Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие паров, Растворимость газов

    Расчет равновесия в газожидкостной системе (олефин и альдегид — жидкие, СО и Нг —газообразные) можно выполнить методами, описанными в гл. II. В каждом конкретном случае необходим специальный расчет, для которого требуется информация о растворимости газов в жидкости, летучестях компонентов и т.д. Поэтому ниже ограничимся рассмотрением случая, когда раствор можно считать идеальным, давление пара жидкого компонента над раствором подчиняется закону Рауля, а растворимость газа — закону Генри. Даже в этом случае расчет равновесия газожидкостной реакции по равновесию реакции в газовой фазе (см. гл. II) затруднен отсутствием или ненадежностью данных о растворимости Нг и СО в жидкой фазе, содержащей олефин, альдегид и катализатор. Нетрудно, однако, получить соотношение, указывающее на характер изменения состава газожидкостной реакции (Л , — мольная доля 1 в жидкости) по сравнению с составом газофазной реакции N1 — мольная доля I в равновесной газовой фазе). Величины [c.330]


    При растворении смеси газов растворимость каждого из них определяется его парциальным давлением и обычно равна растворимости этого газа в чистом состоянии при давлении, равном его парциальному давлению в смеси. С повышением температуры обычно уменьшается растворимость газов, как это видно из табл. 30. Влияние это удобно выяснить, рассматривая равновесие между газом и раствором как равновесие между раствором и паром, т. е. рассматривая зависимость парциального давления газа над раствором от температуры. Эта зависимость определяется уравнением Клаузиуса — Клапейрона (УП1, 8). [c.326]

    А. Равновесия пар — жидкий раствор в системах с неограниченной взаимной растворимостью жидкостей. Законы Гиббса— Коновалова. Законы Вревского. Перегонка жидких смесей. Если раствор образован из двух летучих жидкостей, то пар, находящийся в равновесии с жидким раствором, будет содержать оба компонента. В общем случае состав пара отличается от состава жидкого раствора, из которого он получен. Состав паровой фазы легко установить, зная состав жидкой фазы, если пар, представляющий смесь идеальных газов, находится в равновесии с идеальным раствором. Исходя из соотношений [c.388]

    В равновесие со сжатым газом. Другими словами, твердое вещество и жидкость как бы растворяются в сжатом газе. Если пары и газ образуют идеальную смесь, то растворимость будет пропорциональна их давлению с небольшой поправкой на внешнее давление (эффект Пойнтинга). Отклонение от идеальности приводит к изменению в растворимости, из которого можно получить сведения по вириальным коэффициентам взаимодействия. Общий обзор этого метода был сделан Роулинсоном и Ричардсоном [189]. Они вывели уравнение для случая увеличения растворимости при условии, что газ не растворяется в жидкости или твердом веществе и что мольная доля паров в газовой фазе мала  [c.116]

    Для растворов кристаллических веществ Р — давление пара твердого вещества, находящегося в равновесии с раствором, а Я° —давление его пара над чистой переохлажденной жидкостью. Для раствора газа Р° равно давлению насыщенного пара сжиженного газа. Если растворимость рассчитывают при температуре большей, чем критическая температура растворенного вещества, то величина Р° может быть приближенно вычислена путем экстраполяции по уравнению (V, 3) или по графику, отвечающему этому уравнению. [c.174]


    Величины активностей компонентов в растворах определяются экспериментально при помощи различных методов, которые основаны на измерениях давлений паров и газов, изучении химических равновесий, растворимости и электродвижущих сил гальванических элементов. [c.80]

    Раствор газа в жидкости ничем существенным не отличается от других растворов, и к нему можно применять закон Рауля. Растворенный газ в этом случае следовало бы рассматривать как пар более летучего компонента, находящийся в равновесии с раствором, а давление этого газа—как давление пара, соответствующее данному составу смеси. Трудно сжижаемые газы, как правило, плохо растворимы. Наоборот, газы с высокой температурой кипения абсорбируются достаточно хорошо. Большое влияние на растворимость газов имеют также полярность растворителя и его внутреннее давление. [c.48]

