Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки энергия образования

    Процессы в каталитическом центре могут стабилизировать переходное состояние. До сих пор подчеркивался тот факт, что дальние взаимодействия поставляют свободную энергию активируемым группам в каталитическом центре фермент-субстратного комплекса. Однако взаимодействия и в самом каталитическом центре могут стабилизировать переходное состояние и тем самым вносить вклад в эффективность ферментативного катализа. В химотрипсине выигрыш энергии, обеспечивающийся образованием двух водородных связей между активированным субстратом и атомами азота остова, а также частичной компенсацией заряда скрытого внутри белка остатка Азр-102 (рис. 11.1), способствует компенсации энергии образования напряженной связи между ферментом и субстратом в тетраэдрическом комплексе [5371. [c.281]


    Эти опыты показывают, что программа самосборки белка закодирована в его первичной структуре. По всей вероятности, важное значение при ренатурации белка имеет образование ядер , т. е. небольших участков упорядоченной вторичной структуры (стадия нуклеации). За этим сравнительно медленным процессом следует быстрое сворачивание цепи в нативную структуру. На первых этапах ренатурации белков, в поддержании нативной конформации которых участвуют дисульфидные мостики, образуются промежуточные производные с правильными и неправильными дисульфидными связями. В ряде случаев удавалось останавливать процесс ренатурации на определенных стадиях и выделять такие частично свернутые формы. Поскольку в целом сборка белка является достаточно быстрым процессом, можно сделать вывод о том, что природа не перебирает все возможные комбинации в очередности замыкания дисульфидных мостиков (при 4 S—S-связях их 105, а при 5 — уже 945), а сворачивание полипептидной цепи идет по ограниченному числу направлений и приводит к конформации, характеризующейся минимальной свободной энергией. [c.105]

    Проблема биосинтеза белков в конечном итоге зависит от решения задачи о многократном синтезе пептидной связи из аминокислот при участии ферментов. Свободная энергия образования пептидной связи приблизительно составляет около 3—4 ккал на моль дипептида и 2 ккал на моль пептидных связей в белке. Поэтому совершенно очевидно, что биосинтез пептидной связи должен обеспечиваться энергией за счет других реакций, предшествующих биосинтезу или протекающих сопряженно и параллельно ему. Биосинтез пептидов непосредственно из аминокислот в модельных экспериментах наблюдался только в тех случаях, если в систему добавлялся [c.327]

    Следовательно, водородная связь возникает благодаря тому, что ядро атома водорода, находящееся в полярной группе, временно разделяется между двумя электроотрицательными атомами, причем его электронная конфигурация дополняется свободной парой электронов одного из них. Расчеты энергии образования водородной связи показали, что в белках Н-связи обусловлены главным образом действием электростатических сил, тогда как на / олю ковалентного фактора приходится не более 10%. [c.90]

    В качестве субстрата окисления могут использоваться и белки, которые распадаются на аминокислоты, способные превращаться в глюкозу или другие метаболиты аэробного процесса окисления. Однако вклад белков в образование энерг ии при мышечной деятельности составляет всего 5-10 %. [c.320]


    Каковы данные по состоянию воды в гидратной оболочке белка Основной вклад в энергию гидратации дают водородные связи между водой и полярными группами молекулы белка. Для образования гидратной оболочки глобулярных белков имеет значение пространственная доступность протон-донорных и протон-акцепторных центров для взаимодействия с молекулами воды. Оказалось, что гетероатомы нерегулярно расположены на поверхности глобулы, которая не может служить матрицей для кристаллизации воды. Так как число и размеры гидрофобных участков на поверхности также невелики, то шуба из уплотненных молекул воды вокруг глобулы не образуется, количество гидратационной воды, определенное различными методами, составляет 0,3-0,4 г НгО/г сухого белка, а обш ее содержание воды в кристаллах глобулярных белков не превышает, как правило, 0,45-0,60 г НгО/г сухого белка. Следовательно, количество свободной воды в белке невелико. Она, в частности, может заполнять внутренние полости , свободные от белкового веш ества, содержание воды в этих полостях также невелико (в лизоциме — 2, трипсине —12 молекул). Она может обмениваться с поверхностными водными слоями вследствие флуктуационных открытий внутренних полостей. [c.235]

