Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основные технологические ректификационная установка

    Качество работы установок АТ во многом зависит от схем отдельных технологических узлов, в первую очередь от различных по конструктивному оформлению схем узлов перегонки нефти. Ректификационные колонны атмосферной части при одинаковой мощности имеют разные размеры, разное число тарелок. Режим работы колонн, особенно в случае применения клапанных тарелок, изучен недостаточно. Нужно более тщательно изучить системы орошения колонн, эффективность и количество циркуляционных промежуточных орошений, поскольку наблюдается несоответствие проектного количества циркулирующей флегмы и фактического. Особенно важно установить факторы, влияющие на число тарелок, предназначенных для отдельных фракций, поскольку на установках АВТ это число меняется в широких пределах. Так, по схеме с однократным испарением на каждый отбираемый дистиллят приходится по 7—8 тарелок, а при наличии двух ректификационных колонн—по 11—17. В то же время четкость погоноразделения в основных колоннах по обеим схемам практически одинакова. Ректификация и способы регулирования температурных режимов в колоннах также осуществляются по-разному. В колоннах может быть или одно острое орошение или еще дополнительно промежуточное циркуляционное орошение. [c.232]


    Керосиновая фракция с 31-ой или 29-ой тарелок основной колонны поступает в первую секцию отпарной колонны 9. Пары из отпарной колонны 9 направляются в основную колонну 8 под 30-ую тарелку. С низа первой секции отпарной колонны 9 фракция прокачивается через холодильник в мерники. С 14-ой тарелки основной колонны 8 во вторую секцию отпарной колонны 9 отводится флегма дизельного топлива. Пары из этой секции возвращаются под 16-ую тарелку основной колонны, а дизельное топливо с низа отпарной колонны насосом через теплообменники и холодильники откачивается в мерники. В низ основной колонны 8 и в отдельные секции отпарной колонны 9 подается перегретый водяной пар. Мазут — остаток основной ректификационной колонны 8 забирается горячим насосом и прокачивается через печь 13 в вакуумную колонну 12. В случае временного отключения вакуумной части мазут направляется на другие процессы, в частности на термический крекинг. Остальные технологические узлы установки — вакуумная перегонка мазута, стабилизация, абсорбция и выщелачивание компонентов светлых продуктов — работают по описанной выше схеме установки АВТ производительностью 1,0 млн. т/год. Главным аппаратом установки является основная ректификационная колонна диаметром 3,8 м с 40 тарелками желобчатого типа. Из них шесть расположены в отгонной части, а 34 в концентрационной. В колонне осуществлено два циркуляционных орошения с отбором флегмы. [c.88]

    Наиболее распространенным методом очистки сульфатного скипидара-сырца от сернистых соединений является вакуумная ректификация. На предприятиях используют ректификационные установки периодического и непрерывного действия. Технология очистки скипидара-сырца на ректификационных установках периодического действия включает следующие основные стадии дистилляцию скипидара-сырца под атмосферным давлением с отбором легкого погона, обогащенного сернистыми соединения-ми (около 15 %) вакуумную ректификацию под остаточным давлением 25—30 кПа и температуре ПО—130 °С с отбором сначала головной фракции, обогащенной сернистыми соединениями (5—10%), используемой для повторной ректификации и получения одоранта сульфана, и основной товарной фракции скипидара (около 60%)- Хвостовая фракция (кубовый остаток в количестве 18—20%) и головная собираются в сборник промежуточных фракций для повторной ректификации. При переработке этих фракций получают дополнительно 15—20 % очищенного скипидара. Общий выход очищенного скипидара составляет 78—80 % количества переработанного скипидара-сырца. Кубовые остатки используются для получения флотационного масла. Недостатками периодического способа очистки скипидара являются большой расход греющего пара, малая производительность установки, переменный состав и температурный режим, затрудняющие автоматизацию технологического процесса. [c.164]


