Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водородные связи межмолекулярное расстояние

    Внутримолекулярная водородная связь. Наряду с межмолекулярной Н-связью распространена и внутримолекулярная водородная связь. Образование такой связи возможно при одновременном наличии в молекуле акцепторной группы А— Н и донорной группы, содержащей атом В, причем расстояние между атомами Н и В не должно превышать обычного расстояния Н...В в водородных связях. Примером может [c.275]


    Молекула воды имеет угловое строение входящие в ее состав ядра образуют равнобедренный треугольник, в основании которого находятся два протона, а в вершине — ядро атома кислорода. Межъядерные расстояния О-И составляют 96 пм, расстояние между ядрами атомов водорода равно примерно 150 пм. Строение воды, природа ковалентной связи О-Н и межмолекулярной водородной связи с участием молекул воды нами рассмотрены в гл. 4. [c.212]

    В то же время известно, что силы кристаллического поля могут существенно изменять конформацию и молекулярные параметры в результате образования межмолекулярных водородных связей (см. табл. 3). В конденсированных средах такие молекулярные параметры, как барьеры внутреннего вращения, разности энтальпий конформеров, межъядерные расстояния и валентные углы, должны отличаться от величин, наблюдаемых для свободных молекул. В настоящее время различия геометрического строения молекул н-алканов в свободном и конденсированном состоянии экспериментально не изучены. [c.24]

    Особое место среди кристаллов занимает твердая вода. Лед имеет очень ажурную тетраэдрическую структуру типа алмаза. Каждый атом кислорода имеет КЧ = 4, но две связи у него ковалентные, а две — водородные. При О °С и давлении 1 атм (1,013 10 Па) часть водородных связей разрушается, а перегруппировка молекул сопровождается уменьшением объема (уникальный случай в молекулярной физике). Эта перегруппировка продолжается до 4 С — температуры максимальной плотности воды. При дальнейшем повышении температуры тепловое движение продолжает разрушать связи, межмолекулярные расстояния увеличиваются, плотность падает, и при 100 °С последние водородные связи разрушаются, вода переходит в водяной пар, состоящий из неассоциированных молекул HgO. [c.292]

    Уже на расстоянии одного или нескольких нанометров ( 10 м) между соседними молекулами возникают заметные силы притяжения (межмолекулярное взаимодействие). При межмолекулярном взаимодействии электронные облака не перекрываются и химические связи не образуются. При достаточном сближении некоторых молекул может происходить перекрывание электронных облаков и образование новых молекул. Возникающие при этом химические связи могут иметь различную прочность. Относительно малую прочность имеют водородные связи. Взаимодействие молекул может протекать по донорно-акцепторному механизму, при этом возникают прочные ковалентные связи. [c.65]


    Жидкая вода представляет собой систему с сильно развитыми водородными связями, свойства которой хорошо описываются непрерывной, или континуальной, моделью, где практически все молекулы воды в среднем образуют водородные связи. Однако водородные связи в воде характеризуются широким набором углов и длин. Это означает, что потенциальная энергия водородной связи является непрерывной функцией угла межмолекулярной водородной связи и геометрических характеристик молекул воды. Максимум функции распределения энергии водородной связи соответствует расстоянию между атомами кислорода До-О = 0,286 нм. В упорядоченной структуре водородные связи линейны и Ко-О сокраш ается до 0,275 нм. [c.229]

    Модель межмолекулярного потенциала SP [338] использует три заряда, расположенных на атомах водорода и кислорода. Так же как и в модели ST2, между молекулами воды действует потенциал 6-12, центрированный на атомах кислорода. Для определенных параметров модели выполнялась серия пробных расчетов с целью минимизировать отклонение рассчитанных величин от данных экспериментальных измерений. В результате получен дипольный момент, равный 2,27 Д, энергия водородной связи равна 27,6 кДж/моль при равновесном расстоянии 0,276 нм между атомами кислорода в димере воды. [c.120]

    Оксобораты водорода — белые кристаллические вещества. Ортоборат водорода (в растворе ортоборная кислота) имеет слоистую решетку, в которой молекулы Н3ВО3 связаны в плоские слои за счет водородных связей, а сами слои соединены друг с другом (на расстоянии 0,318 нм) межмолекулярными силами. Поэтому в твердом состоянии Н3ВО3 — чешуйки, жирные на ощупь. Структура одного слоя кристалла Н3ВО3 показана ниже  [c.447]

