определяют по увеличению веса активированного угля или по объему неадсорбированной фазы. Во всех указанных методах анализ газовых смесей производится при помощи специальной аппаратуры с применением различных химических веществ. [c.10]

    Активированный уголь (активный уголь) — пористый адсорбент с очень развитой внутренней поверхностью, получают при сильном нагревании древесного угля в струе водяного пара. Применяют для разделения смесей газов, углеводородов, для очистки растворов от примесей органических веществ, в медицине, в противогазах. [c.10]

    Неполярными адсорбентами являются активированный уголь, некоторые смолы, а полярными — оксид железа (1П) РегОз, оксид магния, сульфат магния, карбонат магния, гидроксид и оксид кальция, углеводороды. Наибольщее применение находят активированный оксид алюминия, используемый для разделения нейтральных и основных растворов, и силикагель при хроматографировании кислых растворов. [c.46]

    В отдельных случаях фильтрование можно применять для разделения эмульсий при условии, что один из компонентов эмульсии присутствует в относительно небольшом количестве. Обычно фильтрование эмульсий связано с одновременной адсорбцией одного из компонентов фильтрующим материалом. Фильтрование проводят при пониженном или нормальном давлении через рыхлую фильтровальную бумагу или с добавками подходящих адсорбентов (фуллерова земля, активированный уголь н т. п.). Рекомендуется увлажнять фильтрующий и адсорбирующий слой перед фильтрованием тем компонентом эмульсии, который должен быть удален. Так, например, фильтрованием через слегка влажный складчатый фильтр можна освободить органический слой от мелких капелек воды, оставшихся после отделения воды в делительной воронке. [c.174]

    Для проведения классической хроматографии по методу Цвета активированный уголь мало пригоден, так как при этом нельзя следить за передвижением адсорбированных полос. Другой недостаток активированного угля состоит в том, что при его использовании сравнительно редко удается достигнуть достаточно хорошего разделения веществ, так как процесс адсорбции на угле выражается изотермой типа изотермы Фрейндлиха (см. стр. 323). Отрицательным качеством активированного угля является также то, что адсорбция на нем зачастую необратима. Наконец, многие органические вещества легко окисляются кислородом, который активированный уголь поглотил из воздуха. Это окисление особенно легко протекает в том случае, когда оно катализируется следами тяжелых металлов. Каталитическое действие последних можно устранить обработкой угля небольшим количеством цианистого водорода. Окисления кислородом, адсорбированным на поверхности активированного угля, можно избежать путем предварительного нагрева активированного угля в инертной атмосфере и удаления выделяющихся при этом газов. Обработанный таким образом уголь следует предохранять от контакта с воздухом, т. е. при работе с ним все операции необходимо проводить в инертной атмосфере (азот, двуокись углерода и т. п.). [c.349]

    В новейших хроматографических методиках активированный уголь в ряде случаев все же применяют как адсорбент, что обусловлено некоторыми его ценными свойствами. Так, при фронтальном анализе, вытеснительной хроматографии и т. п. можно с успехом использовать активированный уголь, несмотря на то что ход адсорбции на нем выражается изотермой Фрейндлиха. Преимущества активированного угля заключаются в его высокой активности, большой емкости и значительной селективности. Поэтому активированный уголь в отличие от полярных адсорбентов позволяет осуществить разделение некоторых гомологических рядов на индивидуальные соединения. [c.349]

    По этим причинам регенерацию проводят только тогда, когда работают с большими количествами адсорбентов или в специальных случаях, когда можно быть уверенным, что при регенерации удается удалить все загрязнения. Так, например, можно без опасений регенерировать силикагель после адсорбционной перколяции летучих углеводородов [971, окись алюминия после хроматографического разделения углеводородов и т. д. Некоторые виды адсорбентов, отличающихся тенденцией к необратимой адсорбции (активированный уголь, активированные глины и т. п.), вообще не подлежат регенерации. [c.350]

    В качестве адсорбента чаще всего используется мелкозернистый активированный уголь и силикагель, который из всех полярных адсорбентов наиболее пригоден для разделения углеводородов. В качестве вытесни- [c.372]

    Разделяемый газ идет навстречу непрерывно движущемуся слою активированного угля и, в зависимости от условий работы и молекулярного веса составляющих газа, в большей или меньше степени адсорбируется углем. Активированный уголь после насыщения, двигаясь к низу колонны, в части ее, расположенной ниже места ввода исходного газа, приходит в соприкосновение с тяжелыми углеводородами, испарившимися из угля в нижней части колонны. Тяжелые углеводороды вытесняют из угля адсорбированные им углеводороды меньшего молекулярного веса и последние выводятся из колонны через специальный боковой газоотвод. При этом происходит фракционирование и прп соблюдении необходимых рабочих условий возможно разделение, как и в обычных ректификационных колоннах. Схема гиперсорбционного процесса приведена на рис. 36. [c.75]