    Имеются два основных аспекта изучения процесса ректификации. Первый из них касается конструирования колонны и нахождения оптимального технологического режима ее работы, второй связан с управлением ректификационными установками. При решении задач первого типа определяется число ступеней, необходимых для достижения требуемой степени разделения исходной смеси, оптимальное расположение питающей тарелки и боковых выводов и вводов потоков, требуемая величина флегмового числа и т. д. Для этого типа задач используются уравнения статики процесса, подобные приведенным на рис. У1И-10 уравнениям динамики, но из них исключены члены, содержащие производные. Задачи оптимального проектирования (расчет статики процесса ректификации) решаются обычно методами динамического программирования, наискорейшего спуска и другими с применением цифровых вычислительных машин.  [c.162]

    Технологическая схема одной из первых комплектных установок ректификации таллового масла, оснащенных насадоч-ными колоннами с встроенными конденсаторами смешения, показана на рис. 4.11. Особенностью схемы является широкое использование принципа циркуляции продуктов насосами через теплообменники с целью подвода и отвода теплоты. Установка включает три основные части, соответствующие стадиям разделения узел сушки таллового масла, узел перегонки и ректификационную установку. [c.129]

    Установка рассчитана на переработку нестабильной нефти Ромашкинского месторождения и отбор фракций и. к.—62, 62—140, 140—180, 180—220 (240), 220 (240)—280, 280—350, 350—500°С (остаток — гудрон). Исходное сырье, поступающее на установку, содержит до 5000 мг/л солей и до 2 вес. % воды. Содержание низкокипящих углеводородных газов в нефти достигает 2,5 вес. % на нефть. На установке принята двухступенчатая схема электрообессоливания, позволяющая снизить содержание солей до 30 мг/л и воды до 0,2 вес. %. Технологическая схема установки предусматривает двухкратное испарение нефти. Головные фракции из первой ректификационной колонны и основной ректификационной колонны вследствие близкого фракционного состава получаемых из них продуктов объединяются и совместно направляются на стабилизацию. Бензиновая фракция н. к.— 180 °С после стабилизации направляется на вторичную перегонку с целью выделения фракций н. к. — 62, 62—140 и 140—180 °С. Блок защелачивания предназначается для щелочной очистки фракций н. к.—62 (компонент автобензина) и 140—220 °С (компонент топлива ТС-1). Фракция 140— 220 °С промывается водой, а затем осушается в электроразделителях. [c.114]

    Технологическая схема установки экстракции газойлей каталитического крекинга фенолом приводится на рис. 3.32. В экстракционную колонну К-1 противотоком подаются каталитический газойль и фенол. С верха колонны К-1 фенольный раствор рафината поступает в трубчатую печь П-1 и ректификационную колонну К-2, где от рафината отделяется основное количество фенола. Оставшийся фенол удаляется из рафината в отпарной колонне К-3, [c.150]

    Ниже приводятся технологический режим и основные размеры абсорбционных и ректификационных колонн установки НТА (см. рис. П1.80)  [c.246]

    Технологическая схема установки. Современная крупная установка каталитического крекинга в кипящем слое состоит по существу из трех секций реакторного блока, системы погоноразделения системы утилизации тепла регенерации. Сырье (рис. 80), подаваемое насосом Н1, нагревается в теплообменниках (на рис. 80 не показаны) и в печи П1 и вводится в поток горячего регенерированного катализатора, направляемого из регенератора Р2 в реактор Р1. В реакторе Р1 поддерживается кипящий слой катализатора. Для достижения надлежащей глубины превращения сырья высота кипящего слоя в реакторе Р1 должна быть строго определенной. Газ и пары продуктов крекинга уходят из реактора Р1 при температуре около 500° в ректификационную колонну К1. Предварительно ноток освобождается во внутреннем циклонном пылеуловителе М1 от основной массы катализаторной пыли, возвращаемой обратно в кипящий слой реактора. [c.203]

