Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны кристалличность

    Широко используемое в настоящее время понятие кристалличности не отражает многочисленных особенностей структуры [54] и является понятием в известной степени условным. Очевидно, по тем же причинам определение степени кристалличности различными методами (рентгенографически, ИК-спектроскопией, по плотности полимера или по спектрам ЯМР) часто не дает сопоставимых результатов. Можно представить себе случай, когда две мембраны имеют одинаковую степень кристалличности в пачках , но формирование структуры в одном случае остановилось на уровне пачек , во втором — завершилось образованием сферолитов различных размеров. Упорядоченность в первом случае меньшая, чем во втором, и свойства этих мембран должны быть различными. [c.65]


    Хотя основными факторами, влияющими на выбор химической структуры материала для изготовления полимерной мембраны, являются степень кристалличности и набухаемость, значительное влияние могут оказывать и такие вторичные факторы, как стойкость к гидролизу, микробному разложению и сорбции растворенного вещества. Они особенно важны, когда стоимость замены мембраны не является пренебрежимо малой. [c.70]

    Кристалличность. Знание степени кристалличности важно для оценки проницаемости и селективности таких полимерных мембран, как сплошные пленки (включая тонкие поверхностные слои асимметричных ацетатцеллюлозных мембран), диализные мембраны и мембраны для разделения газов. Кроме влияния на перенос вещества кристалличность воздействует на различные параметры, влияющие на химические и механические свойства, что приводит к изменению свойств мембраны со временем. [c.71]

    До сих пор речь шла только о макроскопической вязкости полимера, которая очень велика и обусловлена взаимодействием целых макромолекул при их скольжеНии относительно друг друга. Вместе с тем величина вязкости, найденная по скорости диффузии небольших молекул в полимере и зависящая от движения отдельных сегментов его цепи ( микроскопическая вязкость ), близка к вязкости простой низкомолекулярной жидкости, молекулы которой ведут себя подобно сегментам Микроскопическая вязкость тесно связана с газопроницаемостью полимеров, с диффузией (и растворимостью) газов в них, во многом напоминающей по своему механизму течение жидкостей и имеющей очень большое практическое значение (автомобильные камеры, защитные покрытия, упаковочный материал, мембраны для разделения смесей газов и т. д). Газопроницаемость высокомолекулярных соединений [19] зависит от химической и надмолекулярной структуры полимера (наличие полярных групп, кристалличность или аморфность), формы, гибкости и ориентации макромолекул, характера межмолекулярного взаимодействия и т. д существенное значение также имеют природа газа (полярность, молекулярная масса, форма, непредельность) и температура. [c.405]

    Скорость десорбции проникающего вещества с противоположной стороны мембраны и его переноса в газовую фазу зависит от температуры, давления под мембраной и парциального давления проникающего вещества. Помимо химической природы материала мембраны на процесс разделения существенное влияние оказывает структура мембраны. Увеличение степени кристалличности полимера обычно ведет к снижению проницаемости мембран [16, 17], так как проницаемость кристаллических областей на два-три десятичных порядка ниже, чем аморфных [13]. Экспериментальными исследованиями установлено [18, 19], что при одноосном вытягивании мембран их проницаемость также резко снижается, хотя кристалличность полимера при этом практически не изменяется. Оче- [c.18]


    Рентгеноструктурный анализ используют для оценки кристалличности полимера, из которого сформована мембрана. Метод рассеяния рентгеновских лучей под малыми углами может быть использован для оценки размеров пор в мембране. [c.71]

    Поскольку размер и форма кристаллитов зависят от условий кристаллизации, последние могут существенно влиять как на проницаемость, так и на селективность. При отливке мембран из растворов полимера в термодинамически хороших растворителях получаются мембраны с более низкой кристалличностью и, следовательно, более высокой проницаемостью, чем при отливке из плохого растворителя. [c.31]

