Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворитель характеристики групп

    В соответствии с типом химических связей растворители можно разбить на три группы а) молекулярные жидкости (молекулярные расплавы только ковалентные связи) б) ионные жидкости (расплавы солей только ионные связи) в) атомные жидкости (низкоплавкие металлы, например жидкая ртуть или жидкий натрий металлические связи) [16]. Путем смешения растворителей разных групп можно получить разнообразные растворители с промежуточными характеристиками (рис. 3.1). Работы в этой области, однако, еще далеки от завершения. [c.87]


    Для характеристики растворителей, как передатчиков цепи, Майо ввел понятие константы переноса и определил ее как отношение константы скорости реакции переноса к константе роста цепи [22]. Константа переноса зависит как от природы мономера, так и растворителя, что необходимо учитывать при синтезе каучуков с концевыми функциональными группами. [c.420]

    Для наиболее часто встречающегося случая распределения органического вещества между водой и органическим растворителем получены качественные характеристики влияния той или иной функциональной группы на величину коэффициента распределения [24]. Еслп определить коэффициент распределения как отношение равновесных концентраций в органической и. водной фазах, то очевидно, что введение в молекулу распределяемого вещества гидрофильных групп (—ОН, —СООН, —0—, =С=0, —NH2) снижает коэффициент распределения. Коэффициенты распределения альдегидов и кетонов примерно равны коэффициентам распределения спиртов. Атом галогена увеличивает коэффициент распределения. При этом эффект введения атома галогена увеличивается в ряду С1, Вг, I. [c.91]

    Углеводородная часть, выделенная описанным выше методом, подвергалась дальше адсорбционно-хроматографическому анализу при помощи силикагеля марки АСК по стандартной, ранее описанной методике [61]. Навеска углеводородной смеси 10 г, количество силикагеля 100 г (около 200 мл), последовательность и количество вытеснителей петролейный эфир 200 мл, бензол 100 мл, спирто-бензольная смесь (отношение 1 1) 100 мл. При постоянной скорости вытекания жидкости с низа колонки отбирали равными порциями (15 мл) раствор углеводородов в вымывающих жидкостях. После отгонки растворителей определяли количество, свойства и элементарный состав углеводородных фракций и вычисляли по этим данным соотношение в исходной смеси различных групп углеводородов и их структурную характеристику. [c.204]

    Для полученных после отгона растворителя фракций определяют показатель преломления и смешивают их в соответствии с пределами этих показателей, принятых для разных углеводородных фракций (парафино-нафтеновой, легкой ароматической и др.). Десорбируемые спирто-бензольной смесью смолы отбирают отдельно. Выход полученных фракций (в % на разделяемый продукт) характеризует его групповой химический состав. Иногда между фракцией тяжелых ароматических углеводородов и смолами отбирают фракцию с низким показателем преломления, которая характеризуется как промежуточная. Для более полной характеристики полученных фракций определяют их удельную дисперсию (см. стр. 252) значения се для отдельных групп углеводородов следующие  [c.245]


    Очевидно, что в зависимости от условий (концентрация раствора, его температура, свойства растворителя) один и тот же электролит может относиться к разным группам. 3>то принципиально важное обстоятельство позволяет строго рассчитывать количественные термодинамические характеристики электролитов. [c.76]

    Теоретические методы расчета термодинамических характеристик сольватации ионов обычно делят на две группы. К первой группе относят расчеты, в которых растворитель рассматривается как непрерывный диэлектрик, ко второй — расчеты, в которых учитывается молекулярная структура растворителя.  [c.243]

    Важнейшей характеристикой всякого раствора является концентрация. Концентрацией называется содержание растворенного вещества в единице массы или объема раствора или растворителя. Все способы измерения концентраций можно разделить на три группы концентрации массовые, концентрации объемные и концентрации безразмерные.  [c.170]

    В табл. 20.6 и 20.7 приведены характеристики собственных п ос поглощения в электронных спектрах некоторых неорганических ионов и хромофоров. Положение и интенсивность этих полос могут несколько изменяться, в зависимости от природы растворителя и окружения — катионов в случае неорганических анионов, атомных групп, связанных с хромофорами в молекулах органических соединений. [c.526]

    Изменение характеристик среды (pH, температуры, концентраций, растворителя), что дает возможность определить термодинамические и другие характеристики процессов с участием функциональных групп и реакционных центров молекул. [c.731]