    Для повышения эффективности работы установок необходимо также более тщательно очищать сырье от вредных примесей и заменить устаревшие типы тарелок в колоннах ректификационного блока на современные при одновременном изменении условий ректификации в связи с использованием в составе сырья пропан-пропиленовой фракции. Принципиальная технологическая схема основных узлов такой модифицированной установки приведена на рис. 6. [c.19]

    Роторные испарители применяются в различных областях химической и смежных с ней отраслей промышленности в тех случаях, когда стремятся свести к минимуму степень термического воздействия на продукты. Помимо применения в качестве основных технологических аппаратов в таких процессах, как выпарка или дистилляция, безусловно перспективным является их применение в ректификационных установках, ограниченное в настоящее время. [c.165]


    К основным аппаратам, встречающимся только в технологической схеме установки 1-А, относятся реактор, регенератор, ректификационная колонна и электрофильтры. Остальные аппараты имеются в других схемах нефтеперерабатывающих установок и поэтому здесь не рассматриваются. [c.109]

    Мы видели, что вычислительные машины, в частности крупные цифровые машины, дают возможность практически непосредственно рассчитать экономически оптимальный проект всей установки. Вычислительные машины также весьма полезны и при детальном расчете агрегатов, хотя наш проектировщик и не воспользовался ими для этой цели. Одним из первых примеров использования цифровых машин в химико-технологических исследованиях был расчет ректификационной колонны За прошедшие 10 лет непрерывное изучение машинных методов расчета, сопровождающееся увеличением возможностей машин, позволило создать программы оптимального расчета колонны для многих смесей жидкостей и проведения основной части расчета прочих смесей [c.67]

    Часть итеративной методики расчета, согласно которой проводится последовательное улучшение (корректировка) значений независимых переменных, обеспечивающее решение задачи, называется методом сходимости. Основное внимание в данной книге и уделяется рассмотрению методов сходимости и уравнений, которыми описывают работу установок различного типа, а не изложению технологических соображений по выбору конкретной ректификационной установки для получения заданного разделения. [c.12]

    Не менее важное внимание уделяется вопросам предотвращения коррозии ректификационных колонн, так как стоимость колонн составляет значительную часть стоимости всего оборудования установки. Кроме того, демонтаж и последующий монтаж промышленных колонн весьма трудоемок. Основными мероприятиями по защите колонн высокопроизводительных установок от коррозии являются снижение содержания солей в перерабатываемых нефтях до 2—3 мг/л и подача в колонну вместе с нагретым сырьем раствора кальцинированной и каустической соды, а также подача в верхнюю часть колонн аммиачной воды с соответствующими ингибиторами. Концентрация содо-щелочного раствора и аммиачной воды тщательно контролируется и не должна превышать допустимых пределов, определенных технологическим регламентом. [c.47]

    Технологическая схема усовершенствованной установки АВТ (А-12/2) с учетом дополнений и изменений, внесенных в период строительства, наладки и эксплуатации, приведена на рис. 40. Обессоленная нефть забирается сырьевыми насосами / и тремя потоками прокачивается через теплообменники 2 в первую ректификационную колонну 4. Для первого потока используется тепло циркуляционного орошения основной ректификационной колонны 7, тепло второго погона вакуумной колонны 10 и гудрона. Для второго потока утилизируют тепло первого погона вакуумной колонны 10, третьего ее погона и гудрона. Третий поток (дополнительный к проекту, на схеме не показан) нагревается за счет тепла циркуляционного орошения основной ректификационной колонны 7 и гудрона. Кроме того, третий поток нагревается в конвекционной.  [c.91]