    КИ — 25,4 мкм давление в зоне пермеата — 5,33 кПа. В приведенном выше примере полярная мембрана вырабатывает пермеат, обогащенный метанолом, а неполярная мембрана — пермеат, обогащенный бензолом. Проницаемость и селективность зависят также от степени и типа кристалличности, пластификации и от того, выше или ниже Гс температура проведения процесса. До тех пор, пока исходная смесь находится в жидком состоянии, ее давление не влияет ни на скорость, ни на селективность проникновения другой жидкости (табл. 2.4). Состав загрузочной смеси н-гептан — изооктан (50 50) рабочая температура — 100 °С толщина пленки — 25,4 мкм. Перепад давления на мембране также не влияет на скорость проникания до тех пор, пока продукт поддерживается в паровой фазе (табл. 2.5). Это обусловлено большой разностью концентраций со стороны питания и со стороны продукта, которая настолько велика, что изменение давления пермеата незначительно влияет на скорость проникания. [c.38]

    Подвижности сегментов способствует то обстоятельство, что каучуки состоят из длинных, гибких, линейных цепей макромолекул. Они также характеризуются малым числом полярных групп, отсутствием кристалличности и только незначительно сшиты (при типичной степени полимеризации между поперечными сшивками находятся 300 подвижных звеньев [9]). В результате этого, когда избирательно проницаемая часть мембраны находится в таком состоянии, проницаемость, как правило, высока, а селективность низка. [c.111]

    Знание морфологии важно для понимания проницаемости и селективности таких полимерных мембран, как плотные пленки (включая тонкие поверхностные слои асимметричных мембран на основе ацетата целлюлозы) и мембраны для диализа и разделения газов. Кристалличность влияет не только на процесс транспорта в материале, но и на различные химические и механические свойства, которые, в свою очередь, будут обусловливать изменение параметров мембраны во времени. [c.114]

    Для растворения полностью ароматических полиамидов и, в частности, статистических сополимеров с минимальной степенью кристалличности (42) требуется сильный растворитель (ДМАА) и лиотропная соль ЫС1 для повышения растворимости и предотвращения преждевременного гелеобразования. Статистические сополимеры АН с небольшим количеством метил-акрилата (43) лучше растворяются, чем гомополимеры для получения отливочных растворов могут быть использованы растворяющие системы, аналогичные описанной выше. Их большая гибкость на молекулярном уровне позволяет получить менее хрупкие мембраны. Хотя статистические сополимеры ароматических полиамидов растворимы намного лучше, чем их полностью ароматические аналоги, их переработка в мембраны с большим объемом пустот также требует и сильного растворителя (М-МП), и лиотропной соли (44). [c.220]

    Для оценки проницаемости и селективности мембран важно знать степень кристалличности полимера, из которого они изготавливаются. Кристалличностью определяются также различные параметры, характеризующие химические и механические свойства мембран. Полимерные мембраны с высокой степенью кристалличности обычно менее проницаемы, чем мембраны с аморфной структурой. Зависимость проницаемости мембран от их структуры связана с линейной зависимостью между поглощением влаги и долей аморфной фазы в целлюлозе. При гидролизном или микробном разложении полимерных мембран наиболее уязвимы аморфные области, которые разрушаются первыми. Это явление используется при экспериментальном определении доли аморфной фазы в полимере по кинетике гидролиза., [c.23]

    В других экспериментах [66] обработка полиэтилена парами растворителя вызывала отжиг мембраны, что приводило к увеличению равновесных значений сорбции (на единицу объема аморфной фазы полимера) при увеличении температуры обработки и соответственно к повышению скорости проницания. Эти результаты, так же как и влияние на проницаемость термической обработки полимера в среде растворителя, объясняются авторами структурными изменениями в полимере. Последние заключаются в изменении степени кристалличности под действием температуры и растворителя, вызванном градиентом осмотического давления, в выплавлении кристаллов и в рекристаллизации полимера. Ранее было установлено [66], что зависимость скорости проникания, например ксилола и некоторых других веществ через полиэтилен от времени проходит через максимум. Первоначальное увеличение скорости со временем объясняется разрывом кристаллов вследствие повышения осмотического давления. Последующее уменьшение связано с кристаллизацией или снятием напряжений после перегруппировки сегментов цепей в набухшем состоянии. Максимум обычно наблюдался в первый час работы и установившийся режим достигался через 4—5 ч. [c.151]