    Экспериментальные данные относятся не только к растворимости газов в воде, но и к другим показателям, характеризующим процесс растворения (содержание водяного пара в газе при фазовом равновесии с водой изменение объема воды при растворении в ней газов уменьшение растворимости газов в воде под влиянием добавления солей к воде). Все эти данные используются в методах расчета растворимости, описанных в пособии. [c.3]

    При равновесии газа с жидкой водой не только вода содержит растворенный газ, но и газовая фаза содержит пары воды. Водяные пары в газовой фазе уменьшают содержание самого газового компонента, что приводит к уменьшению его растворимости в воде. Растворимость газа в воде и воды в газе — две стороны одного и того же явления (фазового равновесия газ-вода). В общем случае решение задач фазового равновесия требует совместного рассмотрения растворимости газа в воде и воды в газе. Не редки случаи, когда предсказание растворимости газа в воде ограничено знанием растворимости водяного пара в газе, закономерности изменения которой при высоких давлениях известны недостаточно полно. В табл. 36—54 приводятся экспериментальные данные по содержанию водяного пара в различных сжатых газах, равновесных с жидким водяным раствором. Сведения о содержании водяного пара в газовой фазе при весьма высоких температурах можно получить из рис. 27-42. [c.80]

    Растворимость воды в газе. При невысоких температурах и давлениях, заметно превышающих давление пара воды, по-прежнему /V, и Л/" малы, растворы водяного пара в газе подчиняются закону Генри, следовательно можно записать уравнение (IX. 22), применив его для определения зависимости от давления содержания водяного пара в сжатом газе для условий равновесия газа с жидкой водой. Для этого поменяем в (IX. 22) индексы 1 и 2, а также и и, использовав уравнение (IX. 21), получим [c.158]

    Зависимости (У1.6) — (VI.10) показывают, что абсорбционное равновесие можно сдвинуть в сторону увеличения растворимости газа понижением температуры, в результате чего уменьшается равновесная упругость газа над раствором и повышением концентрации поглощаемого компонента в газе Сн.г или повышением общего давления, что равносильно увеличению Сн.г. Для этого охлаждают газ и жидкий поглотитель перед абсорбцией в различных теплообменниках и отводят теплоту абсорбции при помощи внутренних холодильников, размещенных в абсорбере, или охлаждают снаружи абсорбционный аппарат. Иногда отвод теплоты абсорбции производят без охлаждения, используя эту теплоту для испарения воды и концентрирования продукта в самом абсорбере. Поскольку десорбция является процессом, обратным абсорбции, то и приемы сдвига десорбционного равновесия противоположны. Извлечению газа из жидкости способствует повышение температуры и понижение давления. Для этого применяют обогрев десорберов глухим или острым паром и в некоторых случаях осуществляют десорбцию под вакуумом. [c.159]

    Исследование газопроницаемости пленок полимеров, находящихся в равновесии с сорбированными парами, показало, что при сорбции паров СеНи и U полиэтиленом низкой плотности наблюдается значительное повышение проницаемости полиэтиленовых пленок по отношению к азоту и кислороду . При этом значение коэффициентов газопроницаемости Р полиэтилена линейно возрастает с увеличением весовой концентрации сорбированного гексана, а значение энергии активации Ер остается приблизительно постоянным. Изменение значений Р обусловлено ростом коэффициента диффузии D, в то время как коэффициент растворимости газов а при сорбции пленкой органических растворителей существенно не изменяется. В системе гидрат целлюлозы — вода значение Р для О2 и N2 и в особенности для СО2 быстро возрастает с увеличением относительного давления паров воды. График зависимости Р для Oj от весовой концентрации воды в гидрате целлюлозы имеет два линейных отрезка, пересекающиеся в точке, отвечающей относительной влажности, равной 74%. На значения Р полиэтилена для О2, N2, СО2 относительная влажность газов не влияет. Предполагается, что сорбция паров воды не влияет на содержание кристаллической части и набухание происходит только в аморфных областях полимеров. Газопроницаемость смеси газов часто зависит от высокой растворимости одного из входящих в смесь газов. Так, исследование полиэтилена по отношению к смеси этана с бутаном показало что проницаемость смеси увеличивается с ростом концентрации бутана по сравнению с расчетной (по исходным коэффициентам Р) [c.172]