    Прежде чем перейти к вопросу о распределении лекарств в клетке, мы должны рассмотреть, каким образом клетка контролирует изменения конформации аллостерических белков. Предположим, что аллостерический белок способен принимать две альтернативные конформации — неактивную низкоэнергетическую К и активную высокоэнергетическую К, энергии которых различаются на 4,3 ккал/моль (что приблизительно соответствует энергии образования на поверхности белка четырех водородных связей). При такой разнице энергий вероятность конформации К будет в 1000 раз превышать вероятность конформации К (табл. 3.4) и белок почти всегда будет находи ься в неактивной конформации  [c.125]

    Производство 1 г белка требует около 17 кДж энергии. Молярная масса белка альбумина около 69 ООО г/моль. Сколько молей АТФ должно прореагировать для образования 1 моля альбумина  [c.463]

    Реакции гидролиза, т. е. расщепления органических высокомолекулярных соединений действием воды, имеют большое биологическое и техническое значение. Путем гидролиза происходит распад белковых веществ, крахмала, гликогена, клетчатки, жиров, восков, глюкозидов и тому подобных веществ, причем образуются более простые низкомолекулярные соединения. Реакции гидролиза противоположны по направлению реакциям межмолекулярной дегидратации. В животных и растительных организмах между этими процессами существует биологическое равновесие. В организмах путем дегидратаций происходит образование полисахаридов, белков, жиров и других сложных соединений. Эти эндотермические по своему характеру процессы осуществляются при участии солнечной энергии, которая таким образом вовлекается в биосферу земли. Поэтому сложные химические вещества растений являются как бы аккумуляторами солнечного тепла. [c.534]

    Для процессов роста необходима энергия. Например, всасывание воды растениями требует расхода энергии. В организмах животных мышечная деятельность, поддержание температуры тела и т.п. процессы требуют энергии. 25.5. 36,4 г О2, что соответствует при нормальных условиях объему 25,4 л. 25.8. а) а-Аминокислота содержит функциональную группу —NH2, присоединенную к атому углерода, связанному с углеродным атомом карбоксильной группы, б) Образование белка представляет собой реакцию конденсации между аминогруппой одной аминокислоты и карбоксильной группой другой аминокислоты. 25.10. Возможны два дипептида  [c.482]

    Это свойство сопряженных реакций играет исключительно важную роль в живой природе. Например, синтез важнейщих компонентов живой материи — белков и нуклеиновых кислот соответственно из аминокислот и нуклеотидов сопровождается существенным увеличением энергии Гиббса. Эти процессы становятся возможными потому, что протекают сопряженно с гидролизом аденозинтрифосфорной кислоты (АТФ), который сопровождается существенным уменьшением энергии Гиббса, перекрывающим ее рост при синтезе указанных полимеров. Наоборот, образование АТФ из продуктов ее гидролиза, сопровождающееся увеличением энергии Гиббса, происходит сопряженно с окислением органических соединений (идущим с существенным уменьшением энергии Гиббса). [c.391]

    Органические соединения особенно важны тем, что являются конструктивным и энергетическим материалом животных и растительных организмов. Источниками их получения служат прежде всего растительные и животные организмы — своеобразные химические лаборатории, в которых протекает множество сложнейших реакций. Так, в зеленых растениях исходные вещества для синтеза — простейшие соединения (СОз и минеральные соли). Животные организмы для жизнедеятельности получают в готовом виде довольно сложные органические соединения (углеводы, жиры, белки), синтезированные растениями. В организме человека и животных преобладают окислительные процессы, приводящие в конечном счете к превращению химической энергии в тепловую и образованию простейших конечных веществ, в основном оксида углерода (IV) и воды. Азот выделяется в составе мочевины. Огромное количество органических веществ получают из древесины, торфа, горючих сланцев, [c.86]


    Каким образом клеткам удается достичь столь высокой степени точности в выборе нуж ного основания в процессах репликации и транскрипции, а также при спаривании кодона с антикодоном в процессе синтеза белка В ранних работах исследователи часто высказывали мнение, что специфичность спаривания оснований определяется исключительно образованием двух (или соответственно трех) водородных связей и стабилизацией за счет взаимодействия соседних участков спирали. Оказалось, однако, что свободная энергия образования пар оснований мала (гл. 2, разд. Г, 6), а дополнительная свободная энергия, обусловленная связыванием основания с концом уже существующей цепи, не в состоянии обеспечить специфичность спаривания. Исходя из современных энзимологических данных, можно предположить, что важную роль в обеспечении правильности спаривания играет сам фермент. РНК- и ДНК-полимеразы — достаточно крупные молекулы. Следовательно, связывающее место фермента может полностью окружить двойную спираль. Если это так, то нетрудно представить себе, что лроцесс выбора основания может протекать так, как это показано на рис. 15-5. На приведенном рисунке изображено гуаниновое основание матричной цепи молекулы ДНК, расположенное в месте наращивания комплементарной цепи (ДНК или РНК) с З -конца. Для образования правильной пары оснований соответствующий нуклеозидтрифосфат должен быть пристроен до того, как произойдет реакция замещения, в результате которой нуклеотид присоединится к растущей цепи. Предположим, что у фермента есть связывающие места для дезоксирибозного компонента матричного нуклеотида и для сахарного компонента включающегося нуклеозидтрифосфата, причем эти места расположены на строго оцределенном расстоянии друг от друга. Как показано на рис. 15-5, в каждом связывающем [c.212]

