Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Льюиса свойства

    Как было показано, межмолекулярное взаимодействие сильно зависит от концентрации. Поэтому колебательные частоты и интенсивности поглощения молекул, участвующих в ассоциации, также обычно изменяются с концентрацией. Отдельные компоненты смеси могут вступать в самоассоциацию, взаимодействовать с растворителем или другими компонентами в различных отношениях в зависимости от их относительных концентраций. Такая ассоциация наблюдается, когда участвующие молекулы имеют фрагменты с кислыми и основными (в смысле Льюиса) свойствами. [c.268]


    Для правильного выбора сомономеров и их концентраций в исходной шихте и получения сополимеров с заданными свойствами, проводилось исследование свойств сополимеров в зависимости от содержания второго сомономера и определение констант реакционной способности различных пар мономеров [34, 35]. Применяемый для расчета относительной активности различных пар мономеров по данным констант сополимеризации метод Майо—Льюиса недостаточно точен [36]. [c.378]

    Г. Льюис предложил формальный прием, который позволяет связать найденные опытным путем свойства реального газа (отклонения его от идеального состояния) с его термодинамическими параметрами и изучать таким путем термодинамические закономерности в реальных газовых смесях. При этом сохраняются простые формы, присущие математическим уравнениям, описывающим свойства идеальных газов. Метод этот распространяется и на растворы, [c.131]

    Углерод. Два новых электрона в молекуле углерода, С2,. окончательно заполняют связывающие молекулярные орбитали и л . Таким образом, в молекуле С2 эффективное число связывающих электронов равно четырем, и, согласно терминологии Льюиса, в ней образуются две ковалентные связи. В основном электронном состоянии эта молекула не должна содержать неспаренных спинов. В согласии с предсказаниями, энергия связи 2 приблизительно вдвое больше, чем для В2 (603 кДж моль против 274 кДж-моль ), а длина связи меньше (1,24 А против 1,59 А). У молекулы С2 не обнаруживается парамагнитных свойств. [c.526]

    Теория молекулярных орбиталей позволяет объяснить парамагнитные свойства молекулы О2, обнаруживая наличие в ней двух неспаренных электронов, тогда как теория Льюиса не в состоянии сделать этого. В льюисовой структуре О 2 нет неспаренных электронов [c.529]

    Термодинамические расчеты свойств растворов сильных электролитов строятся в настоящее время на использовании введенной Льюисом величины активности электролита или активности его ионов. Активность определяется как величина, подстановка которой вместо концентрации в термодинамические уравнения, действительные для простейших систем., делает их применимыми к рассматриваемым растворам ( 117). В растворах сильных электролитов в качестве стандартного принимают не чистое состояние данного вещества, а состояние раствора при полной диссоциации электролита и при отсутствии осложняющего взаимодействия между ионами его. [c.394]


    Льюис (1901) подошел к решению задачи совершенно другим путем, который, несмотря на его формальность, широко применяется при исследовании реальных систем. Он предложил для реальных систем сохранить тот же вид термодинамических уравнений, что и для идеальных, заменяя в них одни переменные (давление и концентрации) другими переменными. Вместо парциального давления Р,- в термодинамических уравнениях для реальных систем им вводится новая переменная —фугитивность (другой термин летучесть не рекомендуется). Отсюда фугитивность должна иметь размерность давления. При низких давлениях, когда свойства реальной газовой смеси будут приближаться к свойствам идеальной, фугитивность [ становится равной парциальному давлению Р г-го компонента  [c.271]

    Уравнение (123.2) показывает, что относительное понижение давления пара растворителя Р —Р 1Р равно молярной доле растворенного вещества. С ростом давления пара и с увеличением концентрации раствора наблюдаются отклонения от уравнения (123.1). При больших давлениях пара отклонения от уравнения (123.1) вызываются неидеальностью свойств самого пара, неподчинением пара законам идеальных газов и не зависят от природы и концентрации раствора. Эти отклонения учитываются при замене давления пара в уравнениях (123.1) и (123.2) его летучестью / (фугитивность), определяемой, согласно Льюису, по уравнению (83.1). При переходе к летучестям вместо (123.1) и (123.2) будем иметь [c.352]