    Ниже будет показано, что растворимость жидкости в газе обнаруживает сложную зависимость от давления поэтому расчеты, производимые на основании рассмотрения системы газ — пар как идеальной газовой смеси, при высоких температурах и давлениях являются в высшей степени приближенными [1]. При расчетах равновесия в рассматриваемых системах необходимо также учитывать растворимость газа в жидкости, уменьшающую концентрацию последней, а тем самым и ее активность. Этой цели служат излагаемые ниже сведения о приближенных расчетах растворимости газов в жидкостях под давлением (если нет соответствующих экспериментальных Данных). Растворимость газов в жидкостях должна играть [c.59]

    Принципиальных отличий между плавлением и растворимостью, конечно, нет. В обоих случаях в равновесии находятся твердая фаза и насыщенный раствор. Точно также принципиально аналогичны растворимость газа в жидкости и конденсация насыщенного пара растворенного вещества. [c.408]

    Изотермы взаимной растворимости газов в системе N2—ННз (рис. IV. 6) показывают, что при данной температуре имеется давление, ниже которого газы безгранично смешиваются (критические точки к внизу справа дана кривая равновесия жидкость — пар). Повышение давления до значительного приводит к расслоению смеси на две фазы. С ростом давления расслоение распространяется в большем интервале концентрации, что приводит к уменьшению областей все более различным. Например, при 100°С сжимается смесь из 57% ННз и 43% Нг (точка о) до 260 МПа (точка к). Повышение давления приведет к расслоению гомогенной смеси. Например, при 320 МПа смесь состоит из двух фаз (точки а —33% ННз и Ь — 77% ННз), Соотношение этих фаз по правилу рычага  [c.52]

    Между тем один пз типов этого равновесия можно обнаружить даже при давлениях порядка десятков атмосфер. Создание таких давлений было вполне доступно экспериментаторам, работавшим во времена Амага и Эндрьюса. По-видимому, причиной задержки исследований в этой области оказалось то, что научное любопытство подавлялось проникшими во все учебники физической химии утверждениями, которые, например, гласили Число фаз, могущих сосуществовать, может сильно варьировать в различных системах. Во всех случаях, однако, может быть только одна газовая фаза, вследствие того, что газы смешиваются друг с другом во всех отно-шениях . Даже в 1944 г., уже после опубликования первых экспериментальных результатов работ об ограниченной взаимной растворимости газов в системе аммиак — азот, Додж писал, что системы, состоящие только из газов и паров, всегда гомогенны и что никто, никогда не наблюдал больше, чем одну газовую фазу. В 1950 г. Гильдебранд также утверждал, что газы безгранично смешиваются и поэтому нет проблемы растворимости. [c.9]

    Кривая растворимости жидкости в газе начинается прн данной температуре, когда давление равно давлению насыщенного пара исследуемого вещества. При этом давлении мольная доля жидкости в газовой фазе равна единице. Растворимость жидкости в газе сначала уменьшается с увеличением давления, затем, достигнув минимума, с дальнейшим ростом давления увеличивается. Далее на кривой появляется точка перегиба, и растворимость жидкости в газе достигает максимума (точка 51). После этого растворимость жидкости в газе вновь уменьшается и далее, по-видимому, мало зависит от давления. Если существует верхняя критическая точка равновесия газ — газ, то растворимость жидкости в газе должна вновь увеличиваться до тех пор, пока кривая не сольется с кривой растворимости газа в жидкости в верхней критической точке. Форма кривых растворимости аммиака в водороде и азоте, двуокиси серы в азоте, воды в двуокиси углерода и т. д. хорошо иллюстрирует вышесказанное. [c.57]