    Характерной особенностью межмолекулярных водородных связей является их направленность три атома Л, Н и 5, участвующие в образовании водородной связи, расположены на одной прямой. При этом расстояние Л — Н...В для различных веществ составляет 2,5— —2,8 А. Посредством водородных связей молекулы объединяются в димеры и полимеры. Такая ассоциация молекул приводит к повышению температуры плавления и кипения, увеличению теплоты парообразования, изменению растворяющей способности. Водородные связи обусловливают аномально высокую диэлектрическую проницаемость воды и спиртов по сравнению с диэлектрическими свойствами других жидкостей, молекулы которых имеют дипольные моменты того же порядка взаимную ориентацию молекул в жидкостях и кристаллах параллельное расположение полипептидных цепочек в структуре белка поперечные связи в полимерах и в двойной спирали молекулы ДНК. Благодаря своей незначительной прочности водородная связь играет большую роль во многих биологических процессах. Характерно, что молекулы, соединенные водородными связями, сохраняют свою индивидуальность в твердых телах, жидкостях и газах. В то же время они могут вращаться, переходить таким путем на одного устойчивого положения в другое. Кроме водорода промежуточным атомом, соединяющим два различных атома, может служить дейтерий, который, как водород, расположен на линии А П...В. При такой замене водорода на дейтерий энергия связи возрастает до нескольких десятков джоулей на 1 моль. [c.133]

    Этиловый спирт. Кривая интенсивности рассеяния этого спирта имеет максимум при S = 0,9 1,55 3,2 и 5,4 А . Первому из них отвечает расстояние Я = 8,6 А, что, очевидно, равно среднему расстоянию между СНз-группами двух молекул, соединенных водородной связью. Остальные максимумы обусловлены как внутримолекулярным, так и межмолекулярным рассеянием. [c.239]

    МЕЖМОЛЕКУЛЯРНОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие двух элек-тронейтральных молекул, вызываемое силами притяжения или отталкивания. Межмолекулярные силы притяжения, называемые иногда силами Ван дер Ваальса, много слабее валентных сил, но именно М. в. обусловливает откло нения от законов идеальных газов, переходы от газообразного состояния к жидкому, существование молекулярных кристаллов, явления переноса (диффузия, вязкость, теплопроводность), тушение люминесценции, уширение спектральных линий, адсорбции и др. М. в. всегда представляет собой первую стадию элементарного акта химической бимолекулярной реакции. При больших расстояниях между молекулами, когда их электронные оболочки не перекрываются, преобладают силы притяжения при малых расстояниях преобладают силы отталкивания. Короткодействующие силы имеют ту же природу, что и силы химической (валентной) связи и возникают при условии, когда электронные оболочки молекул сильно перекрываются. Частным случаем М. в. является водородная связь. М. в. определяет агрегатное состояние вещества и некоторые физические свойства соединений. [c.157]


    В. Захариасен, используя полученную Г. Стюартом и Р. Морроу кривую интенсивности для метилового спирта, рассчитал функцию распределения атомов. На основании ее анализа он нашел межатомное расстояние С—О и О—Н. .. О соседних молекул, равное соответственно 1,4 и 2,6 А построил модель ассоциации молекул метилового спирта, согласно которой каждая молекула СН3ОН посредством водородных связей координирована с двумя соседними (см. рис. 9.8). Аналогичные результаты были получены в работе Г. Гарвея, который применил метод интегрального анализа кривых интенсивности для исследования структуры метилового и этилового спиртов. Результатом его работы явилось определение внутримолекулярных расстояний С—О и С —С, равных 1,43 и 1,54 А соответственно. Межмолекулярное расстояние О—Н. .. О было найдено равным 2,7 А для мета- [c.237]

    Водородная связь. Связи атома водорода с наиболее электроотрицательными атомами Р, О, N частично имеют ионный характер. Поэтому молекулы НР, НаО и ЫНз обладают постоянными дипольными моментами. Между такими молекулами возможно значительное дипольное взаимодействие с образованием ассоциаций между ними, а при соответствующих температурах — и образование кристаллов. На рис. 20 схематически показано образование межмолекулярных Водородных связей между молекулами Н2О. Кратчайшие расстояния между соседними молекулами, показанные на рис. 20 пунктиром и изображающие межмолекулярные водородные связи, зависят от взаимной ориентации молекул. [c.52]