    Льюис и Рендалл (1921) установили, что коэффициенты активности и некоторые другие свойства электролитов зависят не только от концентрации, но и от зарядов ионов. Чем выше заряд иона, тем при меньшей концентрации электролита достигается заданный термодинамический эффект. Полезной характеристикой раствора является его ионная сила /, рассчитываемая по формуле [c.436]

    Неослабевающий интерес исследователей к изучению структуры и состава комплексов ароматических соединений с катализаторами Фриделя — Крафтса объясняется тем, что выяснение этого вопроса в значительной степени облегчает познание закономерностей электрофильного замещения. Еще в ранних работах на основании изменения в ультрафиолетовых спектрах поглощения было установлено, что ароматические углеводороды при взаимодействии с СЬ, Вгг и Ь образуют комплексы, проявляя при этом основные свойства. Кроме того, было показано, что при растворении НС1 в ароматических углеводородах получаются комплексы состава 1 1, не вызывающие заметных изменений в спектрах поглощения, а в экспериментах с D I обмена с водородными атомами ароматических ядер не происходило. Ароматические углеводороды при взаимодействии с сильными кислотами Льюиса проявляют себя как основания, образуя двойные (ArR—МХ ) и тройные (ArR— MX —НХ) комплексы. [c.79]

    Вопрос о том, какова природа активных центров алюмосиликатных катализаторов, до настоящего времени окончательно не решен. Ряд авторов считает, что катализ осуществляется кислотными центрами Бренстеда, другие приписывают определяющую роль кислотным центрам Льюиса. С появлением цеолитных катализаторов крекинга вопрос стал, по-видимому, менее ясен, так как сильное влияние на их свойства оказывает природа катионов. В частности, в ряде работ установлена корреляция активности цеолитных катализаторов с поляризующей силой катионов, измеряемой величиной ге г (где ге — заряд иона г — его радиус). [c.213]

    Кислотно-основные свойства катализаторов. Сведения о кислотности часто необходимы при оценке свойств катализаторов. Активность и селективность катализаторов в реакциях крекинга органических соединений, изомеризации, полимеризации, дегидратации и других находятся в непосредственной связи с их кислотными свойствами. В настоящее время общепризнанным является принцип родственности механизмов гомогенного и гетерогенного кислотного катализа. Поэтому, по аналогии с гомогенным катализом, в гетерогенном катализе используются такие понятия, как кислота Бренстеда , кислота Льюиса и, соответственно, бренстедовские и льюисовские кислотные центры. Однако вопросы структуры кислотных точек на поверхности катализаторов, возможность перехода одного типа кислотных центров в другой, а также их влияние на поведение катализатора в процессе все еще остаются дискуссионными. [c.381]

    Р. Числа Прандтля, Шмидта и Льюиса. Отношения коэффициентов, описывающих свойства переноса импульса, теплоты и массы в жидкости, названы специальными терминами и обозначаются следующим образом. [c.20]

    Равновесные свойства неидеальных растворов определяют термодинамическим путем при помощи эмпирического метода активности, предложенного Льюисом. [c.212]

    Теория протолитического равновесия (Бренстеда) не может объяснить кислотно-основные свойства апротонных веществ, в состав которых водород не входит, как, например, галогениды бора и алюми-1ШЯ, хлорид олова (IV) и др. Кислотно-основные свойства апротонных веществ рассматриваются на основе электронной теории кислот и оснований (Льюис). Отличительным признаком кислоты и основания по электронной теории является их взаимная нейтрализация, осуществляемая образованием ковалентной связи между атомом в молекуле основания, обладающим свободной парой электронов, и атомом в молекуле кислоты, в электронную оболочку которого эта пара электронов включается. [c.421]


    Важным типом ММВ, влияние которого на свойства нефтяной системы увеличивается по мере химического движения к углероду, является взаимодействие кислот и оснований Льюиса с образованием донорно-акцепторных (ДА) комплексов различного типа, находящихся в жидкой фазе в сольватированном состоянии [55]. [c.67]

