Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотопный эффект в электронных спектрах

    Помимо смещения спектральных линий, для атомов многих элементов изотопные эффекты проявляются и в характере сверхтонкого расщепления, обусловленного, как известно, взаимодействием оптических электронов с магнитным и квадрупольным моментами ядра, величина которых зависит от количества нейтронов в ядре при данном его заряде Z. Только для изотопов с чётно-чётными ядрами изотопные эффекты в спектрах ограничиваются изотопическим сдвигом, поскольку для них сверхтонкое расщепление, как правило, отсутствует из-за равенства нулю дипольного и квадрупольного моментов. Рассматриваемое взаимодействие приводит к расщеплению электронных уровней на несколько компонент, каждая из которых соответствует определённому значению полного момента атома Г, складывающегося из углового момента электрона Л и спина ядра I Г = Л +1. В случае чисто магнитного взаимодействия, когда влиянием квадрупольным моментом можно пренебречь, уровни энергии расщепляются на несколько подуровней с разными проекциями полного момента  [c.31]


    Для второго издания курс подвергся ряду изменений и дополнений. Более подробно рассмотрены основы метода электронного парамагнитного резонанса (3>ПР), приведены примеры идентификации свободных радикалов по спектрам ЭПР. В гл. И1 переработан 2, посвященный теории абсолютных скоростей реакций существенные изменения, касающиеся влияния диэлектрической постоянной на скорость реакции, внесены в 11, трактующий вопросы роли среды в элементарном акте химического превращения в 12 рассмотрение кинетического изотопного эффекта дополнено методом определения констант скоростей по изменению изотопного состава в ходе процесса. Изложение вопроса о кинетике химических реакций, состоящих из нескольких элементарных стадий (гл. VI), дополнено описанием нового способа определения числа линейно независимых дифференциальных уравнений, описывающих кинетику процесса. [c.5]

    Изотопный эффект при разрыве связи С —С в процессе пиролиза пропана сравнивали с вероятностью разрыва связей в пропане при образовании масс-спектра. Вероятность разрыва С — С в пропане-1- С больше разрыва связей С —С на 8% при пиролизе [1942] и примерно на 20% при электронном ударе в масс-спектрометре [150]. [c.472]

    Изотопные эффекты II рода обусловлены различием в ядерных свойствах изотопов, которые, в отличие от свойств, обусловленных структурой электронных оболочек, для разных изотопов одного и того же элемента имеют мало общего между собой. Это связано с тем, что при одинаковом заряде ядра недостаток или избыток нейтронов коренным образом изменяет структуру ядерных оболочек. Вследствие этого у изотопов одного элемента могут значительно отличаться спины ядер, спектр ядерных энергетических уровней, способность вступать в те или иные ядерные реакции и т. д. Отметим, что в некоторых случаях реально наблюдаемые эффекты являются суперпозицией изотопных эффектов I и II рода. Так, например, для лёгких элементов сверхтонкая структура оптических спектров изотопов с одной стороны определяется величиной изотопного сдвига, зависящего от массы изотопа, а с другой — [c.19]

    Изотопные эффекты, несмотря на их малость, отчётливо проявляются и в оптических спектрах атомов и молекул. Причинами их возникновения являются, с одной стороны, влияние на волновые функции атома его массы, практически полностью обусловленной массой ядра, что приводит к смещению спектральных линий при изменении числа нейтронов в ядре изотопа (возникновению так называемого изотопического сдвига), а с другой — взаимодействие атомных электронов с магнитным дипольным и электрическим квадрупольным моментами ядра, определяющее характер сверхтонкого рас- [c.29]


    Изотопические смещения в атомных спектрах обусловлены взаимодействием электронов с ядром, имеющим для различных изотопов элементов отличающиеся массу (массовый изотопный эффект) и объём (объёмный изотопный эффект). Вклад первого максимален для ядер с массовым числом Z < 30, второй эффект доминирует для ядер с 60. [c.97]

    Величину изотопического смещения, обусловленную массовым изотопным эффектом, можно точно рассчитать для спектров водородоподобных атомов, т.е. атомов, содержащих ядро и только один электрон. Постоянная Ридберга [c.97]

    Объёмный изотопный эффект наблюдается главным образом в атомных спектрах тяжёлых элементов с 1 или 2 -электронами на валентной оболочке. Для элементов с = 40 ч- 60 его величина соизмерима с величиной массового изотопного эффекта, а при > 60 превышает его. Тем не менее, с учётом [c.98]