    Для полимерных веществ с линейными и разветвленными макромолекулами характерны два типа связей. Между атомами в цепных молекулах действуют довольно прочные ковалентные силы на расстоянии 0,1—0,15 нм. Взаимодействие между цепными молекулами осуществляется за счет сил Ван-дер-Ваальса, проявляющихся на расстоянии 0,3—0,4 нм в ряде случаев между ними обнаруживается и водородная связь. Два типа сил (химического сродства и межмолекулярные), различающихся прочностью и расстоянием, на котором они действуют, обусловливают резко выраженную анизотропию свойств таких полимеров в продольном и поперечном направлениях. Отсюда у них своеобразное сочетание свойств твердых тел с атомным и молекулярным строением. [c.469]

    Молекулярный кристалл строится из молекул. Он легко отличается от ионно-атомного кристалла с геометрической точки зрения. По крайней мере одно из внутримолекулярных расстояний некоторого атома в молекуле значительно меньше, чем его расстояния до соседних молекул. Каждой молекуле в молекулярном кристалле может быть приписано четко обозначенное пространство. Если говорить о взаимодействиях, то внутри молекулы они сильнее, а между молекулами слабее. Конечно, даже среди внутримолекулярных взаимодействий имеется большой разброс по энергиям. Так, например, растяжение связи требует более высокой энергии, чем угловая деформация, и самыми слабыми являются взаимодействия, определяющие конформационное поведение молекулы. В то же время существуют также различия между межмолекулярными взаимодействиями. Например, энергии межмолекулярных водородных связей равны или больше разности конформацион-ных энергий. Таким образом, в интервалах энергии внутри- и межмолекулярных взаимодействий может быть некоторое перекрывание. [c.455]

    Большие амплитуды и одинаковые частоты атомных колебаний в молекулах Н2О в кристаллах льдов определяют резонансное взаимодействие электрических диполей, каковыми являются О—Н-группы с локализованными на атомах О- и Н-зарядами, обратно пропорциональное третьей степени межмолекулярного расстояния. Этот тип дальнодействующего межмолекулярного взаимодействия, по нашему мнению, и представляет собой водородную связь в системе одинаковых молекул Н2О. [c.81]

    Как уже указывалось, рентгеноструктурным анализом не удается найти Положение атомов водорода, однако наличие водородной связи С О....Н—N легко обнаруживается рентгенографически по укороченному расстоянию С—N, равному 2,7—ЗА. Линия N—Н...О в водородной межмолекулярной связи должна быть прямой. Если азот относится к пептидной группе, положение связи N—Н можно рассчитать, так как направление других связей азота в пептидной группе определяется непосредственно. Следовательно, можно проверить, является ли линия N—Н...О прямой, т. е. действительно ли группы N—Н и С = 0 образуют водородную связь. [c.538]

    Вода отличается от других полярных жидкостей наличием направленных водородных межмолекулярных связей, ответственных за многие известные аномалии ее объемных свойств. Наличие сетки водородных связей приводит к тому, что изменение во взаимном расположении молекул воды в граничном слое, навязанное определенным образом расположенными активными центрами на поверхности, затухает с удалением от нее медленно, распространяясь на значительные расстояния (до 100 А, а иногда и более). Активными центрами являются поверхностные атомы и группы, способные к образованию водородной связи с молекулами воды, а также адсорбированные ионы. Как известно, эти же центры ответственны за образование адсорбционного монослоя молекул воды, наиболее прочно удер-н иваемых, например, поверхностью гидрофильного кварца [6—8]. [c.195]