    В отличие от фурана, в котором неподеленные пары р-электронов атома кислорода участвуют в образовании ароматической системы, тетрагидрофуран обладает всеми свойствами простых эфиров в частности, он способен образовывать эфираты, предоставляя свои пары электронов кислотам Льюиса  [c.513]

    Для термодинамической характеристики растворов в, 1907 г. Льюис ввел понятие активности вещества. Оно определяется как некоторая величина, подстановка которой в термодинамические уравнения, действительные для идеальных систем, делает эти уравнения приемлемыми для реальных систем (растворов). Активность учитывает все побочные явления, отражающиеся на свойствах системы в целом, не вдаваясь в их подробности. Поэтому ее используют для общей характеристики растворов электролитов, учет всех побочных явлений в которых практически невозможен. [c.206]

    Льюис связал эти характерные свойства кислот и оснований с их электронной структурой, в особенности с парой электронов, образующих координационную ковалентную связь, и предложил следующее определение кислоты и основания  [c.392]

    Кислотные (по Льюису) свойства ГПС проявляются в неодинаковом их отношении к различным растворителям. Они преимущественно сольватируются теми растворителями, которые облацагагболь- [c.145]

    Изучение зависимости коэффициентов активности, а также ак-т1шностей от состава раствора привело Льюиса к установлению ряда важных эмпирических закономерностей и правил. В частности, было найдено, что в области низких концентраций средние коэффициенты активности электролита определяются зарядами образующихся ионов и не зависят от других их свойств. Так, наиример, в этих условиях средние коэффициенты активности бромида к лия, нитрата натрия и соляной кислоты одинаковы. Далее было-установлено, что средние коэффициен"Ы активности для очень разбавленных растворов зависят от общей концентрации всех присутствующих электролитов и зарядов их ионов, но не от химической природы электролитов. В связи с этим Льюис и Рендалл ввели понятие ионной силы растворов /, которая определяется как полусумма произведений концентраций понов на квадраты их зарядов  [c.81]

    В водных растворах ионы металлов являются льюисовскими кислотами, а такие комплексные ионы, как Fe(N0)2 Сг(Н20)Г и А1К ", можно рассматривать как комплексы кислота — основание. Благодаря большой валентной оболочке атомов неметаллов, находящихся ниже второго ряда периодической таблицы элементов (3, Р, С1, Вг, I и т. д.), они могут проявлять свойства как кислот, так и оснований Льюиса. Ион 1 в реакции с ионами металлов (кислота Льюиса) может действовать как основание, давая весьма стабильные комплексы, такие, как ]ig(I) . С другой стороны, 1а может действовать как кислота в реакциях с донорами электронов, приводя к образованию комплексов с различной стабильностью. Равновесие к реакции I" - - 1а 1 в 0,1 М водном растворе сильно сдвинуто вправо (А рави = 140 л1молъ), АН° = — 4,0 ккал. [c.499]

    Согласно теории Уитмана и Льюиса, в ядре потока концентрахщя постоянная и процесс переноса описывается одномерным стационарным уравнением молекулярной диффузии в тонких пленках при условии фазового равновесия на границе раздела жидкость - жидкость или жидкость - газ. Скорость массопередачи по каждой из фаз определяется выражением (4.3), в котором частные коэффициенты массопередачи равны К1 =1)1/61 и К2 =02182, где >1, /)2, 51, 2 - коэффициенты диффузии и поперечные размеры пленок соответствующих фаз (см. рис. 4.1). Пленочная теория не дает методов для определения толщин пленок 5, и 62, которые зависят от физико-химических свойств жидкостей и гидродинамических условий протекаемых процессов. [c.173]

    Однако в результате изучения обмена дейтерием между алюмо-силикатными катализаторами и двумя изомерными бутанами было сделано заключение о том, что кислота, от которой зависит каталитическая активность, является кислотой Льюиса [283]. (Денфорте предложил катализатор, вследствие особенностей своего строения Обладающий одновременно свойствами кислоты Льюиса и кислоты Бренстеда [284]). Следует предположить, что структурные изменения, которые становятся возможными благодаря присутствию двуокиси кремния, приводят к появлению атомов алюминия с электронными пробелами. Координационное число алюминия изменяется здесь от 4 до 6. Устойчивые комплексы карбоний-ионов можно представить следующим образом. [c.336]