    Изложенная в предыдущем параграфе теория не учитывает роли спинового состояния РП в ее рекомбинации. Поэтому она не может объяснить спиновые и магнитные эффекты, которые проявляются в эксперименте. Наблюдаются три типа эффектов. В ходе радикальных химических реакций происходит поляризация электронных спинов в радикалах и ядерных спинов в продуктах рекомбинации радикалов. В результате этого в ходе радикальных реакций наблюдаются соверщенно необычные спектры магнитного резонанса. Это явление получило название химической поляризации ядер (ХПЯ) и электронов (ХПЭ) [1—6, 25]. Важнейшим фактом, который показывает, что спины могут заметным образом проявить себя в кинетике радикальных реакций, изменить соотношение различных продуктов, является влияние внешнего магнитного поля на выход продуктов радикальных реакций [7—9, 37]. И наконец, очень большой интерес представляет магнитный изотопный эффект [10, 11]. Он заключается в том, что вероятность рекомбинации двух радикалов зависит от магнитного изотопа, причем важна не разница в массах ядер, как в обычном изотопном эффекте, а отличие магнитных моментов изотопных ядер. Все эти эффекты получили объяснение на основе детального описания динамики спинов РП в клетке . [c.27]

    Описаны методы изотопного анализа элементов, имеющихся в количествах, меньших 1 мкг. Описаны источник ионов, работающий ла принципе термоэмиссии ионов, и высокочувствительный электронный умножитель, использованный для регистрации ионов. Рассмотрены пределы применимости методов анализа и источники ошибок. Особое внимание обращено на эффекты фракционирования, анализ веществ с высокими потенциалами ионизации, калибровку усиления электронного умножителя и на трудности, обусловленные присутствием фонового спектра. Изотопные анализы образцов ЫРЬ и С(1, проделанные описанными методами, дали результаты, находящиеся в хорошем согласии с измерениями, выполненными в других лабораториях с использованием различных методов. [c.95]

    Спектроскопия ядерного гамма-резонанса (мессбауэровская спектроскопия) позволяет обнаружить слабые возмущения энергетических уровней ядер железа окружающими электронами. Этот эффект представляет собой явление испускания или поглощения мягкого у-излучения без отдачи ядер. Интересующий нас ядерный переход с энергией 14,36 кэВ -происходит между состояниями / = % и / = 1/2 мессбауэровского изотопа Те, где I — ядер-ное спиновое квантовое число. Для регистрации спектров Месс-бауэра обычно требуется 1—2 мкмоля Те, содержание которого в природном железе составляет 2,19%. Для белка с молекулярным весом 50 ООО, который связывает 1 атом железа на молекулу, и в отсутствие изотопного обогащения это соответствует весу образца 2,5 г. Рассматриваемые здесь многоядерные белки содержат гораздо больше железа и вполне подходят для исследования методом ядерной гамма-резонансной спектроскопии. Широко исследуются четыре возможных типа взаимодействия между ядром Те и его электронным окружением изомерный сдвиг, квадрупольное расщепление, ядерные магнитные сверхтонкие взаимодействия, ядерные зеемановские взаимодействия. Применение мессбауэровской спектроскопии для изучения железосодержащих белков, относящихся к гемовым и железосерным, обсуждается в опубликованном недавно обзоре [78]. [c.347]

    Менее определенные заключения делает Коммонер относительно природы неспаренных электронов, ответственных за сигнал ЭПР с g = 2.002. Подобный сигнал обнаруживается также при освещении препаратов хлореллы [7, 9]. Коммонер [9] сообщил интересные результаты, полученные на освещаемых препаратах хлореллы, культивированной по методу Катца [10] в 99.9 %-й DjO (рис. 1, в). Как видно из рис. 1, в, ширина сигналов ЭПР с g = 2.002 Vi g = 2.005 в этих препаратах меньше, чем в освещенных препаратах хлореллы, культивированных в HgO. Известно, что сверхтонкое расщепление в спектрах ЭПР, обусловленное взаимодействием магнитного момента неспаренного электрона с магнитным моментом ядра, уменьшается при замещении атомов водорода на атомы дейтерия [11]. Поэтому эффект сужения линий ЭПР в препаратах дейтерированной хлореллы можно приписать эффекту изотопного замещения. [c.440]