    Одна из современных технологических схем разделения газов, получаемых при пиролизе бензина, представлена на рис. 12. Газ с установки пиролиза последовательно сжимается в пяти ступенях турбокомпрессора 1 (на схеме изображены только три ступени), проходит после каждой из них водяной холодильник 2 и сепаратор < , где он отделяется от конденсата (вода и органические вещества). Для лучшего отделения более тяжелых углеводородов конденсат с последующей ступени сжатия дросселируют и возвращают в сепаратор предыдущей ступени (,ца схеме показано только для I и II ступеней сжатия). Благодаря этому создается ректификационный эффект, и в конденсате после I ступени компрессора собираются в основном углеводороды, жидкие при обычных условиях. Они отделяются от растворенных газов в отпарной колонне 4. Полученный пироконденсат выводят на переработку, а газы возвращают во всасывающую линию I ступени компрессора. [c.47]

    Основным фактором, определившим принципиальную технологическую схему комбинированной установки (рис. 5.5), была необходимость переработки двух видов сырья. Благодаря комбинированию ректификационных узлов установок газофракционирования и изомеризации удалось сократить капитальные и эксплуатационные затраты за счет укрупнения единичных мощностей. [c.142]

    Перегонку стабилизованных нефтей постоянного состава с небольшим количеством растворенных газов (до 1,2% по С4 включительно), относительно невысоким содержанием бензина (12 - 15% фракций до 180 С) и выходом фракций до 350 °С не более 45% энергетически наиболее выгодно осуществлять на установках (блоках) АТ по схеме с однократным испарением, т.е. с одной сложной ректификационной колонной с боковыми отпарными секциями. Установки такого типа широко применяются на зарубежных НПЗ, просты и компактны, благодаря осуществлению совместного испарения легких и тяжелых фракций требуют минимальной температуры нагрева нефти (300 - 330 С) для обеспечения заданной доли отгона, характеризуются низкими энергетическими затратами и металлоемкостью. Основной их недостаток - меньшая технологическая гибкость и пониженный (на [c.43]

    В основном весь комплекс исследовательских задач будет выполнен на примере дефлегматора ректификационной колонны выделения хлористого водорода в процессе получения смеси хладонов 11 и 12. Данный технологический процесс является типовым для производства широкого спектра хладонов. Для опытно-промышленной установки он представляет собой совмещенную технологическую схему с многократным использованием оборудования. На его примере в следующей главе будет решаться вопрос построения номограмм проектирования верха ректификационной колонны, как один из способов реализации аппаратурной гибкости. В связи с этим рассмотрим этот процесс более подробно и остановимся на его особенностях. [c.165]

    Ректификационные колонны, являющиеся основными аппаратами установки АТ, представляют собой объекты с несколькими взаимосвязанными регулируемыми переменными. Кроме того, сами аппараты установки являются звеньями единой технологической цепи, [c.15]

    Технологические схемы установок. Установки первичной перегонки по принципу вьщеления светлых бывают с однократным испарением, когда нагретая нефть разделяется на фракции в одной колонне, и с предварительным испарением легких фракций (двукратное испарение). Последние установки применяют наиболее часто, так как предварительное отпаривание газа и основной массы бензина позволяет снизить давление на выходе сырьевого насоса, разгрузить печь от нагрева легких фракций, снизить скорость паров и уменьшить диаметр основной ректификационной колонны. Если предусматривается перегонка мазута, то в схему установки включают еще одну печь и вакуумную колонну с системой создания вакуума (рис. 15). [c.41]

    В работах [2,3] рассмотрены динамические характеристики тарельчатых и насадочных ректификационных колонн на примере отбензиниваюшей колонны К-1 установки ЭЛОУ-АВТ ОАО Орскнефтеоргсинтез и колонны концентрирования фенола без учёта управляющих воздействий. Однако автоматическое регулирование тех или иных технологических параметров является неотъемлемой частью большинства процессов ректификации. Без учёта управляющих воздействий динамическую модель нельзя считать полной. Исходя из этого и с учётом последующего изучения различных закономерностей по влиянию работы отбензинивающих колонн К-1 на работу основных атмосферных колонн К-2, нами была разработана математическая модель для изучения динамики работы атмосферных блоков установок АТ и АВТ [c.44]