    Для предварительной оценки величин удерживания было предпринято немало попыток связать их с термодинамическими, электрическими и геометрическими свойствами неподвижных фаз анализируемых веществ. Многие группы веществ обнаруживают известную зависимость относительных величин удерживания от электрических характеристик неподвижных фаз или разделяемых компонентов (дипольный момент, диэлектрическая проницаемость, поляризуемость), хотя, например, дипольный момент представляет собой некоторую суммарную величину и нельзя ожидать простой связи между ним и величинами удерживания. Такая связь наблюдается лишь в тех случаях, когда структура растворителя и растворенного вещества сравнительно проста п доля полярных групп не слишком велика. Особенно трудно устано- [c.183]

    В газовой фазе и неполярных растворителях, не обладающих функциональными группами, способными к ассоциации с пероксидом, молекулы последнего находятся в конформации, близкой к конформации в минимуме свободной энергии. Это позволяет использовать, наряду с данными экспериментального определения, расчетные величины дипольных моментов пероксидов для характеристики распределения электронной плотности. [c.133]

    Одной из важнейших характеристик, растворителя является диэлектрическая проницаемость (е). В зависимости от ее значения все растворители могут быть разделены на две группы — полярные (е>30) и малополярные (е-<30). [c.25]

    Условия проведения энд кэппинга , в том числе предварительная подготовка и обработка поверхности с целью перевода оставшихся непрореагировавших атомов хлора в гидроксильные или другие реакционноспособные группы, выбор растворителей, катализаторов, условий реакции, как правило, составляют ноу хау фирмы. Часто проведение энд кэппинга практически не меняет таких характеристик сорбента, как содержание углерода, удельная поверхность и др., однако характер взаимодействия с [c.97]

    Систематическому изучению влияния состава и строения алкилалюминиевого компонента на процессы полимеризации и сополимеризации этилена посвящены работы [17, 24, 74]. Изучались АОС с различными алкильными группами, что позволило исследовать влияние заместителей с разными электроноакцепторными характеристиками, а также с различной способностью вызывать стерические препятствия для подхода нуклеофильных агентов. Показано, что активность каталитических комплексов, содержащих алюминийтриалкилы нормального строения, в процессе полимеризации этилена падает с увеличением длины алкила (температура полимеризации 60 °С, давление 0,3 МПа, растворитель гексан)  [c.65]

    Трудности представляет выбор подходящего растворителя для ближней ИК-спектроскопии это обусловлено тем, что в этом случае не пригодны растворители, в которых имеются группы О—Н, N—Н и даже С—И. На рис. 15.34 представлены характеристики пропускания некоторых растворителей, пригодных для использования в ближней ИК-спектроскопии. Наиболее часто применяются четыреххлористый углерод, являющийся идеальным растворителем для ближней ИК-спектроскопии, сероуглерод, метиленхлорид. [c.260]

    БК растворяется в насыщенных углеводородах и несколько хуже - в аренах не растворяется в спиртах,эфирах, кетонах, ацеталях, а также в растворителях, содержащих амино-, нитро- и другие высокополярные группы. Отличительной особенностью БК является низкая газопроницаемость, высокие диэлектрические характеристики и озоностойкость. По газонепроницаемости он превосходит все известные каучуки за исключением тиокола и этилен-пропиленового каучука вследствие высокой плотности упаковки макромолекул. [c.259]


    Используя в качестве характеристики растворителя эмпирический параметр льюисовой основности растворителя В, определенное по сдвигу полосы поглощения гидроксильной группы в ИК-спектре фенола в рамках уравнения lg к = lg кд + 5 В при исключении из зависимости воды, была получена линейная зависимость с коэффициентом корреляции г=0.98 (рис. 11)  [c.17]