    Изотопный эффект. Колебательные изотопные сдвиги в электронных спектрах нелинейных т ногоатомных молекул предсказать не так легко, как у двухатомных молекул (см. [ПП, стр. 181). Однако наблюдение этих сдвигов часто имеет очень большое значение для однозначного определения носителя спектра. Наличие изотопного сдвига при замещении какого-либо атома на его изотоп в исходном соединении говорит о том, что данный атом входит в состав исследуемого радикала. Таким путем было точно установлено наличие одного (и только одного) атома углерода в носителях спектров, которые, как теперь известно, обусловлены радикалами СНг, N N, HN N и др. Если в радикале содержится несколько одинаковых атомов, то замещение половины всех атомов на изотопную модификацию приводит к появлению нескольких изотопных полос вместо одной полосы для обычного изотопа. Так, при использовании смеси изотопов и в отношении 50 50 в основной полосе радикала Сз (стр. 19) около 4050 А появляется вместо одного шесть кантов. Это однозначно свидетельствует о том, что в радикале — носителе спектра должно быть три атома углерода. Аналогично у полосы 2160 А радикала СНз наблюдаются четыре канта, если применяется смесь водорода с дейтерием в отношении 50 50 отсюда следует, что в соответствующей молекуле имеется три атома водорода. Подобным же образом было точно установлено наличие двух атомов водорода в спектрах, относимых в настоящее время к радикалам СНгиЫНг, или наличие двух атомов азота в спектре радикала N N. [c.162]

    Внеш. магн. поле влияет на выход продуктов р-ции, скорость элементарных процессов взаимод. парамагнитных частиц (рекомбинации радикалов, аннигиляции триплетно-возбужденных молекул, тушения триплетных молекул радикалами и т.п.), интенсивность флуоресценции и хеми-люминесценции, темновую и фотопроводимость мол. кристаллов и орг. полупроводников. Магн. изотопный эффект сопровождается разделением магн. и немагн. изотопов (напр., С и С, о и О). Хим. поляризация электронов и ядер проявляется в спектрах ЭПР и ЯМР продуктов р-ций (радикалов и молекул), при этом положит, поляризация приводит к аномально сильным линиям поглощения, а отрицательная-к линиям эмиссии. В последнем случае создается инверсная населенность зеемановских уровней электронов или ядер (см. Зеемана эффект. Лазер). Когда химически индуцированная отрицат. поляризация ядер достигает значит, величины, превосходящей порог генерации, происходит самовозбуждение радиочастотного излучения и хим. система становится мол. квантовым генератором-хим. радиочастотным мазером. Внеш. высокочастотное резонансное поле стимулирует изменение спина и, следовательно, выхода продукта р-ции или интенсивности люминесценции. Это позволяет регистрировать спектры ЭПР короткоживущих пар парамагнитных частиц по изменению выхода электронов, дырок, возбужденных молекул. На этом принципе основан новый метод магн. резонанса-двойной магн. резонанс (ДМР). [c.624]

    Значительно сложнее, чем у атомов, характер изотопных эффектов, проявляющихся в электронных, колебательных и вращательных спектрах молекулах. Здесь также проявляются изотопические сдвиги в частотах спектральных линий и изотопнозависимый характер их расщепления, однако, особенно в случае многоатомных молекул, все эти эффекты, весьма сложны для описания (подробнее см. [29-32]). Здесь же мы только отметим, что наиболее просто изотопический сдвиг может быть определён для колебательных уровней двухатомных молекул, поскольку в этом случае смещение частоты колебаний Аи просто связано с изменением её приведённой массы  [c.32]

    Исследование колебательных спектров изотопных разновидностей молекул может существенно облегчить отнесение полос, т. е. интерпретацию спектров, помогает в решении обратной колебательной задачи, т. е. нахождении силового поля молекулы. В адиабатическом приближении предполагается, что при изотопозамещении распределение электронной плотности, равновесные межъядерные расстояния, функция потенциальной энергии и силовые постоянные (матрица Р), через которые она выражается, остаются неизменными. Различия в массах ядер приводят лишь к изменению кинетической энергии, т. е. коэффициентов кинематического взаимодействия (матрица С), чем и обусловливаются различия колебательных частот изотопных разновидностей молекул. Эти различия, вообще говоря, должны быть те.м значительнее, чем больше отношение масс изотопов т /т (индексом обозначены величины, относящиеся к более тяжелому изотопу). Поэтому наибольший изотопный эффект дает, например, замещение атома водорода (протия) на тритий и дейтерий. Для двухатомных молекул X—Н (или, приближенно, для такой связи в многоатомной молекуле), исходя из выражения для гармонической частоты [c.227]