    Полимерные мембраны различаются по структуре и размерам пор, а также по концентрации и свободному объему последних. Наиболее распространенной является простая классификация, основанная на диаметре отверстий, в соответствии с которой различают плотные (микропористые) мембраны с диаметром пор порядка 3 нм, пористые (макропористые) мембраны с диаметром пор 5 нм — 1 мкм, крупнопористые (волокнистые) мембраны с диаметром пор 2 мкм и выше. Кроме того, существуют классификации, основанные на химической структуре материала, форме пор, степени кристалличности, заряжен-ности (или распределении электрического заряда) и т. д. [c.150]

    Сравнение электрохимических свойств мембран (табл. 3), полученных из пленок I и II с различной кристалличностью, показывает, что мембраны. на основе пленки II с меньшей кристаллич- [c.17]

    Напротив, когда рассматривается плотная непористая мембрана, выбор полимерного материала определяющим образом влияет на свойства мембраны и особенно важными параметрами являются температура стеклования Тст и кристалличность. Эти параметры опреде- [c.50]

    Кроме проницаемости, термическая и химическая стабильность полимеров и/или мембран также определяется теми же структурными факторами, то есть гибкостью цепи, межцепными взаимодействиями и кристалличностью. Химическая стабильность включает в себя такие понятия, как гидролитическая стабильность, устойчивость к растворителям, pH и хлорированию. Чтобы получить высокоустойчивые мембраны, нужно избегать так называемых слабых мест , таких, как ненасыщенные группы, -КН-группы, сложноэфирные группы. [c.60]

    Как уже отмечалось, важные физические свойства полимерных материалов мембран, например, температура стеклования, кристалличность, плотность и т. д., могут быть определены с использованием разнообразных методов. Рассмотрим некоторые из них, чтобы получить лучшее представление о процессе массопереноса через непористые полимерные пленки и мембраны. [c.198]

    Размерность коэффициентов проницаемости указывает, на зависимость потока от толщины и площади мембраны, а также давления. В случаях неприменимости закона Генри коэффициент проницаемости перестает быть константой и зависит от движущей силы, т. е. при изменении давления коэффициент проницаемости Р принимает различные значения. Тем не менее, коэффициент проницаемости остается по-прежнему удобным параметром для сравнения эффективности различных мембран для разделения определенных смесей, а также для сравнения поведения различных газов в определенном материале. Для описания законов газоразделения необходимо учитывать и другие факторы, связанные с природой полимера (его химической структурой). В связи с этим особое значение приобретают два параметра 1) температура стеклования и 2) кристалличность. [c.312]

    Хотя соотношение между гидрофильными и гидрофобными элементами и является ключевым фактором химической характеристики мембран, используемых для водных сред, последние не являются единственными в практике мембранного разделения. Разделение нефтяных фракций, например, может быть проведено с помощью полиэтиленовых мембран разной степени кристалличности. Такие мембраны уже были использованы для выделения испарением через мембрану л-ксилола из раствора, содержащего все три изомера. Аналогично в случае систем с полярностью, промежуточной между полярностью водных и углеводородных сред, разделение можно провести с помощью мембран, в которых установлено нужное соотношение между лиофобными и лиофиль-ными элементами по отношению именно к данному растворителю. Для такого в.одноподобного растворителя, как метанол, можно использовать мембраны те же или близкие к тем, которые используют для разделения водных растворов. Так и ацетатцеллюлозные, и мембраны из метилированного полиамида можно (с небольшими изменениями) использовать для разделения спиртовых растворов, в том числе и для низкомолекулярных спиртов. [c.70]

    Полимерные мембраны с высокой степенью кристалличности обычно менее проницаемы, чем аморфные. Часто проникающее вещество нерастворимо в кристаллической области, вследствие чего его перенос происходит в аморфной фазе. Поэтому увеличение кристалличности сних ает объем аморфного материала, доступного для переноса, а с другой стороны, увеличивает извилистость пути через мембрану. [c.71]