    Что же касается разделения по признаку химической природы, то на активированном угле такое разделение возможно лишь в той мере, в какой строение молекулы того или иного углеводорода способствует его склонности к кристаллизации. По этой причине активированный уголь способен одновременно извлекать из нефтяных продуктов застывающие углеводороды, относящиеся к различным химическим группам, если только строение молекул этих углеводородов способствует повышенной кристаллизуе-мости, т. е. если они имеют повышенные температуры застывания. Другие представители тех же химических групп углеводородов могут остаться не адсорбированными активированным углем, если структура их молекул не будет благоприятна для кристаллизации и они поэтому будут иметь пониженные температуры застывания. Высказывавшееся одно время предположение о том, что активированные угли якобы способны [c.161]

    Стехиометрические нарушения, а также инородные примеси неизбежно вызовут местные искажения геометрического порядка в кристалле. Все эти нарушения могут в ряде случаев привести к тому, что кристалл окажется разделенным трещинами на отдельные микрокристаллические блоки, в той или другой степени скрепленные друг с другом. Такое блочное строение характерно для многих кристаллических тел (например, различные силикагели, алюмогели, активированный уголь и др,), имеющих важное значение в гетерогенном катализе. Таким образом, в реальном кристалле, кроме обусловленных термодинамическими причинами тепловых дефектов, имеются необратимые нарушения, связанные с историей образования данного образца, так называемые биографические дефекты. Поскольку нарушения решетки приводят к энергетической неравноценности отдельных элементов кристалла, наличие этих нарушений облегчает образование и дополнительного количества тепловых дефектов, число которых может быть значительно больше, чем в идеальном кристалле. Отклонения от свойств идеального кристалла могут быть обнаружены и экспериментально. Так, сухие кристаллы поваренной соли разрушаются при натяжениях порядка 4 кГ/см , в то время как теоретический расчет дает величину порядка 200 кГ1см . Если же эксперимент проводить с кристаллом, погруженным в насыщенный раствор соли, т, е, в условиях, когда возможно залечивание микродефектов, опытная нагрузка приближается к теоретической. Изучение интенсивности отражения от кристалла рентгеновских лучей (Ч, Г. Дарвин) показало, что многие кристаллические тела состоят из совокупности микрокристаллов, повернутых друг к другу под различными углами. При этом было установлено, что для большинства кристаллических тел линейный размер отдельных блоков равен 10 -ь10- см. Такой же результат был получен и при исследовании лауэграмм механически деформируемых кристаллов (А. Ф. Иоффе). Объемная блочная [c.340]

    Г а аса д сорбционная хроматография основана i a различии адсорбируемости компонентов. В качестве ненод-ВИЖШ1Х фаз применяют адсорбенты силикагель, активированный уголь окись алюминия, цеолиты и др. Разделение на угле, сили-кагело и окиси алюминия применяют для анализа неуглеводородных и простейших углеводородных газов. Некоторые смеси разделяются при комнатной температуре, но в большинстве случаев необходимо Еагреваиие. Аиализы осуществляют в хроматографах, снабженных детекторами, или объемно-хроматографическим мето- [c.52]

    Как уже указывалось выше, разделение органических соеди пепий методом адсорбции было впервые применено русским ботаником Цветом в 1903 г. метод основан па том, что одни комноненты легче удерживаются на поверхности адсорбента, чем другие. Для разделения нефтяных фракций в качестве адсорбентов нри-меняют активированные глины, активированный уголь п особенно часто силикагель. Исследуемую смесь, иногда в растворе опре-делеиного растворителя, вводят в колонку с адсорбентом и после погл( щения смеси добавляют в колонку дополнительное количество растворителя, служащего десорбентом. Продукт, стекающий с низа колонки, собирают равными порциями до тех пор, пока не начнет выделяться чистый растворитель. Собранные фракции освобождают от растворителя и подвергают дальнейшему изучению. Легче других компонентов десорбируются парафины и нафтены — для их выделения применяют изопентан, изооктаН  [c.85]