    Дике с сотрудниками сочли возможным расположить наиболее важные полосы поглощения в систему, подобную той, которая была использована для интерпретации спектра флуоресценции. Иными словами, этот спектр был интерпретирован как комбинация электронного перехода, с возбуждением колебаний типа Ув, V или Тб. Изучение изотопных эффектов во многом способствовало такой идентификации. Исследование влияния поляризации на поглощение позволяет разделить полосы, соответствующие различным электронным переходам (поскольку составляющая данного колебания электрического диполя в данной плоскости кристалла определяется главным образом двумя элёктронными состояниями, при комбинации которых возникает это колебание). [c.48]

    Молекулы пятичленных гетероциклов при взаимодействии с электронами образуют отрицательные ионы в двух областях энергии электронов, причем масс-спектр каждой области содержит относительно большое число массовых линий [107, 130]. Исключение составляет пиррол, у которого в первой (низкоэнергетической) области энергии электронов наблюдаются только ионы (М—Н) . Как видно из табл. 16, во второй области энергии электронов по сравнению с первой отмечается более глубокая фрагментация, растут относительные вероятности образования ионов с малым значением те/е при одновременном уменьшении выхода ионов (М—Н) . Изотопный эффект в сечении образования ионов (М—Н) тиофена во втором резонансном нике равен 12,1, а в первом пике 1,4 (см. табл. 4). Состояния ионов (М—Н) как первой, так и второй резонансной области автоионизационные t(S 4Hg) = = 240 и 220 мксек соответственно. [c.76]

    Изотопный эффект в электронно-колебательно-вращательных уровнях энергии и спектрах двухатомных молекул. Если в молекуле АВ одно или оба ядра замещйются их изотопами, то электрическое поле ядер, в котором находятся электроны, обусловливающие образование химической связи, не меняется. Следовательно, энергия электронного состояния молекулы, рассматриваемая как функ- ция расстояния ч между ядрами или как функция q — изменения межъядерного расстояния по сравнению с его равновесным значением, не должна изменяться при замещении в молекуле АВ одного или обоих ядер их изотопами, т. е. при переходе к молекуле A< )BW. [c.359]

    Осн. работы посвящены изучению строения и р-ций активных промежуточных частиц (свободных радикалов, комплексов, возбужденных молекул) и развитию методов хим. радиоспектроскопии. Применил метод ЭПР для исследования радикалов, образующихся непосредственно при радиационном облучении, и установил связь между строением молекул и их радиационной стойкостью (1958—1960). Изучил закономерности де юкализации не-спаренных электронов в комплексных соед. и установил общность механизмов сверхтонких взаимодействий в комплексах, радикалах и молекулах (1965—1970). Обнаружил совм. с Р. 3. Сагдеевым, К. М. Салиховым и др. влияние магнитного поля (1972) и магнитный изотопный эффект (1976, совм. с А. //. Бучаченко, Р. 3. Сагдеевым и сотр.) в радикальных р-циях. Разработал методы регистрации спектров электронного парамагнитного резонанса короткоживущих радикальных пар в р-рах (1979— 1985). [c.304]

    Широкий диапазон интенсивностей ионов в большинстве масс-спектров обусловливает необходимость применения методов уменьшения больших пиков. Это может быть сделано либо, в пределах усилителя, например путем изменения входного сопротивления или изменением усиления одной или двух ступеней, или переключением выхода усилителя (т. е. на входе самописца). Последний метод более удобен для усилителей с глубокой отрицательной обратной связью, которые пригодны для измерения широкого диапазона ионных токов. Недостаток первого метода состоит в том, что включение высокого входного сопротивления требует очень хорошей изоляции достоинство — возможность избежать поляризации и других неомических эффектов во входных сопротивлениях. С шунтирующей систем ой (переключатель пределов) можно работать вручную, однако это медленно и поэтому нецелесообразно, особенно при общей автоматической регистрации. Первая автоматическая регистрирующая система для масс-спектрометра [1885, 1886] не включала шунтирующую схему. Действительно, для некоторых случаев измерения изотопных отношений она не необходима [1001]. Было показано, что ручной переключатель пределов можно использовать в сочетании с автоматической регистрацией, но при этом развертка должна быть достаточно медленной, чтобы можно было успеть выбрать соответствующее шунтирующее сопротивление перед появлением пика [471]. Еще один метод состоит в регистрации спектра при низкой чувствительности для получения приближенных сведений об относительной интенсивности пиков в спектре. Затем повторяют развертку и вручную выбирают соответствующий шунт. Однако вгсьма просто включить автоматический выбор чувствительностей. Для этой цели можно использовать, например, концевой выключатель на верхнем конце шкалы самописца [924]. Наличие такого выключателя позволяет переключать чувствительность один или несколько раз. Однако более целесообразно выбрать момент переключения пределов при помощи электронных схем. Переключатель чувствительностей реагирует на напряжение сигнала немедленно, а перо всегда отстает от сигнала и никогда не совершает полного отклонения на всю шкалу. Поэтому перо всегда ближе к тому отклонению, которое соответствует следующей ступени чувствительности, чем если бы эти чувствительности выбирались концевым переключателем. Лоссинг, Шилдс и Ходе [1259] при электронном переключателе пределов использовали следующие соотношения 1 3 10 30 100 300. Эти величины являются обычными, но нельзя ручаться, что при таком шунтировании пики высотой менее 30% от общей величины ш <алы будут измерены с достаточной точностью. В процессе работы переключателя пределов на переднем конце пика прочерчиваются выбросы . Подсчет числа этих выбросов позволяет определить, на каком пределе [c.230]