    Скорость (и продолжительность) дозирования ЛВ зависит от структуры используемого полимерного элемента от макроуровня (пористая или непористая мембрана или матрица) через такие структуры промежуточных уровней, как неоднородности сшитых полимерных структур (трехмерные нерастворимые мембраны и матрицы) и распределения кристаллических и аморфных областей (кристаллизующиеся мембраны и матрицы), до неоднородностей молекулярного уровня (изменение состава, молекулярной массы и микроблочности сополимеров). Наибольшие скорости дозирования (от 10 до 500 мкг/ч) обеспечивают только микропористые мембраны и матрицы [26] однако это приводит к быстрому исчерпанию ЛВ, заключенного в TT , и время работы TT с микропористыми дозирующими элементами не превышает суток [27]. Более низкие скорости дозирования (не выше десятков микрограммов в сутки) достигаются при использовании непористых мембран и матриц, полимерный материал которых находится в стеклообразном состоянии [28]. При переходе в высокоэластичное состояние проницаемость увеличтгеается в сотни и тысячи раз [26, 28]. Такое увеличение может быть достигнуто не только повышением температуры дозирующего элемента (например, при воспалительном процессе), но и при изменении состава сополимера (СПЛ) - материала мембраны (например, для этилена с винилацетатом (Э-ВА) при увеличении содержания В А в СПЛ). Хотя и не столь сильно, как изменение состава СПЛ, на проницаемость полимерных материалов влияют и такие структурные и морфологические изменения полимера, как молекулярная масса, кристалличность и структура кристаллических областей, природа и количество других, помимо ЛВ, низкомолекулярных включений [29, 30]. [c.763]

    Диффузия паров воды через полимерные стекла иногда не подчиняется закону Фика даже с учетом концентрационной зависимости коэфф. D. Эти случаи наз. аномальной или нефиковской диффузией. Коэфф. В. при аномальной диффузии зависит от времени и напряженного состояния полимера. Достаточно ясных представлений о причинах аномальных явлений при диффузии в застеклованных полимерах пока пет. Предполагают, что изменение коэфф. В. во времени может быть вызвано медленным изменением структуры полимера или внутренними напряжениями, возникающими при набухании на одной из сторон мембраны и влияющими на свойства другой стороны. Коэфф. В. уменьшается с понижением гидрофильпости, увеличением степени кристалличности и числа поперечных связей в полимере. Темп-рная зависимость коэфф. В. W) выражается ур-нием вида [c.245]

    Изучение времени до проскока формальдегида через силикон (рис. П1.15) с учетом данных табл. П1.9 показало, что необработанный диметилсиликон может обладать очень высокой проницаемостью для формальдегида, находящейся в интервале 2,67 0,8 мин. Быстрое проникновение формальдегида через мембрану объясняется эластичностью силикона с окисными цепочками и отсутствием кристалличности в материале мембраны. Показателен в [c.122]

    Поскольку проницаемость через полимерные мембраны может включать в себя разделение и движение сегментов макрОт молекулярных цепей, то любой фактор, который ограничивает межцепные перемещения, будет способствовать уменьшению и проницаемости. Вследствие этого, поскольку присутствие полярных групп в полимере приводит к сильным когезионным взаимодействиям между полимерными цепями, проницаемость некоиденсирующихся газов через полярные мембраны при прочих равных условиях будет ниже, чем через неполярные мембраны. Важными факторами являются также степень и тип кристалличности. Значительные когезионные силы, низкая подвижность цепей и высокая степень молекулярной симметрии благоприятствуют образованию кристаллитов. Эти факторы могут действовать одновременно (например, в случае триацетата [c.29]

    Условия термообработки имеют существенное значение как для мембран, отлитых из раствора, так и для мембран, полученных экструзией расплава. Мембрана из линейного полиэтилена, полученная медленным охлаждением расплава, имеет более низкую газовую проницаемость, чем тот же полимер, полученный охлаждением расплава и впоследствии отожженный при высокой температуре таким образом, что обе мембраны имеют одинаковую степень кристалличности [22]. Эти различия обусловлены присутствием более совершенных тонких ламёляр-ных кристаллитов в первой мембране и несовершенных толстых ламелей в последней. Высокотемпературный отжиг вызывает кристаллизацию полимера с меньшим напряжением, тем самым уменьшая хрупкие межкристаллические связи в вытянутой цепной конфигурации. В результате мембрана, отожженная при высокой температуре, будет впоследствии разбухать в более значительной степени и, следовательно, будет более проницаемой, чем такая же мембрана, но отожженная при низкой температуре [22, 23]. [c.31]