    Иод в парах и в растворе (в насыщенных углеводородах) имеет полосу поглощения в видимой области около 520 нм, а в ультрафиолетовой области в районе 230 нм. Спектральные характеристики растворов иода представлены в табл. 1.7, 1.8, 1.9. При образовании комплексов полоса 520 нм сдвигается в сторону меньших длин волн и ее интенсивность несколько увеличивается. Сдвиг полосы поглощения иода от фиолетовой области к голубой наблюдается при образовании любых стабильных а-комплексов. Он сильно увеличивается с ростом диэлектрической проницаемости растворителя. Установлено, что величина сдвига растет с увеличением устойчивости комплексов с алифатическими аминами. Высказывается мнение, что решающее влияние на сдвиг полос поглощения оказывает универсальное взаимодействие, т.е. неспецифическая сольватация, определяемая полярностью и поляризуемостью растворителя [15]. Малликен [29] объяснил наличие двух полос в электронных спектрах молекулярных соединений на основе концепции переноса заряда. При этом волновая функция основного состояния молекулярного комплекса представлялась в виде двух слагаемых. Первое характеризует систему, когда в комплексе молекулы донора и акцептора имеются такие же геометрические параметры, что и в свободном состоянии, а взаимодействие между донором и акцептором определяется силами электростатической природы диполь-диполь, диполь-индуцированный диполь и др. Второе слагаемое характеризует состояние, в котором электрон перенесен от донора к акцептору, при этом перенос заряда осуществляется с наиболее высокой занятой орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора. Из теории следует, что энергия полосы переноса заряда определяется величинами потенциалов ионизации донора и сродства к электрону для акцептора. Для отдельных групп растворителей родственного характера удалось установить линейную зависимость между сдвигом полосы поглощения иода и потенциалом ионизации [30]. Детально изучена связь длинноволновой полосы поглощения иода со свойствами растворителей и показано, что для ст-доноров наблюдается связь с потенциалом ионизации функции универсальных взаимодействий, а для случая замещенных пиридинов срК. Сдвиги полос для я-доноров не описываются этими зависимостями [31]. Отмечено, что для комплексов иода с ст- и л-донорами зависимость сдвигов полос поглощения в ультрафиолетовой области от основности растворителя не может быть описана общим уравнением. [c.22]

    Дейтерирование молекул мочевины изменяет их донорно-акцеп-торные свойства, усиливая по аналогии с водой [27] электроноакцепторную способность амидных атомов водорода. Влияние Н/О-изотоп-ного замещения на электронодонорную способность карбонильного атома кислорода весьма незначительно, поскольку, в соответствии с данными табл. 3.2, практически не затрагивает колебательные характеристики группы С=0, т.е. 1. По этой причине, например, появление в среде более структурированного изотопомера воды -ОзО-молекул дейтеромочевины сопровождается более существенными, чем в протонированной системе, структурными изменениями растворителя у амидных КВ-групп (при температурах ниже стандартной [28]). [c.118]

    В отличие от основности, которую используют в качестве характеристики как сходных, так и различных по тину растворителей, электроотрицателъность групп-заместителей при функциональной группе экстрагента используют лишь в случае однотипных растворителей, главным образом фосфорорганических [184— 186, 208]. Полагают, что сумма величин электроотрицательностей (ЭО) радикалов-заместителей при фосфоре (2Хк.) преимущественно определяет ЭС изучаемых растворителей. При этом в термин электроотрицательность радикала вкладывают тот же смысл, который вложил Полинг [83] в термин электроотрицательность элемента ЭО радикала есть способность его в молекуле притягивать электроны. [c.50]

    Другую трактовку дали Грюнуолд, Геллер и Клейн [54]. Они считают, что около иона существует определенное число сольватационных мест. При реакции с растворителем уходящая группа занимает одно из этих мест и, таким образом, снижает вероятность атаки с этой стороны. С такой точки зрения наблюдаемое отношение обращения к рацемизации будет, конечно, зависеть от числа сольватационных мест около иона. В самом деле, для реакции обмена О в спиртах число этих мест находится в пределах от 2 до 14. Данная теория имеет то преимущество, что нет необходимости постулировать образование подлинной ковалентной связи в соль-ватированном состоянии, хотя сольватация все еще имеет структурные свойства. Сольватация такого рода сохраняет некоторые из характеристик общей сольватации, и в то же время ясно проявляет некоторые специфические свойства. [c.31]

    Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полиЪгра молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в плохом растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.). [c.159]