    Отметив возможности улучшения свойств диеновых полимеров реакциями окисления, взаимодействия с карбенами, с комплексами трехокиси серы и оснований Льюиса, гидрирования, которое хотя и не является методом введения полярных групп, но также способствует увеличению межмолекулярного взаимодействия, следует остановиться на более новых методах модификации элементорга-ническими соединениями. [c.240]

    Сформулированные положения стимулировали постановку дальнейших работ с целью изучения возможности замены существующего промьппленного способа получения высокооктановых компонентов бензинов (изооктана) путем алкилировании изобутана бутиленами, в котором в качестве катализаторов используются серная и фтористоводородная кислоты. Совместно с К. И. Патриляком исследованы особенности процесса алкилирования изобутана бутиленами на поликатионно-декатионированном цеолите типа X. Установлено существование периода разработки катализатора, зависимости протекания процесса от условий активации катализатора, пульсирующего характера процесса в отдельных зонах катализатора по высоте слоя, неодинаковой алкилирующей способности бутиленов, изомеризации бутилена-1 в бутилен-2. Развиты теоретические представления о природе активных центров Льюиса и связанных с ними физико-химических свойствах поликатиопно-декатионированных цеолитов типа X и . Эти работы послужили научной основой получении ияооктана алкилированием изобутапа бутиленами в присутствии цеолитных катализаторов. Промышленная реализация процесса позволит перевести алкилирование в число процессов с безотходной технологией. [c.15]

    В таком варианте первоначальный вид активного центра не во( нроиз-водится, кислотный центр Льюиса продолжает удерживать водород, влияние центра Льюиса иа центр Бренстеда ослабевает, а следовательно, теряются исходные кислотные свойства катализатора. С этим, но-видимому, и связана быстрая потеря катализатором акт11вности, выражающаяся в резком увеличении содержания незамещенных углеводородов в продуктах алкилирования и сильном пониясе1гии выходов. [c.349]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Нечетный электрон в молекуле СН так и остается неспаренным. Наличие у атома или молекулы одного или нескольких неспаренных электронов обусловливает физическое свойство, называемое парамагнетиз.чо.ч мы будем обсуждать его подробнее в следующей главе. Эксперимент показывает, что молекула СН парамагнитна, и это согласуется с наличием в ней неспаренного электрона, предсказываемым льюисовой структурой молекулы. Однако не все парамагнитные молекулы легко описать при помощи льюисовых структур. Молекулой с кратными связями и особенно труднообъяснимым (в рамках теории Льюиса) парамагнетизмом является О2, которая имеет в основном состоянии два неспаренных электрона и, следовательно, должна быть парамагнитной. Для объяснения таких магнитных свойств молекулярному кислороду пришлось бы приписать необычные структуры  [c.470]

    Метод молекулярных орбиталей, с которым мы познакомились на примере двухатомных молекул, может быть использован также для объяснения свойств многоатомных систем. Общий способ построения молекулярных волновых функций для многоатомных молекул заключается в составлении линейных комбинаций из атомных орбиталей. Электроны на таких молекулярных орбиталях не локализованы между двумя атомами многоатомной молекулы, скорее они делокализованы между несколькими атомами. Эта модель принципиально отличается от представлений Льюиса, согласно которым пара электронов, обобществленых двумя атомами, эквивалентна одной химической связи. [c.551]

    Формальный выход из положения был предложен американским ученым Льюисом (1907). Он ввел понятие о кажущейся концентрации, которую назвал активностью. Активность а — это величина, подстановка которой вместо концентраций в уравнение закона действующих масс делает его справедливым (для всех электролитов и неэлектролитов) при любых концентрациях. Она выражает активную концентрацию вещества и,не представляя какого-либо реального его свойства, отражает суммарно все возможные процессы в растворе. Поэтому введение активности не раскрывает механизма процессов взаимодействия ионов и растворителя. Это лишь удобный прием, позволяющий находнть свойства любых растворов. Активность связана с концентрацией уравнением [c.181]