    Более подробно выяснено значение витамина А в процессе свето-ощущения. В этом важном физиологическом процессе большую роль играет особый хромолипопротеин—сложный белок родопсин, или зрительный пурпур, являющийся основным светочувствительным пигментом сетчатки, в частности палочек, занимающих ее периферическую часть. Установлено, что родопсин состоит из липопротеина опсина и простетической группы, представленной альдегидом витамина А (ретиналь) связь между ними осуществляется через альдегидную группу витамина и свободную -КН,-группу лизина молекулы белка с образованием шиффова основания. На свету родопсин расщепляется на белок опсин и ретиналь последний подвергается серии конформационных изменений и превращению в транс-форму. С этими превращениями каким-то образом связана трансформация энергии световых лучей в зрительное возбуждение—процесс, молекулярный механизм которого до сих пор остается загадкой. В темноте происходит обратный процесс—синтез родопсина, требующий наличия активной формы альдегида—11-г<ис-ретиналя, который может синтезироваться из -ретинола, или транс-ретиналя, или транс-формы витамина А при участии двух специфических ферментов—дегидрогеназы и изомеразы. Более подробно цикл превращений родопсина в сетчатке глаза на свету и в темноте можно представить в виде схемы  [c.211]

    Многие смешанные ангидриды имеют важное биологическое значение поскольку ангидридная связь содержит большой запас энергии, образование подобных ангидридов часто активирует молекулу. Так, например, аминокислоты, прежде чем принять участие в биосинтезе белков, активируются путем превращения в аминоациладенила-ты, в которых аминокислоты и адениловая кислота соединены по типу смешанного ангидрида  [c.216]

    Связывание сахаров с белками в водном растворе также можно объяснить с точки зрепия образования полифункциональной водородной связи. Определенный вклад в этот процесс может вносить и гидрофобное взаимодействие, однако из-за высокой растворимости большинства сахаров в воде можно полагать, что связывание обусловливается не только этим взаимодействием. Значительный вклад в свободную энергию взаимодействия лактозы с антителом, достигающую —8 ккал/лтоль (—33,5-10 Дж/моль), можно поэтому приписать образованию полифункциональной водородной связи с гидроксильными группами сахара [34]. Свободная энергия связывания трн-М-ацетилглюкозамина с лизоцимом составляет —7,2 ккал/моль (—30,2 X X 10 Дж/моль). Ес,1ги принять, что приблизительно половина этой величины обусловлена образованием водородных связей, то каждой из наблюдаемых при рентгеноструктурном анализе этого фермента водородной связи можно приписать среднюю свободную энергию образования —0,8 ккал/моль ( 3,35-10 Дж/моль) [35]. [c.263]