    Термическая обработка — не единственное средство контроля характеристик проницаемости мембраны. Исследования показали, что одноосная вытяжка при температуре ниже точки плавления может приводить к значительному уменьшению набухания с незначительным увеличением кристалличности [24, 25]. Несмотря на то что проницаемость уменьшается по крайней мере на два порядка, селективность значительно возрастает. Для выяснения влияния кристалличности следует изучить поведение стеклообразных и высокоэластичных мембран, т. е. уточнить влияние температуры стеклования Тс на их проницаемость и селективность. Ниже Тс мембрана находится в стеклообразном состоянии и может содержать неподвижные пустоты, которые способны улавливать проникающие молекулы, тем самым внося определенный вклад в диффузионный процесс. Ниже этой температуры некоторые цепи имеют такое ограниченное движение, что становится возможной активированная днффу- [c.32]

    Полимерные мембраны с высокой степенью кристалличности обычно менее проницаемы, чем аморфные мембраны. Считается, что молекулы пермеата, как правило, нерастворимы в кристаллических областях, и транспорт осуществляется в аморфной области. Поэтому кристаллизация приводит к уменьшению объема аморфного материала, в котором возможен перенос молекул пермеата, и увеличению извилистости пути через мембрану. Ла-зоский и Кобс [15] изменяли степень кристалличности полиэти-лентерефталата, который можно резко охлаждать при переводе из расплавленного состояния в аморфное, путем отжига за различные интервалы времени при температуре несколько выше 100 °С. Было установлено, что стационарное проникание водяных паров через эти мембраны уменьшилось при возрастании кристалличности от О до 40%. Рейтлингер и Ярко [16] наблюдали обратную зависимость между плотностью полимера и проницаемостью в процессе изотермической кристаллизации натурального каучука. Проницаемость зависит от микрокристаллической структуры полимерной мембраны, что также обусловливает линейную зависимость между влагопоглощением и долей аморфной фазы в целлюлозе [17]. Более того, при гидролитическом или бактериальном разрушении полимерных мембран в первую очередь и в сильной степени воздействию подвержена аморфная область [18]. Это явление было положено в основу экспериментального метода определения способности к деструк- [c.115]

    Растрескивание пленки или мембраны из ПЭ при воздействии химических сред происходит при значительно меньших нагрузках, чем в отсутствие внешних факторов [6]. Прежде это считалось неисправимым недостатком полиэтилена. Однако было установлено, что существенного изменения свойств можно добиться включением небольших количеств второго олефина (йапри-мер, пропилена или 1-бутена). Влияние второго мономера заключается в создании регулируемого числа короткоцепных ответвлений при одновременном уменьшении кристалличности и размеров кристаллита. Несмотря на заметную кристалличность, проницаемость полиэтиленовых пленок пониженной плотности для газов такого же порядка, как и у эластомеров. Очевидно, это является результатом слабых сил когезии в аморфных областях, которые обусловливают значительную подвижность сегментов. С другой стороны, для полиэтиленов с высокой степенью кристалличности и повышенной плотностью проницаемость в 5 раз меньше, поскольку в них только /б часть объема находится в аморфном состоянии. Вследствие более высокой проницаемости полиэтилены пониженной плотности с большим успехом можно использовать для газоразделения, поскольку для проведения процесса требуются непористые слои. [c.122]

    Растворимость АЦ уменьшается, по мере того как содержание ацетатных групп увеличивается от 2,5 (степень замещения в обычном ацетонорастворимом материале) до 2,75 (степень замещения, характерная для ТАЦ). Несмотря на то что молекулы ТАЦ характеризуются более высокой гибкостью в растворе, чем АЦ, и проявляют свойства типичного статистического клубка, последний обладает большей растворимостью, чем ТАЦ. Это является, по крайней мере частично, следствием более низкой кристалличности АЦ, но может быть отнесено и за счет амфотерности АЦ, обеспечивающей его способность растворяться и в кислых, и в основных растворителях, в то время как ТАЦ я1вляется главным образом основным. ТАЦ растворяется в ацетоне, если его сначала охладить до 190 К, а затем нагреть. Но на практике ТАЦ никогда не отливают из ацетоновых растворов, поскольку в таких растворах слишком сильно выражены взаимодействия П — Пи способность легко переходить в кристаллические гели. Для изготовления ТАЦ мем1бран, используемых в гиперфнльтрации, вместо ацетона используют смесь ацетона с диоксаном, а также малеиновую кислоту и метанол в качестве порообразователей. Для получения смешанной мембраны [c.206]