    Одним из неполярных адсорбентов, применяемых при разделении компонентов масляных фракций с целью исследования их структуры, является а1ктивированный уголь. В настоящее время выпускается несколько марок активированных углей, однако для промышленных установок и при исследовании химического состава масляных фракций нефти наибольшее распространение получил активированный уголь маржи БАУ. Этот уголь получают из древесного березового или букового угля-сырца, обрабатывая его водяным паром при высокой температуре. Еще в 40-х годах И. Л. Гуревичем была обнаружена опособность активированного угля адсорбировать парафиновые углеводоро ды нормального строения. Обзор литературного материала, посвященного адсорбционной способности активированного угля [3—б], позволяет сделать заключение о том, что на активированном угле углеводороды разделяются не по гомологическим рядам, а по структуре молекул, причем решающее значение имеет длина >и структура парафиновых цепей. Поверхность активиро ванного угля как нелоляр- [c.260]

    Разделение на активированном угле использовано при исследовании химического состава твердых углеводородов как дистиллятного, так и остаточного нефтяного сырья [8, 9]. Применив адсорбцию на активированном угле, авторы этих работ отделили парафины нормального строения от нафтенов с прямыми боковыми цепями и разделили смесь изопа рафиновых и нафтеновых углеводородов с разветвленными боковыми цепями. Достаточная четкость разделения групп углеводородов установлена по результатам элементного и спектрального анализов полученных фракций. Активированный уголь марки БАУ исследован также как адсорбент для разделения ароматических углеводородов [10]. Разделению подвертали смесь индивидуальных ароматических углеводородов, состоящую из изопропилбензола (60%) и а-метилнафталина (40%) при соотношении углеводородов и адсорбента 1 2. Результаты разделения приведены ниже  [c.264]

    Из других методов разделения газов, сравнительно мало распространенных в промышленности, следует назвать метод адсорбции. Метод основан на избирательном поглощении различных компонентов газа Tiзepдыми адсорбционно-активными веществами. К числу таких веществ относится древесный активированный уголь, силикагель и др. По аналогии с жидкими поглотителями, твердые адсорбенты более интенсивно поглощают тяжелые углеводороды. Таким образом, если пропускать смесь газообразных углеводородов через слой адсорбента, то первые порции адсорбента будут содержать наиболее тяжелые компоненты, а у выхода из слоя адсорбируются иаиболее легкие углеводороды поглощенной части газа. Подбирая соответствующий режим адсорбции, можно оставлять в качестве неадсорбирован-ного газа более или менее сухую его часть. [c.317]

    Доктором Силверманом была разработана модель, именуемая гарвардской диффузионной панелью [769]. Это устройство включало два фильтра из стеклянной бумаги, опирающиеся на рещетку из просечно-вытяжной стали и разделенных ячеистой конструкцией из огнеупорного материала. Пространства ячеистой конструкции были заполнены адсорбентом (например, посеребренный силикагель или активированный уголь). Такое сочетание материалов оказалось весьма эффективным при удалении частиц и обеспечило эффективность, превышающую 99,999%, что эквивалентно утечке, равной 10- . При удалении радиоактивных паров иода силикагель продемонстрировал эффективность 99,82%, а активированный уголь 957о, в то время как фильтр, не заполненный адсорбентом, всего лишь 22%. [c.381]

    В качестве адсорбентов в ГАХ используют активированный уголь, силикагель, алюмогель, диоксид циркония, пористые стекла. В ГЖХ сорбент состоит из двух фаз, одна из которых— неподвижная жидкость является активным сорбентом, а другая — твердая служит носителем этой жидкости. Природа неподвижной жидкости в ГЖХ, по существу, определяет по следовательность выхода компонентов анализируемой смеси Жидкость должна обладать малой вязкостью и низким давле нием пара при рабочих температурах. Для получения хоро шего разделения жидкая неподвижная фаза должна быть рав номерно распределена на поверхности носителя и прочно им удерживаться. [c.353]

    АКТИВИРОВАННЫЙ УГОЛЬ-уголь с чрезвычайно развитой микро- и макропористостью (размеры микропрр составляют от 10 — 20 до 1000 А). Существует два типа А. у. Первый тип применяют для сорбции газов и паров имеет большое количество микропор, обусловливающих сильную адсорбционную способность. Второй тип используют для сорбции растворенных веществ. Оба типа А. у. должны иметь большую легко доступную внутреннюю поверхность пор. А. у. изготовляют в две стадии. 1) Выжигают древесину, скорлупу орехов, косточки плодов, кости животных при температуре 170—400° С без доступа воздуха, чем достигают удаления воды из исходного органического вещества, метилового спирта, уксусной кислоты, смолообразных веществ и других, а также развития пористой поверхности. 2) Полученный уголь-сырец активируют, удаляя из пор продукты сухой перегонки и развивая поверхность угля. Это достигается действием газов-окислителей, перегретым водяным паром или диоксидом углерода при температуре 800—900° С или предварительным пропитыванием угля-сырца активирующими примесями (хлоридом цинка, сульфидом калия), дальнейшим прокаливанием и промыванием водой. До-стагочно тонкопористый А. у. можно получить термическим разложением некоторых полимеров, например, поли-винилиденхлорида (сарановые угли). А. у. применяют для разделения газовой смеси, в противогазах, как носитель катализаторов, в газовой хроматографии, для очистки растворов, сахарных соков, воды, в медицине для поглощения газов и различных вредных веществ при кишечно-желудочных заболеваниях. [c.13]