    Г. Н. Льюис (1901 год) предложил для описания свойств неидеальных систем использовать формулы, полученные для идеального состояния веществ (идеальные законы), но вместо концентраций и давления в эти формулы предлагается вводить новые параметры, которые были названы активностью а (подставляется в формулы вместо концентраций С) и фугитив-ностью или летучестью / (подставляется в формулы вместо Р). [c.221]

    Остановимря еще иа реакциях атомарного азота. Практически единственным источником атомов N является электрический разряд в молекулярном азоте или в смеси его с благородным газом. Азот, подвергнутый действию электрического разряда, благодаря приобретенной им при этом высокой химической активности, получил название активного азота [597, 601]. Одним из внешних признаков активного азота является послесвечение, наблюдающееся после прекращения разряда. Обычно различают два вида послесвечения коротко- и долгоживущее послесвечение. Для изучения химических свойств активного азота наибольший интерес представляет последнее, часто называемое льюис-рэлеевским послесвечением. [c.33]

    Функция кислотности Гаммета На для ЗЮг составляет от +4 до -+-6,8, окись алюминия также имеет очень слабые кислотные свойства (Яо -[-4), а алюмосиликаты имеют Яо —8,2, их кислотность близка к кислотности серной кислоты, нанесенной на силикагель. Сила кислотных центров на поверхности алюмосиликатов различна, часть центров обладает очень высокой кислотностью (Яо —12,5). С изменением соотнощения ЗЮа А Оз в алюмосиликатах изменяется кислотность и по Бренстеду, и по Льюису. Кислотность по Льюису максимальна для чистой окиси алюминия и с увеличением содержания 5102 уменьшается, для чистой двуокиси кремния они приблизительно равна нулю. Кислотность по Бренстеду в расчете на единицу поверхности алюмосиликата максимальна при содержании 30—40% АЬОз и 70—60 /о 5Юг. Аморфные синтетические алюмосиликаты такогв" состава имеют максимальную активность при каталитическом крекинге (при одинаковой технологии приготовления). Из нижеприведенных данных видно, что при нагревании алюмосиликатов протонная кислотность [c.210]

    Непосредственное исследование триплетных молекул и их участие в фотохимических процессах стало возможно с появлением метода импульсного фотолиза. Поскольку газы и жидкости, как правило, не фосфоресцируют, что, по мнению Льюиса и Каша, связано с малым временем жизни триплетных молекул, то наблюдение за триплетными молекулами возможно только импульсными методами. В качестве примеров химических реакций, протекающих в триплетном состоянии, следует указать на перенос протона, перепое электрона, отрыв атома водорода и др. Кислотно-основные свойства триплетного состояния органических молекул характеризуются сродством к протону этих молекул. Константа основности триплетных молекул (или рТС) может быть определена по кривой титрования , причем индикатором является молекула в своем триплетном состоянии. Типичная кривая зависимости концентрации триплетных молекул от pH среды приведена на рис. 57 для 9-азафеиантрена. Основность ароматических соединений в триплетном состоянии ие сильно отличается от основности молекул в основном состоянии в противоположность молекулам, находящимся в синглетно-возбужденном состоянии, основность которых существенно отличается от основного состояния. В табл. 15 приведены значения р/С для основного (Sq), первого сииглетпо-возбужденного (S ) и триплетного (Г ) состояний ряда ароматических молекул. Величины р/С (Т) определены ири помощи метода импульсного фотолиза. [c.159]

    Подобно бензолу конденсированные ароматические соединения вследствие сопряжения устойчивы. У нафталина энергая диссоциации на 61 ккал/моль меньше, чем у молекулы с локализованными связями. С химической точки зрения, они также проявляют ароматические свойства, т.е. для них характерны реакции электрофильного намещения (8 ). Они протекают легче, чем у бензола, и даже не требуют применения катализаторов - кислот Льюиса. Замещение в нафталине почти всегд,а происходит в а-положение, а в антрацене чаще в у-положение  [c.178]