    Воздействие нагрузки, особенно в присутствии пластификаторов, способствует увеличению кристалличности. Так, кристалличность полнэтилентерефталатных, поликарбонатных и целлюлозных мембран возрастает, если мембраны погрузить в воду и подвергнуть воздействию нагрузки, составляющей до 15% от прочности при растяжении [20]. [c.233]

    До сих пор не существует четкого представления о морфологии плотных мембран в стеклообразном состоянии. Последние данные, полученные для нескольких целлюлозных пленок с помощью электронной микроскопии, согласуются с представлением о плотной структуре как состоящей из беспорядочно плотно упакованных полусферических субъячеек [21]. Шен и Крстцмар впервые изучили эти глобулярные субъячейки [21] и установили, что они являются слишком маленькими, чтобы включать в себя всю молекулу, и предположили, что отдельная полимерная цепь образует ряд ячеек, сравнимый с нитью гранул. Иех и Гейл [18] обнаружили подобные структуры, названные Кейтом глобулярными кристаллитами [22], в полиэтилентерефталате их диаметр был 75 А, а среднее расстояние между центрами — 125 А. Этим глобулам приписали некий паракристаллический порядок. Когда такие мембраны отжигают при температурах, близких к температуре стеклования (65 °С), глобулы перемещаются относительно друг друга и агрегируют в кластеры диаметром от 5 до 10 глобул. В этот момент с помощью дифракции электронов и Х-лучей регистрируется наличие кристалличности. При длительной термообработке появляются первые симптомы роста сферолитов, которые затем могут быть зафиксированы. Оказывается, что в волокнах глобулы сами ориентируются в ряды, поперечные оси волокна. Отжиг при 154 °С приводит к образованию сферолитов, составленных из ламелей. Холодная вытяжка аморфных пленок (аморфных в том смысле, что они являются прозрачными и в них не обнаруживают кристалличности при рентгеноструктурном анализе) является причиной ориентации глобул. Термообработка при температуре, близкой к температуре плавления, вызывает ориентацию и приводит к образованию глобул с заметно увеличенными размерами. [c.234]

    Одним из главных факторов, влияющих на электрохимические свойства мембраны, является ее энергетическая однородность, т. е. равномерное распределение ионогенных групп в объеме. В этом отношении привитые гомогенные мембраны, представляющие собой однородные системы, имеют существенные преимущества перед неоднородными гетерогенными мембранами. Но так как все истинные полимеры являются частично кристаллическими и известно [5], что электропроводность кристаллических полимеров определяется переносом зарядов как по границам раздела сфероли-тов, так и через межсферолитные области полимеров, то их степень кристалличности и размеры надмолекулярных образований играют существенную роль. [c.17]

    Оптическая активность природных и синтетических нолисахаридон указывает на их стереорегулярность. Это свойство значительно увеличивает вероятность и степень кристаллизации. Действительно, целлюлозные мембраны водорослей, например Уа1ота уеп1псо8а, имеют почти 100%-ную кристалличность [1], что находит отражение в их необычно высокой жесткости [2]. Некоторые производные полисахаридов и природные полисахариды, по-видимому, образуют типичные слоистые кристаллы [3, 4]. Полисахариды, регулярность строения которых нарушена присутствием нескольких различных моносахаридов, неоднородной этерификацией или разветвлениями, образуют пленки, практически лишенные кристалличности (по данным рентгенографического анализа) [5], хотя в них и остаются короткие упорядоченные участки [6]. В отсутствие пластификатора некристаллические области полисахаридных пленок можно рассматривать как находящиеся в стеклообразном состоянии. В этих областях в технически важных пленках присутствуют пластификаторы, придающие им резиноподобные свойства. [c.414]

    Образование мембран является в общем быстрым процессом, и только полимеры, которые способны быстро кристаллизоваться (например, полиэтилен, полипропилен, алифатические полиамиды), будут проявлять достаточную кристалличность. Другие частичнокристаллические полимеры могут иметь низкое или очень низкое содержание кристаллической фазы после образования мембраны. Например, ПФО (поли-2,6-диметилфениленоксид) обнаруживает широкий эндотермический пик плавления при 245°С [35]. Ультрафильтрационные мембраны, изготовленные из этого полимера методом инверсии фаз, содержат мало кристаллического материала, и это показывает, что формирование мембран — слишком быстрый процесс по сравнению с кристаллизацией.  [c.123]