    Характерным свойством понптов является набухаемость при контакте сухого ионита с раствором. Особенно сильно набухают синтетическпе ионообменные смолы. Основной причиной набухания ионитов в воде является наличие гидрофильных функциональных групп. Умеренное набухание ионитов является положительным фактором, способствующим функционированию ноногенных групп, находящихся внутри зерна ионита. Количественной характеристикой набухания является степень набухания ионитов. Степень набухания определяется отношением разности объемов набухшего и сухого ионита к массе сухого ионита. Набуханию препятствуют силы упругости трехмерной структурной сетки (матрицы), которые растут с увеличением степени сшивки полимера (т. е. с увеличением количества вводимого при синтезе мостикообразователя). Набуханию способствуют большая обменная емкость, гидратация противоионов и разбавление раствора (увеличение термодинамической активности растворителя). Неорганические иониты набухают очень слабо и удерживают растворитель в полостях кристаллической структуры. [c.169]

    Влияние температуры обработки сырья растворителем на выход, качество и углеводородный состав рафината и экстракта показано на рис. 48. Здесь для примера приведены данные Н. И. Черножукова и А. 3. Биккулова [31 по очистке фурфуролом дистиллята сернистой парафинистой нефти при разных температурах в условиях весовой кратности растворителя к сырью 1,26 1. Для более наглядной характеристики степени извлечения отдельных основных групп углеводородов из очищенного сырья дано распределение их в рафинате в процентах от содержания их в исходном сырье. [c.194]

    Представляет собой характеристику протодонорной (или протоак-цепторной) способности взаимодействия растворитель - растворенное вещество (или группа веществ). Таким образом, функция кислотности является свойством системы в целом. [c.263]

    В общем случае значение а — это характеристика сорбционной способности активного центра данного фермента. Если а <С 1 (как, например, в рассмотренном катализе (3-галактозидазой), то субстратная группа К, по-видимому, либо погружаетгя (переносится из воды) в органическую среду белка не полностью, либо связывание ее требует термодинамически невыгодных затрат на конформационное изменение структуры того или другого реагента. Гидрофобное ферментсубстрат-ное взаимодействие может быть термодинамически более выгодным, чем это предполагает простая экстракционная модель (где а= 1). В этом случае активный центр должен содержать локальный участок с относительно невыгодной поверхностной энергией пограничного слоя белок — растворитель например, с гидрофобными боковыми группами [c.44]

    Из сопоставления следует, что все они являются частными случаями этого уравнения. Уравнение Грегора зачитывает только изменение степени набухания при замене одного иона на другой, т. е. учитывает только четвертый член уравнения (VII, 102). Уравнение Самсонова в явной форме учитывает только изменение ион-дипольного взаимодействия при обмене ионов, т. е. учитывает третий и частично четвертый член уравнения (VII,102). Уравнение Бойда, Шуберта, Адамсона и уравнение Сакаки Томихоко учитывают только изменение диэлектрической проницаемости. Наконец, уравнение Панченкова и Горшкова, выведенное ими для характеристики обмена иона водорода на ионы металлов, учитывает третий, четвертый и пятый члены уравнения (VII,102) и эквивалентно частному случаю для обмена ионов металла при условии, когда взаимодействие между ионами и ионогенными группами можно рассматривать как ионную ассоциацию. Ни одно ранее нредложен-ное уравнение не учитывает влияния основности растворителей на обмен иона водорода и ионов лиата и ни одно уравнение не учитывает молекулярно-адсорбционные свойства ионитов. [c.376]

    Следовательно, если задача будет сформулирована как синтез ярко-красного азокрасителя с основными свойствами, то теория приведет нас к структуре 38, но ничего не скажет о природе алкильных групп. Поэтому исследователь окажется перед необходимостью выбора из неопределенно большого числа близко родственных, но различных соединений. При этом ему придется учесть ряд дополнительных соображений. Так, от структуры алкильных групп будут зависеть такие характеристики веществ ряда 38, как степень основности, растворимость в воде и органических растворителях, те.мперагура плавления, способность к связыванию с поверхностью той или иной ткани, а также термо- и светостойкость. Все эти особенности уже не могут бьггь а priori предсказаны сколько-нибудь точно. Поэтому в подобных с.тучаях даже после тщательного анализа, как правило, остается несколько почти равноценных структур, и химику придется синтезировать их все. И только лишь после подробного изучения свойств всех этих соединений можно оконча-геяьно выбрать те немногие из них, которые отвечают заданным практиче-жим требованиям. [c.33]