    Для конструирования аппарата необходимо иметь техническое задание, составленное согласно химико-технологическому расчету, в котором должны быть указаны 1) географическое положение и сейсмичность района установки аппарата 2) назначение и положение аппарата в технологической схеме установки 3) место установки аппарата (в отапливаемом или неотапливаемом помещении, на открытом воздухе) 4) характеристика работы аппарата 5) состав и характеристика рабочей среды 6) рабочие давление и температура (минимальная отрицательная и максимальная плюсовая) 7) рекомендуемые марки конструкционного материала с указанием их проницаемости в заданной среде в рабочих условиях 8) тип, формд, основные размеры, принципиальная конструкционная с.хема и эскиз аппарата 9) номинальные (условные) диаметры и положение присоединяемых к аппарату трубопроводов, трубной арматуры, КИП и др. 10) характеристика внутренних устройств (размер и количество труб в теплообменнике, тип и число тарелок в ректификационных колоннах и т. д.) 11) наличие, характеристика и толщина тепловой изоляции 12) степень автоматизации и другие специальные сведения. [c.20]

    Продолжительность пропаривания реакционной камеры испарителей высокого давления К2 и низкого К4, а также ректификационной колонны КЗ зависит от количества отложившегося кокса и грязи в них и устанавливается производственной инструкцией. В зимнее время после окончания остановки установки на ремонт необходимо все основные технологические трубопроводы и аппараты с вязкими продуктами обязательно прокачать низко-застывающим продуктом (крекинг-керосином или легкой флегмой). Прокачке подвергаются обычно прием и выкид печного насоса печи П1, сырьевые линии в низ КЗ и аккумулятор К4, прием и вы1 ид насоса, забирающего сырье из К4, и крекинг-остаткового насоса, трубное пространство крекинг-остатковых тенлообменников, холодильник остатка. Прокачка ведется до появления керосина из краника за холодильником остатка Т5. [c.286]

    Ректификационные установки для перегонки нефти до Maayia. Для однократного испарения нефти до мазута типичной является приведенная выше технологическая схема установки, изображенная на фиг. 257. Она состоит из трубчатой печи, ректификационной колонны с выносными отпарными колоннами, теплообменной, конденсационной и охладительной аппаратуры. Сырье прокачивается вначале через теплообменники циркулирующего орошения, затем через дестиллатные и остатковые теплообменники в водо-грязеотстойники. Отсюда нефть иод давлением сырьевого насоса проходит через печь в ректификационную колонну. Неиспользованным остается тепло бензиновых паров. Эффективность регенерации тепла бензиновых паров для предварительного нагрева исходного сырья оспаривается рядом положений. Основным из них является пониженная средняя разность температур и, как следствие, требуемая для теплообмена огромная поверхность конденсаторов. Кроме того, малейшая течь хотя бы в одной из трубок пародестиллатных теплообменников вызывает порчу цвета бензинового дестиллата и превращает его в некондиционный товар. Поэтому на многих нефтеперегонных заводах отказались от использования тепла конденсации бензиновых паров. [c.361]

    Не останавливаясь на описании процесса разделепия, укажем на особенности технологической схемы установки и приведем характеристику основной аппаратуры (рису1[ок). Разделяемый газ, поступающий из цеха разделения нирогаза, проходит клапанный регулятор давления после себя , диафрагменный расходомер 2, фильтр-рессивер 2 и поступает на одну из тарелок колонны разделения 7. На входе в колонну замеряются температура и давление газа. Предусмотрена возможность путем переключения потоков на входе и выходе из колонны изменять высоты адсорбционной и ректификационных секций. Поток очистного и циркуляционного газа, выносящий пыль из системы газлифт — колонна, проходит через циклон 11, затем через оросительный скруббер 16 с насадкой из колец Рашига. Здесь происходит очистка от пыли и конденсация влаги. Затем поток поступает в брызгоуловитель 20, в котором он разделяется очистной  [c.265]