    Мембранные методы позволяют реализовать широкий спектр процессов ргьзделения, причем для решения ргьзных задач требуются мембраны различного типа и с разнообразными структурами. Таким образом, мембраны могут существенно различаться по структуре и функциям. Известны многочисленные попытки связать структуру мембран с их транпортными характеристиками, тем самым достигаются более глубокое понимание процессов разделения и возможность предсказания типа структур, необходимых для осуществления данного процесса разделения. Одновременно требуется создать методы испытания мембран с тем, чтобы можно было определить, насколько данная мембрана подходит для осуществления тех или иных процессов разделения. Небольшие изменения в одном из факторов, определяющих условия формования мембран, могут изменить структуру рабочего слоя и таким образом существенно повлиять на показатели ее работы. Часто важнейшей проблемой является воспроизводимость. Создание методов исследования мембран необходимо, чтобы связать структурные характеристики мембран, такие, как размер пор или распределение пор по размерам, свободный объем и кристалличность, с транспортными и разделительными свойствами мембран. Хотя обычно производители мембран представляют весьма конкретные значения таких параметров пористых мембран, как размер пор, их распределение по размерам, отсечение, не делается попыток более широкого и сопоставительного использования этих данных. В связи с этим возникает вопрос, какие из данных, получаемых при испытаниях мембран, могут помочь при прогнозировании рабочих характеристик мембран в конкретном процессе. При этом крайне важно делать различие между характерными свойствами мембраны и особенностями ее конкретного применения. Например, потоки через ультрафильтрационные мембраны, применяемые в пищевой и молочной промышленности, обычно составляют менее 10% от потока чистой воды. При использовании микрофильтрационных мембран различия в потоках очищаемых сред и чистой воды могут быть еще большими. Подобные различия в основном вызваны явлениями концентрацион- [c.164]

    IV.4- Градиентные колонки для определения плотности Плотность также является очень важной характеристикой мембранного материала. Мембраны, изготовленные из полимеров с высокой плотностью, часто обладают более низкой проницаемостью. Как уже отмечалось, плотность связана с темпертурой стеклования и кристалличностью полимера, а также с ее одним очень важным параметром — свободным объемом (см. гл. V). При росте температуры плотность снижается, при этом выше температуры стеклования скорость этого снижения плотности становится еще большей (см. также рис. П-9). [c.200]

    Можно сделать некоторые общие замечания по поводу выбора полимера. Так, например, мембраны не должны слишком сильно набухать во избежание резкого снижения селективности. В то же время низкая сорбция, как и недостаточное набухание, приводит к очень малым потокам. Оптимальные свойства находятся где-то посередине, и, по грубой оценке, значение общей сорбции, равное 5-25% (масс.), оказывается приемлемым. Совсем необязательно, чтобы полимер был сшитым или кристаллическим. Гораздо лучше использовать аморфные полимеры (стеклообразные или каучуки), поскольку кристалличность оказывает отрицательное влияние на скорость транспорта. Сшитые полимеры нужно использовать в тех случаях, когда полимерная мембрана интенсивно набухает, а мембрана из сшитого полимера обнаруживает хорошую производительность. В качестве примера можно привести разделение воды и хлорированных углеводородов при низких концентрациях последних. В случае чрезвычайно низких концентраций органики в воде (около 10 млн ) можно использовать несшитые эластомеры, но при более высоких концентрациях (> 100млн " ) для снижения интенсивности набухания и падения селективности сшивка полимера становится необходимой. В табл. VI-13 представлены результаты первапорации для большого числа полимеров, которые использовались для отделения спирта от воды с помощью гомогенных мембран толщиной примерно 50 мкм [37]. [c.335]


Смотреть страницы где упоминается термин Мембраны кристалличность: [c.60]    [c.142]    [c.143]    [c.24]    [c.111]    [c.85]    [c.51]    [c.124]   
Баромембранные процессы (1986) -- [ c.23 ]




ПОИСК





Смотрите так же термины и статьи:

Кристалличности



© 2025 chem21.info Реклама на сайте