    Переходы от упорядоченных к беспорядочным конформациям цепных молекул имеют большое значение, поскольку они касаются условий, которые должны поддерживаться для сохранения белков и нуклеиновых кислот в форме, необходимой для осуществления их биологических функций. В то же время явление г рехода спираль — клубок может рассматриваться как одномерный аналог процессов плавления и кристаллизации и поэтому представляет особый теоретический интерес. Рассмотрим сначала переходы в таких изолированных цепях, которые типичны для полипептидов, не учитывая образования мультиплетных спиралей, характерных для нуклеиновых кислот и их аналогов. Ранее было установлено, что характер связи С — N, частично напоминающей двойную, исключает вращение вокруг нее, и поэтому мономерный остаток ведет себя как жесткое звено. Следовательно, для описания относительной ориентации триплета аминокислотных остатков необходимо установить лишь два внутренних угла вращения ф. Когда беспорядочный клубок переходит в идеально унорядоченную конформацию, свобода выбора значений ф утрачивается. В результате этого для цепи, состоящей из Z аминокислотных остатков, переходу в идеальную спираль будет противодействовать прирост свободной энергии, пропорциональный Z — 2. С другой стороны, образованию спирали будут благоприятствовать различного типа взаимодействия между ближайшими соседями. К таким взаимодействиям относятся образование внутримолекулярных водородных связей, гидрофобное взаимодействие и эффекты десольватации, сопровождающие переход боковых цепей из относительно незащищенного состояния в беспорядочном клубке в компактную упаковку вокруг спирали. В целом такие эффекты будут более ярко выражены для остатков, находящихся внутри спирали, чем для остатков, располагающихся на ее концах. Поэтому вклад взаимодействий между непосредственными соседями в свободную энергию образования спирали будет пропорционален Z — б, где б — коэффициент, учитывающий меньшую устойчивость концов спирали. При б > 2 (для а-спирали Шеллманом [368] было принято 6 = 4) свободная энергия перехода беспорядочного клубка в идеальную спираль будет уменьшаться при увеличении Z. Однако, для того чтобы правильно установить условия, определяющие переходы спираль — клубок, необходимо учитывать частично упорядоченные состояния, содержащие разнообразные сочетания последовательностей, свернутых в спирали или в беспорядочные клубки. Результаты, полученные различными исследователями, рассматривавшими эту проблему, аналогич- [c.132]

    Суперспирализация ДНК может иметь два последствия. Если ДНК остается свободной, ее движения не сдерживаются и отрицательные супервитки вызывают напряжение скручивания, которое может быть снято раскручиванием двойной спирали, как это описано в гл. 2. ДНК может находиться в динамическом равновесии ме- ду состояниями напряжения и раскручивания (см. гл. 32). Однако суперспирализация может сдерживаться, если белки связываются с ДНК и поддерживают ее в определенной трехмерной конфигурации. В этом случае супервитки будут представлены по ходу ДНК, связанной с белками. Энергия взаимодействия между белками и су-перскрученной ДНК влияет на стабильность двойной спирали. Например, если отрицательно суперспирализованная ДНК связывается с белком, относительно специфичным к одноцепочечной ДНК, в области связывания может перманентно происходить локальная денатурация ДНК. С другой стороны, связывание гистоновых белков с образованием нуклеосом стабилизирует двойную спираль отрицательно суперспирализованной ДНК (гл. 29). [c.349]

    Энергетическая структура нолинентидных ценей. Пептидная группа характеризуется плоскостным расположением своих атомов (-HN- O-), при котором достигается наибольшая степень резонансного взаимодействия за счет перекрывания ра-орбиталей, образующих систему л-связей (см. рис. 1Х.2). На рис. ХП.12 показана схема электронных уровней и указаны орбитали, перекрытие которых обеспечивает стабильные связи в пептидной группе. Возможно слияние орбиталей разных пептидных групп, которые удерживаются водородными связями в периодической структуре белка с образованием единых энергетических зон. В такой системе в результате взаимодействия многих пептидных групп каждый молекулярный уровень расщепляется не на два, как в случае двух молекул (см. 1 гл. ХП), а на большое число уровней. С ростом числа групп в цепочке уменьшается разность энергий между расщепленными уровнями. Расстояниями между ними можно пренебречь, а сама область, образующаяся из слияния уровней, носит название энергетической зоны, т. е. каждый молекулярный уровень в твердом теле расщепляется в зону. В основе расчета положения уровней в зоне лежит метод кристаллических орбита-лей, представляющий собой обобщение простого метода ЛКАО. Волновые функции электронов получают из орбиталей всех атомов твердого тела путем их суммирования с соответствующими коэффициентами. Значения этих коэффициентов, так же как и в методе ЛКАО, должны быть такими, чтобы общая энергия твердого тела была минимальна. Однако, поскольку в данном случае твердое тело построено из одинаковых повторяющихся единиц, т. е. обладает трансляционной симметрией. [c.366]

    Другой способ состоит в использовании дополнительной химической энергии для того, чтобы толкнуть белок на изменение конформации К на активную конформацию К. В этом случае смена конформации почти необратима. Обычно происходит ковалентный перенос фосфата с молекулы АТР на остатки серина, треонина или тирозина белка с образованием ковалентной связи. Предположим, что эта реакция фосфорилирования, направляемая благоприятным гидролизом АТР в ADP создает невыгодное для конформации К отталкивание зарядов. Если это отталкивание уменьшено в активной форме К, то переход из К в К будет сильно облегчаться фосфорилированием (рис. 3-61) Регулируемое фосфорилирование, активирующее или подавляющее функционирование специфических белков, - обычное явление в эукариотических клетках (см. разд. 3.2.3) в самом деле, приблизгггельно одна [c.164]