    Наиболее полная информация о состоянии поверхностных силанольных групп и других адсорбционных центров, об их возмущении при адсорбции и образовании поверхностных комплексов разной прочности, а также о межмолекулярных взаимодействиях адсорбированных молек(ул с поверхностью твердого тела и друг с другом может быть получена, если спектры отдельных частей адсорбционной системы не перекрываются. Однако на сильно гидроксилированной поверхности кремнезема силанольные группы, расположенные друг от друга на расстоянии, меньшем 0,33 нм, возмущены образовавшимися между ними внутримолекулярными водородными связями. Дополнительное возмущение этих гр упп вызывает адсорбция воды. В результате этого спектр поглощения в области валентных колебаний гидроксильных групп молекул адсорбированной воды перекрывается со спектром силанольных групп, что затр(удняет интерпретацию поглощения в этой области. Для упрощения спектра и его интерпретации надо исследовать дегидратацию кремнезема, т. е. удаление молекулярно адсорбированной воды (хотя бы с поверхности пор, размеры которых достаточно велики по сравнению с размерами молекул воды). [c.56]

    Как видно из (VII.14), второй член этого уравнения аналогичен структурному члену первой из рассмотренных теорий [166, 167]. Это показывает, что структурный эффект в рассматриваемых теориях [166—168] сводится, по сути дела, к влиянию чередования слоев с различной плотностью на силы дисперсионного взаимодействия в многослойной системе. Очевидно, этот эффект явно недостаточен для описания структурного дальнодействия в полярных жидкостях и тем более в жидкостях с направленными межмолекулярнЫми водородными связями, где существенную роль играют не только расстояния между молекулами, но и их взаимная ориентация, число и энергия связей на молекулу. [c.230]

    Такие же осцилляции структурных сил на малых к < 5 А) расстояниях между поверхностями слюды обнаруживаются и для другой полярной жидкости (но в отличие от воды без межмолекулярной водородной связи) 4-метил-1,3-диоксалан-2-он [187]. Осцилляции структурных сил сохраняются и при добавке электролита, доказывая тем самым независимость эффектов структурирования растворителя от наличия адсорбированных ионов. [c.241]

    С целью определения типа водородной связи методом молекулярной механики исследовали геометрию конформеров свободной молекулы агидола 2 и варигшты с образованием внутри- и межмолекулярных Н-связей. В конформере молекулы агидола 2 с минимальным значением энергии напряжения гидроксильные группы занимают положение, удобное для образования внутримолекулярной водородной связи, причем расстояние между атомами кислорода, равное 0,315 нм, практически соответствует равновесному расстоянию Ко (О...О) в кристаллах со слабой водородной связью. Азимутальный угол [c.328]

    Известно, что каждая частица вещества в отсутствие внешних силовых полей находится под воздействием двух конкурирующих энергетических факторов теплового движения и межмолекулярного взаимодействия. При нагревании вещества тепловое движение молекул и их ассоциатов становится интенсивнее, в результате чего возрастают среднестатистические расстояния между частицами. Так как все виды межмолекулярного взаимодействия (диполь-дипольное, индукционное, дисперсионное, водородная связь и т.п.) ослабевают обратно пропорционально шестой степени расстояния между взаимодействующими частицами, то очевидно, что при нафсвании полимера происходит существенное уменьшение межмолекулярного взаимодействия и повышение подвижности макромолекул. [c.123]

    Изучение природы межмолекулярных сил, способствующих ассоциированию асфальтенов, является предметом многочисленных исследований. Обобщая имеющиеся сведения, можно объяснить стабилизацию надмолекупя1 юй структуры асфальтенов, учитьшая все виды взаимодействия, вносящие определенный вклад в суммарную энергию а) дисперсионное, которое выражается в виде обмена электронами между однотипными неполярными фрагментами и действует на очень близких расстояниях (0,3—0,4 нм) б) ориентационное, которое проявляется в виде переноса зарядов между фрагментами, содержащими диполи или гетероатомы, также относится к близкодействующим силам в) тг-взаимодействие ареновых фрагментов, формирующих блочную структуру г) радикальное взаимодействие между неспаренными электронами парамагнитных молекул д) взаимодействие за счет водородных связей между гетероатомами и водородом соседних атомов составляющих молекул е) взаимодействие функциональных групп, связанных водородными связями. [c.25]