    Величина пс предполагается положительной и ее значение определяется константой фазового равновесия (закон Генри). Раствор газа в воде существует совместно с находящимся над водой паром, при этом содержание газа в растворе зависит от природы газа, давления, температуры и состава газовой фазы. В состоянии равновесия между концентрациями газа в обеих фазах устанавливается соотношение, которое характеризуется константой фазового равновесия, равной отношению концентраций газа в газовой и жидкой фазах. Для идеальных растворов константа фазового равновесия зависит только от температуры, увеличиваясь с ее повышением при этом растворимость газа уменьшается. На рис. 4.1 приведены температурные зависимости константы фазового равновесия для различных газов. [c.135]

    Баррер вывел уравнение для растворимости газов и паров в эластомерах, основываясь на теории атермальных полимерных растворов Миллера . При равновесии скорость растворения сорбированных молекул в полимере равняется скорости их испарения  [c.216]

    Диффузионная стадия пропитки сильно зависит от растворимости газов. Действительно, так как поры и капилляры экстрагируемого твердого материала постепенно заполняются растворителем, между концентрациями целевого компонента в твердой и жидкой фазах устанавливается равновесие. Защемленные газы растворяются в жидкости, и в ней возникают градиенты концентрации, обусловливающие конвективную диффузию растворяющихся газов. Практическое применение этого эффекта заключается в следующем замена труднорастворимых газов легкорастворимыми может обеспечить возможность увеличения скорости пропитки (или экстрагирования настаиванием, перколяцией и т. п.) в 10 раз. С другой стороны, можно найти метод освобождения воздуха (или других газов и паров) из пористого материала и таким образом улучшить массообмен. Это тем более заманчиво, поскольку, например, во многих горных породах тупиковые поры занимают 40—60 % общего объема пор. [c.169]

    Установив, таким образом, закон осмотического давления и получив выражения для константы осмотического давления и температурной зависимости константы равновесия, Вант-Гофф поставил перед собою задачу нахождения путей определения величины I (еще до возникновения теории электролитической диссоциации). Он дает 4 способа определения этой величины 1) из определений растворимости газов 2) из определений упругости пара 3) из осмотического давления (изотонический коэффициент) 4) из температуры замерзания растворов. Он указывает, что, по его мнению, определение I из температур замерзания заслуживает предпочтения как по возможности точных определений, так и по приложимости этого метода к исследованию большого числа тел. [c.418]

    Часть 2 (в трех книгах) —термомеханические константы равновесий гетерогенных систем давление пара чистых веществ и смесей, плотность равновесных фаз, понижение точки замерзания и повышение точки кипения, осмотическое давление, растворимость газов, жидкостей и твердых веществ, системы несмешивающихся жидкостей. [c.44]

    Ниже будет показано, что растворимость жидкости в газе обнаруживает сложную зависимость от давления поэтому расчеты, производимые на основании рассмотрения системы газ—пар как идеальной газовой смеси, при высоких температурах и давлениях являются в высшей степени приближенными [1]. При расчетах равновесия в рассматриваемых системах необходимо также учитывать растворимость газа в жидкости, уменьшающую концентрацию последней, а тем самым и ее активность. Этой цели служат излагаемые ниже сведения о приближенных расчетах растворимости газов в жидкостях под давлением (если нет соответствующих экспериментальных данных). Растворимость газов в жидкостях должна играть существенную роль при равновесиях в системах, где она значительна. К ним относятся, в частности, смеси углеводородов, системы газ—жидкость с участием аммиака и многие другие. К сожалению, в литературе почти нет экспериментальных данных о химическом равновесии в таких системах при высоких давлениях. [c.101]