    Среди работ рассматриваемого направления лишь в исследовании Танаки и Шераги сделана попытка создать общий метод количественной оценки энергии образования контактов между остатками и подойти к целенаправленному выделению наиболее актуальных для свертывания белковой цепи межостаточных взаимодействий [156]. По частотам контактов между 20 природными аминокислотами, реализуемых в кристаллографических структурах 25 белков, авторы рассчитали константы равновесия, а по ним нашли значения свободной энергии образования контактов. Последние и должны были служить эмпирическими параметрами для количественной характеристики межостаточных взаимодействий. По ряду причин, прежде всего из-за недостаточного для корректной статистической обработки объема опытных данных, метод оказался неэффективным. [c.295]

    Все Ntr-гены можно разделить на два класса во-первых, это гены, контролирующие образование ферментов и систем транспорта, необходимых для усвоения только источников азота во-вторых, это гены, контролирующие усвоение азотсодержащих субстратов, которые могут быть также источниками углерода и энергии. Образование ферментов первого класса целиком зависит от продуктов генов glnG и glnF (rpoN), т. е. подвержено Ntr-контролю. Образование ферментов второго класса, кроме того, активируется продуктами генов суа и сгр, т. е. подвержено катаболитной репрессии. При этом экспрессия всех Ntr-генов может также контролироваться специфическими белками-регуляторами. [c.43]

    В определенных условиях при медленном охлаждении раствора денатурированного нагреванием белка происходит ренативация — восстановление исходной (нативной) конформации (см. рис. 1.20, 4). Это подтверждает, что характер укладки пептидной цепи определяется первичной структурой белка. Процесс образования нативной конформации белка самопроизвольный, т. е. эта конформация отвечает минимуму свободной энергии молекулы. Можно сказать, что пространственная структура белка закодирована в аминокислотной последовательности пептидных цепей. Это означает, что все идентичные по чередованию аминокислот полипептиды (например, пептидные цепи миоглобина) будут принимать идентичную же конформацию. Однако из этого правила есть исключения. Капсид (оболочка) вируса кустистости томатов содержит белок, построенный из субъединиц А, В и С первичная структура этих субъединиц идентична, а конформация различна. Известны идентичные олигопептидные последовательности (около 5 аминокислотных остатков), которые в одних белках образуют а-спирали, в других — р-струк-туры. Таким образом, нативная конформация каждого участка пептидной цепи зависит не только от его первичной структуры, но и от ближайшего окружения. [c.36]

    Растения поглощают на свету оксид з глерода (IV). Процесс усвоения этого оксида, поды и минеральных солей под действием солнечной энергии с образованием углеводов, белков и жиров называется фотосинтезом. Ежегодно мировая флора потребляет около 10 кг углерода. В то же время углекислый газ непрерывно пополняет атмосферу за счет жизнедеятельности животных и растений, промышленной деятельности человека, процессов разложения органических соединений и вулканической активности. В результате происходит постоянный круговорот углерода в природе. [c.131]

    Вклад гидрофобного взаимодействия в свободную энергию сорбции органической молекулы на ферменте можно оценить теоретически [261. Однако более плодотворными для оценки прочности гидрофобной связи оказались некоторые эмпирические критерии. В их основу положено представление, что образование комплекса белок — органический лиганд, возникаюш,его в результате гидрофобных взаимодействий, можно рассматривать фактически как термодинамически выгодный перенос аполярной молекулы (или ее фрагмента) из воды в органическую фазу беЛка. Величина поверхности связываемой молекулы [40, 41] — это весьма частный критерий, поскольку на его основании нельзя сравнивать комплексующие свойства соединений, содержащих в молекуле различного рода полярные заместители. Недостаточным критерием гидрофобности ингибиторов или субстратов следует считать также и растворимость их в воде. Использование этой величи- [c.26]