    При образовании раствора в общем случае происходит изменение свойств и растворителя, и растворенного вещества (растворенных веществ). Это обусловлено тем, что в растворе действуют силы, вызывающие и межмолекулярное взаимодействие (электростатическое, ван-дер-ваальсовы силы), ионно-дипольное взаимодействие, проявляющиеся на сравнительно значительных расстояниях, и специфическое взаимодействие (донорно-акцепторное, водородная связь), сказывающееся на сравнительно небольших расстояниях. Первое является общим для всех веществ оно связано с совокупностью физических процессов. Второе связано с перестройкой электронных оболочек молекул, атомов и ионов оно обусловлено химическими изменениями. [c.133]

    Когда концентрация ассоциатов и расстояние между ними достигают определенной величины, они под действием сил межмолекулярного взаимодействия сращиваются. Чем ниже температура процесса, тем толще сольватный слой между ассоииатами, тем труднее они сращиваются и тем больше времени требуется для процесса коксования. От числа и природы связей, возникающих между ассоциатами и внутри них, зависят свойства получаемого кокса. По мере повышения температуры коксования возрастает доля химических связей вследствие уменьшения числа нежёстких ван-дер-ваальсовых и водородных связей. Поскольку эиергия взаимодействия последних на один — два порядка ниже, чем у химических связей, структура кокса упрочняется. [c.185]

    Свойства полимеров определяются не только гибкостью макромолекул, но и их взаимным расположением, т. е. структурой. Для полимерных веществ с линейными и разветвленными макромолекулами характерны два типа связей. Между атомами в цепных молекулах действуют прочные ковалентные химические связи длиной 0,1 0,15 нм. Взаимодействие между цепными молекулами осуществляется за счет сил Ван-дер-Ваальса, проявляющихся на расстоянии 0,3 0,4 нм. Иногда между макромолекулами возникают и водородные связи. Энергия межмолекулярного взаимодействия на 1—2 порядка меньше энергии химической связи. Например, энергия химической связи С—Н (в углеводородах) составляет 415, С—С-связи — 332 кДж/моль, а энергия взаимодействия между молекулами углеводородов — приблизительно 4,18кДжна группу СНз.При увеличении молекулярной массы вещества (например, у полимеров) суммарный эффект межмолекулярных сил резко возрастает. [c.327]

    Кристаллическое состояние полимеров. Большинство полимеров обычно находится в аморфном состоянии. Однако некоторые полимеры в определенных условиях могут иметь кристаллическую структуру. Способностью кристаллизоваться обладают лишь стереорегулярные полимеры. Благодаря регулярной структуре и гибкости макромолекулы могут сближаться друг с другом на достаточно близкое расстояние, чтобы между ними возникли эффективные межмолекулярные взаимодействия и даже водородные связи, которые приводят к упорядочению структуры. Процесс кристаллизации полимера протекает через несколько стадий. На первой стадии возникают пачки — ассоциаты упорядоченно расположенных молекул. Из пачек образуются фибриллы и сфе-ролиты. Фибриллы представляют собой агрегаты пачек продолговатой формы, а сферолиты — игольчатые образования, радиально расходяш,иеся из одного центра. Наконец, из фибрилл и [c.358]

    За последние годы пристальное внимание химиков привлекли так называемые вторичные или специфические межмолекулярные взаимодействия. Имеется в виду главным образом взаимодействие между атомами соседних многоатомных частиц, имеющее явно выраженный направленный характер, хотя и сближающее эти атомы в значительно меньшей степени, чем обычное ковалентное взаимодействие, но тем не менее — на расстояния, несколько меньшие, чем суммы ван-дер-вааль-совых радиусов. Ко вторичным взаимодействиям можно отнести также и дополнение координационного окружения атома — комплексообразователя несколькими атомами на расстояниях, больших обычных. Такие вторичные взаимодействия типичны для ряда р-элементов 5п, 5Ь, В1, 5е, Те. К такого же типа взаимодействиям можно отнести и дополнение плоско-квадратной координации -металла аксиальными лигандами на удлиненных расстояниях (Си(П),Р1(П),Рс1(П),Н1(П),Аи(П1)). Особую группу вторичных взаимодействий составляют водородные связи, привлекающие в последние годы все большее внимание химиков. Понятно, что для анализа вторичных взаимодействий любого типа и их теоретической интерпретации упаковочный (кристаллоструктурный) аспект кристаллохимии становится главным. [c.179]