    Газ может выступать в качестве дисперсной фазы, если дисперсионной средой является жидкость или твердое тело. Дисперсные системы, представляющие собой скопление мелких пузырьков газа, разделенных друг с другом пленкой жидкости, называются газовыми эмульсиями или пенами. Как уже указывалось в 17.2, пены могут быть получены, если использовать в качестве дисперсионной среды растворы поверхностно-активных вепгеств. В качестве дисперсной фазы в сочетании с твердой дисперсионной средой газ выступает в высушенных мелкопористых твердых телах, таких, как описанные в 17.3 активированный уголь или силикагель. [c.319]

    Так как активированный уголь имеет значительно большую поглотительную способность, чем абсорбционные масла, его целесообразно применять при разделении тощих газов или в случае, когда необходимо глубокое извлечение низкокипящих углеводородов, например для доулавливания после маслоабсорбционной установки этана или пропана. [c.148]

    Газохроматографическое разделение смеси неорганических газов и газообразных углеводородов на одной колонке невозможно, так как неподвижные фазы, пригодные для анализа конденсирующихся газов, не позволяют разделять неорганические газы, а специальная колонка для разделения неорганических газов, содержащая активирован-вый уголь или молекулярные сита, адсорбирует органическую часть смеси. Подобные смеси можно полностью разделить в процессе одного анализа путем применения двухступенчатого прибора (рис. 6), содержащего в одной колонке диметилсульфолан в качестве неподвижной фазы, а в другой — активированный уголь или молекулярные сита (Медисон, 1958). Переключение потоков газа производят при этом в тот момент, когда выходящие вначале из первой колонки б неразделенные компоненты N2, Оа, СО и СН4 уже достигают второй колонки 6 и первый детектор 8 обпаруншвает первые компоненты смеси этана, пропана и и-бутана. Таким путем О2, N2, СО и СН4 переводятся в адсорбционную колонку, пригодную для разделения этих компонентов, и обнаруживаются вторым детектором 5, в то время как этан, пропан и и-бутан через трехходовой кран выпускаются из прибора. [c.226]

    Так, например, по принципу одновременного анализа смеси N2, О2 и СОз могут быть разделены гораздо лучше и за более короткое время, чем при проведении двух последовательных, протекающих независимо друг от друга анализов на двух колонках, содержащих силикагель, активированный уголь илп молекулярные сита. При раздельных анализах N2 и О2 разделяются на силикагеле или активированном угле лишь неполно, а колонка с молекулярными ситами хотя п обеспечивает полное разделение, по адсорбирует двуокись углерода. Одновременный анализ смеси на расположенных параллельно колонках, напротив, позволяет полностью разделять три компонента за время всего лишь 9 мин. При этом самописец регистрирует N2 и О2 одним пиком, а также в виде отдельных пиков. Кроме того, по причине частичной адсорбции детектор определяет лишг. часть СО2. [c.229]

    Газ с ВЫСОКИМ содержанием гелия (95% или более) сначала подвергают химической очистке от примесей кислорода, водорода, двуокиси углерода, водяных паров и азота . Для этого газ последовательно пропускают над нагретой медью и окисью меди (при 500— 600 °С) и далее через раствор едкого кали, твердое едкое кали, пятиокись фосфора и металлический кальций, нагретый до 400—500 °С. Этот процесс в случае необходимости повторяют или делают замкнутым, давая газу циркулировать через систему очистки. Остаточный газ подвергают разделению методом адсорбции прп температуре жидкого воздуха или жидкого азота. В качестве сорбентов используют активированный уголь и хабазит. Адсорбцию газа повторяют до тех пор, пока опектросконичеакое исследование газа н.е покажет наличие одного гелия. - [c.293]

    Важной особенностью адсорбции на цеолитах является и то, что она значительно меньше зависит от температуры, чем адсорбция на других адсорбентах. В области высоких температур на молекулярных ситах адсорбируется больше вещества, чем на таких aд opбeнtax, как силикагель, активированная окись алюминия, или активированный уголь. Это видно, например, из изобар адсорбции водяных паров, приведенных на рис. 7. Эта особенность молекулярных сил чрезвычайно важна в случае необходимости адсорбционного разделения при высоких температурах. [c.209]