    Константы равновесия в том и другом случае отличаются незначительно (в 2—4 раза). В то же время при переходе от профлавина к родамину 6Q процесс комплексообразования красителя с активным центром замедляется почти в 10 paat Структуры молекул этих лигандов различаются в основном лишь тем, что молекула родамина 6Q содержит дополнительное бензольное кольцо. Как показало изучение температурной зависимости кинетики комплексообразования, энергия активации этого процесса порядка 17 ккал/моль (71,4 кДж/моль). С другой, стороны, известна, что энергия активации процессов, контролируемых диффузией, не превышает, как правило, 5 ккал/моль (21 кДж/моль) [62, 63]. Поэтому следует заключить, что образование комплекса химотрипсина с более объемной молекулой родамина 6G возможно лишь в результате конформационных изменений в молекуле фермента. Такой механизм (1.8) комплексообразования органических молекул с белками, по-видимому, весьма распространен. [c.31]

    ФОТОСИНТЕЗ — синтез растениями органических веществ (углеводов, белков, жиров) из диоксида углерода, воды, азота, ( юсфора, минеральных солей и других компонентов с помощью солнечной энергии, поглощаемой пигментом хлорофиллом. Ф.— основной процесс образования органических веществ на Земле, определяющий круговорот углерода, кислорода и других элементов, а также основной механизм трансформации солнечной энергии на нашей планете. В процессе Ф, растения усваивают вгод4 101 туглерода, разлагают 1,2 х X 10 т воды, выделяют 1 10 т кислорода и запасают 4-102° кал солнечной энергии в виде химической энергии продуктов Ф. Это количество энергии намного превышает годовую потребность человечества в ней. Ф.—сложный окис-лительно-восстановительный процесс, сочетающий фотохимические реакции с ферментативными. Вследствие Ф. происходит окисление воды с выделением молекулярного кислорода и восстановление диоксида углерода, что выражается [c.268]

    Представление о строении нуклеиновых кислот нуклеозиды и нуклеотиды. Гетероциклические основания, рибоза (дезоксирибоза) и фосфорная кислота как структурные единицы нуклеиновых кислот. Представление о строении РНК и ДНК. Биологические функции ДНК и РНК. Рибосомальные, информационные и транспортные РНК. Связь между строением и биологическими функциями нуклеиновых кислот. Двойная спираль как модель молекулы ДНК. Роль водородных связей аденин — тимин и гуанин — цитозин в образовании двойной спирали. Правило Ча )-гаффа. Проблема передачи наследственной информации. Вещество, энергия и информация — необходимые компоненты при синтезе белка. Гснетическин код как троичный неперекрывающийся вырожденный код. [c.249]

    В первичной реакции (1) А называется актором, Вх — индуктором, X — активным промежуточным продуктом. В реакции (2) В2 — акцептор, С — конечный устойчивый продукт. Сущность явления химической индукции заключается в том, что образование высокореакционноспособных промежуточных продуктов в первичных реакциях сопровождается значительным уменьшением энергии Гельмгольца (АЛ > 0), обеспечивает возможность протекания других (индуцированных) реакций, в том числе даже сопровождающихся увеличением А (А А > 0), протекание которых становится возможным благодаря участию активных промелсуточных продуктов. Сопряженные реакции играют чрезвычайно важную роль в биологии, так как образование белков и нуклеиновых кислот, протекающее с увеличением энергии Гельмгольца, идет сопряженно с реакцией гидролиза аденозинтрифосфорной кислоты (АТФ), сопровождающейся уменьшением А (АА < 0) и являющейся источником энергии для многообразных химических процессов в клетках. Особо вяжную роль здесь играют ферменты, способствующие полноте использования в индуцируемой реакции свободной энергии индуцирующей. [c.250]

    Хотя одна водородная связь понижает энергию системы на несколько кДж/моль, коллективное действие огромного числа водородных связей между молекулами полиамидов, полипептидов и других синтетических полимеров обусловливает прочность волокон и другие ценные свойства. Волокнистые белки живых тканей также обязаны своей структурой водородным связям между молекулами полипептидов. Водородные связи между молекулами органических веществ, содержащих ОН-, КН- и СО-группы, играют большую роль в жизни растений и животных. Небольшая энергия Н-связей приводит к тому, что в живом организме они легко возникают и разрушаются, давая начало образованию множества биологически активных к<5мпонентов важных биохимических процессов. [c.275]


Смотреть страницы где упоминается термин Белки энергия образования: [c.60]    [c.89]    [c.151]    [c.162]    [c.89]    [c.151]    [c.162]    [c.129]    [c.56]    [c.140]    [c.37]    [c.449]    [c.140]   
Химия и биология белков (1953) -- [ c.386 ]




ПОИСК





Смотрите так же термины и статьи:

Белки образование

Энергия образования



© 2025 chem21.info Реклама на сайте