    Водородная связь. Промежуточный характер между валентным и межмолекулярным взаимодействием носит так называемая водородная связь. Она осуществляется между положительно поляризованным атомом водорода, химически связанным в одной молекуле, и отрицательно поляризованным атомом фтора, кислорода и азота (реже хлора, серы и др.), принадлежащим другой молекуле. То, что подобное взаимодействие не обнаруживается у других атомов, обусловлено уникальными свойствами поляризованного водорода — его малым размером и отсутствием внутрениих электронных слоев. Эти особенности водорода позволяют второму атому приблизиться на столь малое расстояние, которое h u io kuo при взаимодействии с другими положительными частицами, например [c.137]

    Для тонких водных прослоек расчеты структурных изменений удалось пока осуществить лишь в немногих случаях. Антонченко, Давыдов и Ильин [109, 141] провели численные расчеты методом Монте-Карло, используя для описания межмолекулярных взаимодействий в воде потенциал Роулинсона. Он включает, кроме потенциала Леннард—Джонса, кулоновское взаимодействие между четырьмя эффективными электрическими зарядами в каждой молекуле воды. Два положительных заряда д = +0,328е расположены на атомах водорода на расстоянии 0,8743 А от атома кислорода. Два отрицательных заряда д = —0,328е расположены на расстояниях 0,25 А от центра атома кислорода на линии, перпендикулярной плоскости молекулы. Эти заряды аппроксимируют распределения максимальной плотности электронов вокруг ядра атома кислорода. Взаимодействие между зарядами двух молекул воды приближенно описывает межмолекулярную водородную связь. [c.231]

    Таким образом, ассоциация наблюдается у пара- и метаизомеров приведенных соединений, но отсутствует у их ортоформ. Соединения с внутримолекулярной водородной связью более летучи, легче растворимы в органических растворителях. Большая летучесть и лучшая растворимость изомеров с внутримолекулярной водородной связью обусловлены отсутствием межмолекулярной ассоциации в них, меньшей молекулярной массой составляющих вещество частиц. Хотя со времени открытия водородной связи прошло уже 100 лет , вопрос о ее природе окончательно не решен. Ясно только, что необходимо учитывать три взаимосвязанных эффекта электростатический, поляризационный и силы Ван-дер-Ваальса. Электростатическое взаимодействие между частицами сближает их, делает вероятной взаимную их поляризацию и усиливает межмолеку лярное притяжение. На малых расстояниях, когда орбитали сближающихся частиц начинают перекрываться, следует принимать во внимание и электростатическое отталкивание. [c.141]

    Для органических веществ, молекулы которых содержат полярные группы, наряду с дисперсионными силами необходимо рассматривать н е д и с п е р с и о н н ы е составляющие взаимодействия, связанные, в частности, с присутствием постоянных диполей и мультиполей, особенно с образованием водородных связей такие силы действуют преимущественно между ближайшими соседями и, в отличие от дисперсионных взаимодействий, не суммируются на больших расстояниях в объеме фаз. Соответственно можно разделить поверхностную энергию на дисперсионную а и недисперсионную о" составляющие (по Фоуксу) сг=(т +ст". Вклад той или иной составляющей в поверхностную энергию существенно зависит от природы фазы. Для неполярных конденсированных фаз, например предельных углеводородов, в которых между молекулами действуют только дисперсионные силы, а 0 и a a 20 мДж/м . Для полярной жидкости — воды — основной вклад ( — 70%) в энергию межмолекулярного взаимодействия вносят водородные и дипольные взаимодействия, а иа долю дисперсионных сил приходится не более 30% поэтому для воды а" —50 мДж/м и о — 20 мДж/м". [c.28]

    Водородвая связь. Промежуточный характер между валентным и межмолекулярным взаимодействием имеет так называемая водородная связь. Она осуществляется между положительно поляризованным атомом водорода, химически связанным в одной молекуле, и отрицательно поляризованным атомо)11 фтора, кислорода и азота (реже хлора, серы и др.), принадлежащим другой (или той же) Рис. 60. Зависимость энергии молекуле. То, ЧТО подобное взаимодействие не взаимодействия от межмолекуляр- обнаруживается у Других атомов, обусловлено ного расстояния уникальными свойствами поляризованного атома [c.100]