    Для перегонки легких нефтей с высоким содержанием рас — ТВС римых газов (1,5 —2,2 %) и бензиновых фракций (до 20—30 %) и фракций до 350 °С (50 — 60 %) целесообразно применять атмосферную перегонку двухкратного испарения, то есть установки с предварительной отбензинивающей колонной и сложной ректификационной колонной с боковыми отпарными секциями для разделения частично отбензиненной нефти на топливные фракции и мазут. Двухколонные установки атмосферной перегонки нефти получили в отечественной нефтепереработке наибольшее распространение. Они обладают достаточной технологической гибкостью, универсальностью и способностью перерабатывать нефти различного фрак — ционного состава, так как первая колонна, в которой отбирается 50 — 60 % бензина от потенциала, выполняет функции стабилизатора, сг/аживает колебания в фракционном составе нефти и обеспечивает стабильную работу основной ректификационной колонны. Применение отбензинивающей колонны позволяет также снизить данление на сырьевом насосе, предохранить частично сложную Ko.voHHy от коррозии, разгрузить печь от легких фракций, тем самым не жолько уменьшить требуемую тепловую ее мощность. [c.183]

    Интересен метод переработки хлорорганических отходов с получением четыреххлористого углерода. Этот метод освоен на промышленной установке мощностью 6 тыс. т в год. По результатам ее эксплуатации строится цех мощностью 50 тыс. т в год [58]. Технологическая схема установки приведена на рис. 41. Отходы насосом 1 подают в трубчатый реактор 2, где их подвергают пиролизу при 620°С. На выходе из реактора продукты пиролиза закаляют жидким четыреххлористым углеродом. При этом они охлаждаются до 500 °С, а потом (после дросселирования) до 400 °С. Смесь, содержащую четыреххлористый углерод, хлористый водород, хлор, фосген, гексахлорбензол и гексахлорэтан, разделяют в ректификационной колонне 3. Высококипящие компоненты (в основном гексахлорбензол и гекса-хлорэтап) насосом 9 возвращают в реактор 2, а основные продукты (четыреххлористый углерод и хлористый водород с примесью хлора и фосгена) подают в колонну 4. [c.112]

    Поскольку ГК почти полностью состоят из светлых фракций, во многих случаях выгоднее их перерабатывать по упрощенной относительно НПЗ технологической схеме без вакуумной перегонки. По такой схеме производится переработка ГК на Астраханском газоперерабатывающем заводе (ГПЗ), Ново-Уренгойском заводе переработки ГК (ЗМГК) и Сургутском заводе стабилизации конденсата (ЗСК), где имеются установки по производству моторных топлив (бензина и дизтоплива) и безводородного каталитического риформинга "Петрофакс". На перечисленных выше заводах по переработке ГК осуществляется вначале частичное испарение стабильного ГК в испарителе с последующим фракционированием остатка испарителя в основной ректификационной колонне с боковой отгонной секцией, а паровой фазы — в отбензинивающей колонне. Исключение составляет технология переработки Карачаганакского ГК на ОАО "Салаватнефтеоргсинтез", где фракционирование конденсата производят на установке ЭЛОУ-АВТ-4 с некоторыми отличительными от нефтеперегонки особенностями технологии. [c.145]

    Систему управления ректификационной установкой можпо отнести к классу автоматизированных систем управлепия техно.ло-гическим процессом (АСУ ТП) 1601. Известно, что нефтеперерабатывающие установки — это сложная система, включаюш,ая десятки ректификациоп11ых колонн, а также другие аппараты и механизмы. Они работают в очень напряженных условиях (предельные температуры, высокие механические напряжения в связи с болыпмм давлением и т. д.). АСУ ТП этих производств облегчает работу оператора, повышает качество управлепия и его надежность, увеличивает качество продукции и производительность установки в целом и каждого аппарата в отдельности. Критерий управления в основном носит технологический характер (например, максимальная производительность, минимальные энергетические затраты, лаилучшее качество це.левых продуктов и т. д.). [c.271]