    Разделительная способность колонки зависит от размеров отдельных частиц адсорбента. Обычно применяется активированный уголь с размером частиц в пределах 0,2—0,8 мм. Увеличение размеров частиц снижает разделительную способность колонки, так как ири этом уменьшается суммарная активная поверхность адсорбента. Использование адсорбента с размерами частиц меньше 0,2 мм не улучшает процесс разделения, но вызывает излишнее сопротивление колонки, которое в свою очередь ограничивает длину колонки. Положительно влияет на эффект разделения однородность фракцион- [c.101]

    Хроматографический метод анализа газов основан па принципе физического разделения газовой смеси, при котором разделяемые компоненты распределяются между двумя фазами одна из фаз представляет собой неподвижный слой сорбента с большой поверхностью, другая—поток газа-иосителя, фильтрующийся через неподвижный слой. В зависимости от типа применяемой неподвижной фазы (насадки) различают газо-адсорбционную и газожидкостную хроматографию. В газо-адсорбционной хроматографии нспользуются твердые вещества, обладающие адсорбционньми свойствами активированный уголь, силикагель, окись алюминия, пористые стекла, молекулярные сита (цеолиты). Газо-адсорбционная хроматография используется для раэделения низкокипящих газов водорода, азота, окиси углерода, кислорода, аргона, метаяа и др. В газо-жидкостной хроматографии используются растворители, нанесенные на инертную ио отношению к газам основу. Разделение газов в этом случае осуществляется благодаря различной растворимости газов в жидкости. Газо-жидкостной хроматографией хорошо разделяются углеводороды. [c.238]

    Прибор ГСТЛ основан на адсорбции слоем измельченного пористого вещества отдельных компонентов газовой смеси. Разделение смесей происходит вследствие различной скорости движения отдельных компонентов вдоль слоя адсорбента, в качестве которого используется активированный уголь, селикагель, окись алюминия. [c.162]

    Адсорбция (от лат. ad — на и sorbeo — поглощаю) — поглощение растворенных или газообразных веществ поверхностью твердого тела или жидкости. А. применяется для разделения смесей различных газообразных и жидких веществ, для осушки и очнсткн газов (напр., воздуха в противогазах), жидкостей (пропусканием через активированный уголь), для очистки воды. А. используют в химической, нефтяной, лакокрасочной, полиграфической, сахарной и других отраслях промышленности. А. играет важную роль в процессах, протекающих в живых организмах (при поглощении клеткой веществ, работе ферментов), в почвах. Азеотропные смеси (от греч. а — частица отрицания, zeo — киплю и trope — [c.6]

    Разделение кислых и нейтральных полисахаридов в виде их ацетатов осуществляется ниже изложенным методом [6]. Смешивают 5 г гемицеллюлоз, высушенных иад силикагелем в вакууме при комнатной температуре, с 1 г безводного хлористого цинка. К смеси добавляют 100 мл уксусного ангидрида и смесь нагревают 4 ч при 80° С. Образовавшийся гомогенный раствор концентрируют до 50 мл и выливают в I л ледяной воды. Желатинообразный осадок промывают декантацией водой и растворяют в 200 мл хлороформа. Раствор высушивают безводным сернокислым натрием, фильтруют через активированный уголь, обрабатывают 1 л холодного раствора углекислого натрия в течение 3 мин и выливают в делительную воронку. Однородный хлороформенный раствор отделяют и дважды обрабатывают раствором углекислого натрия, после чего высушивают сернокислым натрием и выливают в петролейиый эфир (I л). Образующийся осадок отделяют центрифугированием, промывают эфиром и высушивают на воздухе. Полученный продукт представляет триацетат гексозанов. Верхний слой в делительной воронке, устойчивую эмульсию промывают встряхиванием с хлороформом, подкисляют и встряхивают с 500 мл хлороформа до образования однородного хлороформного слоя. Последний отделяют, промывают водой, высушивают сернокислым натрием, концентрируют до 100 мл и выливают в 500 мл петролей-ного эфира. Образовавшийся при этом осадок отделяют, промывают и высушивают. Полученный продукт является диацетатом глюкуроноксилана. [c.38]


Смотреть страницы где упоминается термин Активированный уголь, разделение: [c.143]    [c.160]    [c.295]    [c.384]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Активированный уголь

Активированный уголь, разделение аминокислот на нем

Разделение на активированном угле

Разделение на активированном угле

Угли разделения

Уголь активирование

Уголь разделение аминокислот на активированном угле



© 2024 chem21.info Реклама на сайте