    Полиамиды — высокоплавкне полимеры, свойства которых в большой степени определяются значительным межмолекулярным взаимодействием с образованием водородных связей (донором в этой реакции является — Н, акцептором >С = 0-группы). Полиамиды обычно легко кристаллизуются и часто оказываются высококри-сталличиыми уже непосредственно после синтеза. Зависимость температуры плавления от строения полиамидов описана в некоторых пособиях [2—4]. Вообще говоря, чем больше расстояние между амидными группами, тем ниже температура плавления полиамида К этому следует добавить, что полиамиды, полученные из днкарбо-новых кислот или диаминов с нечетным числом атомов углерода, имеют более низкую температуру плавления, чем полиамиды, полученные нз соответствующих мономеров, содержащих четное число атомов углерода. [c.80]

    В теоретич. аспекте Г. в. рассматривают в рамках общей проблемы влияния среды на межмолекулярные взаимодействия. Внедрение неполярной молекулы в воду невозможно без нарушения образуемой молекулами воды простраи- ственной сетки прочных водородных связей. Для такого внедрения требуется значит, затрата работы, т.е. повышается своб. энергия системы (изохорно-изотермич. потенциал, или энергия Гельмгольца). В результате неполярные молекулы в воде начинают притягиваться, поскольку при их сближении термодинамически невыгодный контакт с водой в тон или иной степени устраняется и своб. энергия системы понижается. Вызываемые присутствием неполярной молекулы искажения в структуре воды могут передаваться на значит, расстояния по цепочкам водородных связей и обусловливать дальнодействие сил Г. в. Эти искажения носят упорядоченный характер и сопровождаются уменьшением энтропии системы энтропийная природа Г. в. и проявляется в его усилении при повышении т-ры. [c.568]

    Молекулярным называется кристалл, состоящий из молекул и характеризующийся значительно более слабой межмо-лекулярной связью, чем внутримолекулярной. Для классических молекулярных кристаллов отношение межмолекулярных расстояний к внутримолекулярным составляет 2 и большее число раз. Во льду I, однако, среднее расстояние между атомами О и Н в молекуле составляет 1,01 А, в то время как среднее расстояние между атомом И и атомом О разных молекул по линии водородной связи составляет 1,75 А, т. е. только в 1,7 раз больше. [c.53]

    Вода отличается от рассмотренных неполярных растворителей тем, что взаимодействие молекул в ней определяется не силами Ван-де -Ваальса, а водородными связями, которые зависят от межмолекулярного расстояния обратно пропорционально третьей степеним расстояния. Таким образом, силы, синхронизирующие межмолекулярные взаимодействия в воде, оказываются существенно более дальнодействующими. В связи с этим введение чужих молекул в воду приводит к нарушению синхронизации взаимодействия одинаковых молекул [c.92]

    Как уже отмечалось выше структура мочевины обнаруживает присутствие разнообразных специфических межмолекулярных контактов (различные Н-связи, в том числе разветвленные). В соответствии с имеющимися в [19] данными, расстояние К-- О для водородных связей, в которых мочевина одновременно играет роль и донора, и акцептора, характеризуется средним значением 0,298 нм (с пределами от 0,281 до 0,313 нм). Длина Н-связей, в которых карбонильная группа мочевины выступает в качестве протоноакцептора, всегда меньше -от 0,27 до 0,28 нм. [c.115]

    Возмущающее поле слабых межмолекулярных взаимодействий, обусловленное геометрией водородных связей, в кристалле имеет значение не менее важное, чем, например, влияние сольватного окружения на стерические и энергетические изменения в растворителе. К настоящему времени экспериментально (рентгено- и нейтронографически [18, 19]) установлено, что образование одной связи N - Н - - О = С в кристалле амида приводит к сокращению межъядерного расстояния С-Ы ( на 2,5 10 нм) и удлинению связи С=0 ( на [c.117]


Смотреть страницы где упоминается термин Водородные связи межмолекулярное расстояние: [c.278]    [c.34]    [c.242]    [c.367]    [c.374]    [c.126]   
Химия целлюлозы и ее спутников (1953) -- [ c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Водородная связь межмолекулярная

Водородные связи

Межмолекулярное расстояние

Межмолекулярные

Расстояние

Связь водородная, Водородная связь



© 2025 chem21.info Реклама на сайте