    Методы первой группы характеризуют смачивание поверхности дисперсного материала и адсорбцию на нем битума пз растворов з различных растворителях. При этом равновесная концентрация после адсорбции определяется колориметрически по изменению окраски битумного раствора нлп весовым способом, Сушествуют методы оценки сцепления по поверхностному натяжению на границе раздела битум — минеральный материал. Методы определения скорости осаждения обработанных битумом высокодисперсных порошков в различных растворителях и степени гидрофобностн порошков после адсорбции битума из его растворов также предложены для характеристики адгезионных свойств битума и минерального материала. К методам данной группы относится также оценка сцепления по количеству битума, оставшегося иа мипераль-пом порошке после десорбции бензолом илн сиирто-хлороформом [c.122]

    Гидрофильнос1Ь, гидрофобность (от гидро... и греч. philia —любовь, от гидро... и греч. pholos — боязнь, страх) — характеристики интенсивности молекулярного взаимодействия поверхности тел с водой. Понятие Г., г. относится не только к телам, у которых оно является свойством поверхности, но и к отдельным молекулам, их группам, атомам, ионам. Гидрофильностью (хорошей смачиваемостью водой) обладают вещества с ионными кристаллическими решетками (оксиды, гидроксиды, силикаты, сульфаты, фосфаты, глины и т. д.), вещесгва с полярными группами —ОН, —СООН, —NO2 и др. Гидрофобностью (плохой смачиваемостью) обладают большинство органических веществ с углеводородными радикалами, металлы, полупроводники и т. д. Г., г. являются частным случаем отношения веществ к растворителю — лиофильности, лиофобности. [c.40]

    Таким образом, условия смешения зависят от свойств полимера (гибкие или жесткие цепи, наличие полярных групп и др.) и его взаимодействия с растворителем. В атер-мических смесях изменение Д5 при растворении, по Каргину и Тагер, может служить количественной характеристикой гиокссти цепей полимеров. [c.183]

    Исследование сольватации и ассоциации таких важных биологических лигандов, как краун-эфиры, криптанды и циклодекстрины играет большую роль для понимания их высокой комплексообразующей способности и селективности в растворах. При описании взаимодействий указанных соединений между собой и с молекулами растворителя важную информацию дают термодинамические исследования. Энтальпийные коэффициенты межмолекулярных взаимодействий краун-эфиров и криптанда [222] при 25 °С представлены в табл. 4.5. Как правило, положительные величины /12 характеризуют гидрофобную природу межмолекулярных взаимодействий в растворах [41], что и наблюдается у соединений, приведенных в таблице. Данный эффект усиливается с увеличением числа оксиэтиленовых групп (-СН2СН2О ). Обнаружена линейная зависимость [42] между значениями энтальпий сольватации краун-эфиров и коэффициентов их парных взаимодействий (рис. 4.7). Причина существования зависимости лежит в природе гидрофобных эффектов, наличие которых определяется преобладанием неполярных макроциклов в данных растворах. Очевидно, групповые вклады в обе характеристики гидрофобных эффектов (гидрофоб- [c.203]

    Очевидно, что наибольший интерес могут представлять данные по термодинамике процессов молекулярного комплексообразования, протекающих с участием биологически активных природных порфиринов. В связи с этим в данной главе приводятся термодинамические характеристики процессов образования аксиальных молекулярных комплексов природных металлопорфиринов группы крови (протогруппы) с пиридином и имидазолом в органических растворителях, полученные методом микрокалориметрического титрования. Для выяснения закономерностей влияния структурных и сольватационных факторов на термодинамические параметры исследованных процессов привлекаются сведения об особенностях комплексообразующих свойств порфиринов и металлопорфиринов по отношению к различным по природе молекулам, вьшолняющим роль среды и/или молекулярного реагента, полученные при термогравиметрическом анализе соответствующих кристаллосольватов. [c.300]


Смотреть страницы где упоминается термин Растворитель характеристики групп: [c.63]    [c.63]    [c.40]    [c.34]    [c.532]    [c.19]    [c.169]    [c.88]    [c.316]    [c.12]    [c.174]    [c.213]    [c.310]    [c.315]   
Лакокрасочные покрытия (1968) -- [ c.256 ]




ПОИСК





Смотрите так же термины и статьи:

групп характеристика



© 2024 chem21.info Реклама на сайте