    Особое положение, занимаемое углеродом среди других элементов, связано по крайней мере частично с его элсктронейтральностью, которая благоприятствует взаимодействию однородных атомов друг с другом в большей степени, чем у элементов с ярко выраженными электроположительными или электроотрицательными свойствами. Определенные представления о сущности органической, т. е. гомеополярной углерод-углеродной связи дает теория Льюиса—Лэнгмюра, которую мы считаем уже известной читателю (см. также сгр. 51). [c.25]

    Особое внимание уделено координационной химии акрилонитрила. Это соединение имеет важное промышленное значение, и большинство его реакций на начальных стадиях характеризуется координационными взаимодействиями с кислотами Льюиса. Наличие в структуре акрилонитрила нитрильной группы и двойной связи, проявляющих свойства жесткого и мягкого основания Льюиса соответственно, обуславливает возможность его эффективной координации с Широким диапазоно [ кислот Лыоиса. Поэтому наш интерес к комплексам ак-р 1лонитрила с oля цI переходных металлов вполне понятен. [c.148]

    Благодаря тому, что р-электроны гетероатома участвуют в образовании ароматической системы, сами гетероатомы утрачивают некоторые характерные для них свойства. Например, фуран (14 Х = 0) в отличие от тетрагидрофурана (15 Х = 0) не образует комплексные соли с Sn U. Пиррол (14 X = NH) в отличие от нирролиднна (15 X = NH) пе образует с алкилга-логенидами соли четвертичных аммониевых оснований, а крайне нестойкие соли образует только с сильными кислотами Льюиса. Наконец, тиофен 14 X = S) в отличие от тетрагидротио-фена (15 X = S) не присоединяет кислород за счет неподеленных пар электронов атома серы, т. е. не образует сульфон типа (16). [c.311]

    PFs и РСЬ ведут себя как очень сильные кислоты Льюиса. PFs присоединяет ион р и образует устойчивый комплексный анион РРб . Это происходит благодаря тому, что электроотрицательный фтор делает возможным использование и орбиталей центрального атома в виде гибридных d sp -opбитa-лей (разд. 35.6.3.1). Тем самым одна из орбиталей оказывается незанятой, что приводит к проявлению кислотных свойств по Льюису. [c.538]

    Поэтому дальнейшее развитие теории растворов пошло по другому пути. Форма уравнений, описывающих свойства идеальных растворов, была сохранена неизменной, но применимость этих уравнений к реальным системам достигалась тем, что в них вместо обычных величин, характеризующих системы (давления, концентрации), стали использовать величины, заимствованные из опыта. В настояш,ее время все термодинамические расчеты свойств растворов сильных электролитов строятся на использовании введенной Льюисом величины активности электролита, или активности его ионов. Активность определяется как величина, подстановка которой вместо концентрации в термодинамические уравнения, действительные для простейших (идеальных) систем, делает их применимыми к рассматриваемьш растворам. [c.116]

    Каждое основание, которое мы обсуждали до сих пор, будь то ОН , Н О, какой-нибудь амин и ш анион, является донором электронной пары. Любое вещество, обладающее свойствами основания в рамках представлений Бренстеда - Лаури (т.е. акцептор протона), с точки зрения Льюиса, также является основанием (до1юром электронной пары). Однако в теории Льюиса допускается, что основание донируег электронную пару не только ее акцептору Н . Поэтому определение Льюиса значительно расширяет круг веществ, которые могут рассматриваться как кислоты Н представляет собой отнюдь не единственно возможную, с точки зрения Льюиса, кислоту. Рассмотрим, например, реакцию между КН, и ВРз. Эта реакция возможна по той причине, что в валентной оболочке ВРз имеется вакантная орбиталь (см. разд. 7.7, [c.99]


Смотреть страницы где упоминается термин Льюиса свойства: [c.146]    [c.82]    [c.350]    [c.369]    [c.109]    [c.121]    [c.444]   
Органические синтезы через карбонилы металлов (1970) -- [ c.201 ]




ПОИСК





Смотрите так же термины и статьи:

Льюис

Льюиса получение и свойства

Льюиса свойства физические



© 2024 chem21.info Реклама на сайте