    В России самыми распространенными считаются установки замедленного коксования. Основное назначение процесса -производство кокса и дистиллятных продуктов (бензина и газойлей) из тяжелых углеводородных остатков [71,72]. Однако развитие процесса сдерживается отсутствием кокса высокого качества и технологией переработки бензинов и газойлей коксования в высококачественные продукты. На российских установках замедленного коксования пока не удается наладить производство игольчатого кокса - важнейшего продукта для металлургической промышленности, что объясняется как трудностями с получением специального сырья (малосернистого газойля каталитического крекинга), так и невысоким качеством оборудования установок, не позволяющим получать крекинг-остатки после термокрекинга с низким содержанием легких фракций. Технологическая схема установки замедленного коксования производительностью 600 тыс.т по сырью следующая (рис. 27). Сырье - гудрон или крекинг-остаток нагревается в печи до 350-380°С и поступает в нижнюю часть ректификационной колонны для дополнительного отбора светлых фракций из сырья. Далее утяжеленное сырье с низа колонны возвращается снова в печи и нагревается до температуры 490-510°с и поступает в две (из четырех) работающие необогре-ваемые камеры вниз и постепенно заполняет их. Из оставшихся двух камер в это время выгружают кокс, объем камеры довольно большой и время пребывания сырья в ней достаточно велико (от 24 до 36 часов). В камерах идет крекинг, пары продуктов разложения непрерывно выводятся, а тяжелый остаток постепенно превращается в кокс. Продукты крекинга уходят в ректификационную колонну на разделение. После заполнения камер коксом камеры отключают, продувают водяным паром, снижая температуру кокса до 200°С, затем подают воду до тех пор, пока вода не перестает испаряться. Далее кокс выгружают из камер гидравлическим способом - посредством гидрорезаков с применением воды под давлением 10-15 МПа. [c.235]

    Пиролиз нефтяного сырья. На российских заводах достаточно часто встречаются установки пиролиза прямогонной бензиновой фракции, основная цель которых получение углеводородного газа с высоким содержанием непредельных углеводородов и в первую очередь этилена - важнейшего сырья для нефтехимической промышленности. На установках вырабатываются этилен чистотой 99,9%, пропилен чистотой 99,9%, бутан-бутадиеновая фракция, содержащая 30-40% мае. бутадиена, 25-30% мае. изобутилена и 15-30% мае.н-бутиле а и смола пиролиза, из которой получают ароматические углеводороды -бензол, толуол, ксилолы. Технологическая схема установки пиролиза представлена на рис. 28. Бензин, нагретый в теплообменнике, подается в трубчатую печь, предварительно перемешиваясь с водяным паром. Газ выводят из печи при температуре 840-850°С и быстро охлаждают в закалочном аппарате, который представляет собой конденсатор смешения, куда подают водный конденсат и температура снижается на 150 С для прекращения реакции пиролиза. Далее газ охлаждается до 400°С и парожидкостная смесь разделяется в ректификационной колонне на газ пиролиза и смолы. Параметры процесса и выход продуктов следующие - 840-870ОС время контакга - 0,25-0,40 сек выход продуктов,% мае. - водородометановая фракция - 17,7, этилен - 25,5, пропилен - 16,2, [c.237]