    Спектр кристалла высокотемпературной модификации толуола имеет молекулярный характер и экситонные эффекты выражены в нем очень слабо. Можно видеть, что различные спектральные характеристики (поляризация полос нижайшего электронного перехода, интенсивность их, величины молекулярных колебаний и др.) несут информацию о строении и симметрии молекулы в кристалле, о реализации и симметрии других, более высоко расположенных электронных переходов молекулы. Использование некоторых из этих характеристик позволило установить изотопный состав смеси различных изотопов дейтеротолуола. [c.116]

    Модель валентных сил можно использовать и для расчета валентных углов. Эная VI, V2 и Уз для молекулы Х г, можно по уравнению (50), (51) и (52) рассчитать угол а, хотя и с меньшей достоверностью, чем рассчитываются частоты. Используя модель валентных сил, мы находим ограниченное число силовых постоянных потенциальной функции (47), поскольку число частот меньше числа постоянных. Для того чтобы найти все постоянные функции (47) нужны дополнительные уравнения. Их можно получить, имея данные об амплитудах колебаний, о кориолисовых постоянных и о спектрах изотопно замещенных молекул. Потенциальная функция (47) практически не зависит от масс атомов, а только от зарядов ядер и электронов, и ее постоянные одни и те же для разных изотопических модификаций, частота же колебаний неодинакова. Это явление (изотопический эффект) позволяет определить дополнительно силовые постоянные и рассчитать углы с большей точностью, чем способом, описанным ранее. Зная большее число силовых постоянных данной молекулы, можно точнее определять неизвестные частоты сходных с нею молекул. [c.28]

    Другим показателем среднего электронного распределения является величина химического сдвига в спектрах ядерного магнитного резонанса. Так, например, сдвиг линий протонного и фторного резонанса в область более сильного поля обусловлен повышенной электронной плотностью около ядер. Изотопные сдвиги как протонного, так и фторного резонанса были впервые обнаружены Тиирсом [38]. По его мнению, заметно больший элек-тронодонорный характер дейтерия обусловлен меньшим атомным объемом дейтерия в ковалентных соединениях . Однако Гутовский [39] объясняет эти сдвиги меньшей среднеквадратичной амплитудой колебания для дейтерированных молекул. Результаты расчета, выполненного им для одного частного случая, хорошо согласуются с экспериментом. Модель, использованная Гутовским при расчете, аналогична учету второго члена в уравнении (П-4) для разности дипольных моментов изотопной пары гармонических осцилляторов. Маршалл [40] теоретически рассчитал для Нг, НО и Оа влияние изотопного замещения на константу ядерного экранирования (а), ответственную за появление химических сдвигов. Согласно его расчету, эффект ангармоничности преобладает над эффектом среднеквадратичной амплитуды и действует в противоположном направлении, что обусловлено линейным членом в уравне нии типа (П-4). [c.104]

    Наиболее точным методом определения дипольных моментов является микроволновая спектроскопия. Если поместить газ в электрическое ноле, происходит расщепление чисто вращательных линий на шгарковские компоненты, причем величина расщепления зависит от напряженности электрического поля и дипольного момента. Эффект Штарка в электрическом поле совершенно аналогичен эффекту Зеемана в магнитном поле, и в обоих случаях расщепление возникает потому, что пространственное вырождение уровней энергии снимается при наложении электрического или магнитного поля. Отдельные штарковские компоненты можно наблюдать в полях с напряженностью в несколько тысяч вольт на сантиметр, а расщепление можно измерить с большой точностью. Напряженность электрического поля определяется обычно калиброванием по молекулам с известными дипольными моментами. Поскольку исследуемое вещество находится в газовой фазе и при низком давлении, здесь отсутствует влияние растворителя, а взаимодействие между полярными молекулами сведено до минимума. Не влияет на результаты и наличие примесей, если только можно проанализировать сложный спектр смеси. Кроме того, в благоприятных условиях можно найти значения дипольных моментов каждой из изотопных молекул в отдельных колебательных состояниях. Этот метод пригоден только для простых молекул с высоким давлением паров, но сейчас уже имеется довольно много надежных количественных данных по дипольным моментам молекул, которые можно интерпретировать, основываясь на представлениях об электронной структуре молекул. [c.244]

    Существенным выводом из этой серии работ является также установление того факта, что нри окислении замещенных ферроцена не проявляются электронные эффекты, подобные эффектам прямого полярного сопряжения между заместителем и реакционным центром, а также между замещенным циклопентадиенильным кольцом и реакционным центром. Кроме того, исследованные заместители не оказывают пространственного влияния на реакционный центр. Эти представления, основанные исключительно на исследовании окислительно-восстановительных свойств, в дальнейшем получили подтверждение при изучении других реакций с участием соединений ферроценового ряда (изотопный обмен водорода в производных ферроцена [42], протодемеркурирование ртутных производных ферроцена [43], протолитическая диссоциация заместителя в ферроцепкар-боновых кислотах [44] и др.), а также при исследовании физических свойств этих соединений (УФ-спектры [45], ЯМР [46] и др.). При сопоставлении формальных потенциалов гетероаннулярных ди- и соответствующих монозамещенных ферроценов обнаружено [40, 41], что достаточно строго выполняется равенство  [c.253]

    Иллюстрацией зависимости вероятности эффекта Мессбауэра от характера межмолекулярных связей может служить работа [63] по исследованию спектров двух типов полимеров ферроцена — линейных и сетчатых (зашитых). Здесь было показано, что образование закрепленной сетчаткой структуры, связанной с возникновением полимерных связей с участием обоих колец цик-лопентадиенила, резко повышает значение и ослабляет его температурную зависимость. Изучение вероятности эффекта Мессбауэра как анализатора в методе меченых атомов [64] позволяет провести исследование реакций электронного и изотопного обмена в твердых телах при низких температурах. [c.39]

    Имея спектр масс осколков молекулы, полученный при определенных условиях ионизации, интересно, дал е, выяснить, какие изменения вносятся в него при замене изотопом одного из входящих в состав соединения атомов. Так, спектры масс дей-терированного метана, этана и пропана сравнивались со спектрами обычных углеводородов [169 — 171]. Найдено, что такая замена увеличивает примерно в полтора раза вероятность расщепления связи при бомбардировке электронами. Этот эффект можно было предсказать, учитывая влияние прироста массы на нулевую энергию связи и на энергию активации разрыва. Кроме того, изотопное замещение вообще приводит к ослаблению соседних к С—В связей С —Н все это существенным образом изменяет спектр. [c.104]

    Здесь рассмотрены некоторые проблемы, которые представляются особенно актуальными в плане настоящего сборника. Вряд ли можно дать какой-нибудь простой единый рецепт их решения. Но можно думать, что одним из условий успеха является продуманное комплексное сочетание традиционных количественных методов изучения кинетики, термохимии и равновесий хемосорбции с современными физическими методами изучения состава, строения и свойств хемосорбционных соединений. Причем это требуется как для более простых модельных систем, так и особенно для реальных сложных катализаторов, находящихся в реальной среде катализа. Измерения электронных характеристик и спектроскопия адсорбционного состояния, заслун енно занявших видное место на нашем совещании, надо смелее сочетать с применением электронного парамагнитного и ядерного магнитного резонанса предельных разрешений. Там, где это возможно, богатую информацию могут дать мессбауэров-ские спектры, шире следует использовать изотопный обмен и изотопные кинетические эффекты и хроматографические методы. [c.9]


Смотреть страницы где упоминается термин Изотопный эффект в электронных спектрах: [c.255]    [c.661]    [c.314]    [c.466]    [c.190]    [c.165]    [c.210]    [c.661]    [c.287]    [c.273]    [c.274]    [c.287]   
Теоретическая химия (1950) -- [ c.210 ]




ПОИСК





Смотрите так же термины и статьи:

Спектры электронные

Эффект изотопный



© 2025 chem21.info Реклама на сайте