    Технологическая схема реконструированной установки следующая. Нефть двумя потоками прокачивается через теплообменники и дегидраторы. Благодаря использованию дополнительного тепла циркуляционных орошений она нагревается до 202 °С. До реконструкции температура нагрева в теплообменниках не превышала 170 °С. Нагретая нефть поступает в испаритель. Парогазовая смесь из испарителя направляется в основную ректификационную колонну. Полуотбензинеиная нефть с низа испарителя подается в трубчатую печь, где нагревается до 330—340 °С, и затем также поступает в основную колонну. В колонне 27-ая, 19-ая и 12-ая тарелкн не имеют слива жидкости вниз. Колонна оборудована штуцерами для отвода и подвода трех циркуляционных орошений. Первое циркуляционное орошение забирается насосом с 10-ой тарелки и после теплообменников возвращается на 11-ую второе забирается с 17-ой тарелки и подается на 18-ую третье выводится с 25-ой тарелки и возвращается на 26-ую. В колонне в качестве боковых погонов отбирают три фракции 140—260 260—300 и. 300—350 °С. [c.72]

    Существенно реконструировали трубчатые печи в печи атмосферной части дополнительно экранировали перевальные стенки — на каждой стене смонтировали по 10 труб, в пространстве от перевальных стен до свода установили два ряда труб по 5 шт., а в части свода между потолочными экранами — шесть труб. Для снижения сопротивления змеевика продукт прокачивается через радиантную часть печи в четыре потока. В печи вакуумной части установки взамен пароперегревателя установили 20 нагревательных труб. Схема печи вакуумной части также четырехпоточная два потока предназначены для нагрева отбензиненной нефти и два для мазута вакуумной части. Значительно улучшена система откачки получаемых на установке продуктов, в основном путем увеличения диаметра трубопроводов. Осуществлена переобвязка холодильников дизельного топлива и керосина с целью обеспечения их параллельной работы. Для контроля и четкого регулирования технологического режима на установках АВТ установлены дополнительные расходомеры. На линии подачи в ректификационные колонны пара и орошения стабилизировано давление пара. В настоящее время мощность действующих на заводе установок АВТ на 507о превышает проектную. [c.128]

    На установках АВТ, построенных в 50-ые годы, стабилизации подвергались все бензиновые фракции, полученные из первой и основной ректификационных колонн атмосферной части (широкие бензиновые фракции 85—140 или 85—180 °С). На современных установках АВТ стабилизации подвергаются только легкие бензиновые фракции н. к. — 85 °С, поскольку они содержат легколетучие компоненты углеводородов. Это позволило значительно сократить нагрузку блока стабилизации и уменьшить размеры технологического оборудования и коммуникаций. В результатё удельные расходы энергии и металла на блоке стабилизации и абсорбции уменьшились. [c.151]

    Паротеплоснабжение. Как уже указывалось, на установках АВТ применяют насыщенный водяной пар давлением от 3 до 30 кгс/см и перегретый пар при 250—400 °С давлением 6—12 кгс/см . Пар низкопотенциальный давлением до 3 кгс/см применяют в основном для подогрева нефтепродуктов до 70—90 °С с целью уменьшения их вязкости (для облегчения перекачки по трубопроводам) поддержания нужной температуры в емкостях, аппаратах поддержания температуры застывающих продуктов в лотках, каналах обогрева арматуры, фитингов и импульсных линий на установках,, обогрева отдельных производственных помещений и др. Перегретый пар применяют для технологических целей в атмосферных и вакуумных ректификационных колоннах в печах — для распыла топлива в пароэжекторных системах вакуумной аппаратуры для приводов насосов и паровых турбин. Однако в связи с распространением электрических приводов паровые агрегаты применяют редко и в малом количестве. Основным источником пароснабжения современных заводов являются собственные ТЭЦ, теплоэлектроцентрали районного или городского типа. Собственные котельные установки при заводе сооружаются редко. [c.201]


Смотреть страницы где упоминается термин Основные технологические ректификационная установка: [c.245]    [c.209]    [c.55]    [c.219]    [c.171]    [c.34]   
Пожарная безопасность предприятий промышленности и агропромышленного комплекса (1987) -- [ c.155 , c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Технологические установки



© 2025 chem21.info Реклама на сайте