    Разделительная способность пленок по отношению к газовым смесям основана на различной скорости прохождения каждого из газов (рис. 142). В случае обычных газов, не взаимодействующих с полимером, коэффициент разделения равен отношению проницаемостей разделяемых газов при условии равновесия газовой фазы у поверхности пленки. Повышенная растворимость газа в пленке приводит к увеличению проницаемости (пластифицирующее действие) и снижению разделительной способности пленки. В большинстве случаев жидкости диффундируют медленнее, чем их насыщенные пары. [c.237]

    Весьма многочисленны экспериментальные исследования, посвященные сосуществованию жидкости и газа. Большинство их можно объединить в три родственные группы — по равновесию жидкость — газ, растворимости (газов в жидкостях и жидкостей в газах) и давлению насыщенного пара над растворами. [c.46]

    В настоящей статье рассмотрены следующие вопросы расчеты свойств реальных газов, расчеты давления насыщенного пара и расчеты химического равновесия, растворимость веществ в сжатых газах, ограниченная взаимная растворимость газов, свойства азеотропных смес кроме того, дано описание диаграммы энтропия — энтальпия. В статье сделаны указания на соответствующие места текста книги, так же как и в тексте книги имеются ссылки на относящиеся к нему разделы вступительной статьи. [c.7]

    При абсорбции равновесие можно сместить в сторону увеличения растворимости газа, уменьшая температуру, что снижает равновесное давление газа над раствором р (или С ), увеличивая начальную концентрацию поглощаемого компонента в газе Сг.н или общее давление Р, что также увеличивает Сг. . Для понижения температуры охлаждают исходные газ и жидкость, отводят теплоту абсорбции с помощью внутренних или наружных теплообменников. Иногда отвод теплоты абсорбции осуществляют без охлаждения, используя эту теплоту для концентрирования раствора в самом абсорбере. При десорбции газов и жидкостей равновесие смещают обратными приемами, т. е. повышением температуры и понижением давления для этого обогревают десорбер с помощью теплообменников или острого пара. [c.112]

    В своих первых работах в этой области Эндрюс и Амага вместо пьезометра использовали калиброванный по длине стеклянный капилляр, запиравшийся ртутью. По положению ртути определялся объем, занятый газом. Камерлинг-Оннес [52а, 94] в Лейдене применял этот метод для измерения сжимаемости гелия. Положение ртути в капилляре можно определять визуально с помощью катетометра [94—102] или по изменению электрического сопротивления проволоки, натянутой вдоль оси капилляра [103, 104]. Во всех случаях необходимо вводить поправки, учитывающие влияние мениска ртути в капилляре и температурное расширение стекла. Используя прибор подобного типа, Амага удалось создать давление до 450 атм, хотя в таких случаях максимальное давление обычно не превышает 150 атм. Верхний предел температуры определяется давлением паров ртути над ее поверхностью. При температуре выше 150° С необходимо принять соответствующие меры, чтобы быть уверенным в том, что пары ртути находятся в равновесии с исследуемыми парами или газом. Коннолли и Кандалик [102], использовавшие подобный прибор вплоть до 300° С, обнаружили, что даже при перемешивании с помощью магнитной мешалки (стальной шарик) со скоростью 50 цикл1сек для достижения равновесия паров ртути с парами исследуемого вещества или газом требовалось больше 2 час. Более подробно проблема растворимости ртути в сжатых газах обсуждается в конце этой главы. При использовании рассмотренного выше метода ошибка измерений составляет примерно 0,1 %  [c.99]

    Элементы расчета абсорбционных и хемосорбциониых процессов и типы применяемых реакторов рассмотрены в ч. I, гл. VI. Основные технологические показатели абсорбционной очистки степень очистки (КПД) г) и коэффициент массопередачи А определяются растворимостью газа, гидродинамическим режимом в реакторе Т, Р,ю) и другими факторами, в частности равновесием и скоростью реакции при хемосорбции. При протекании реакции в жидкой фазе величина к выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение и еет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы нецикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбциониых процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны таким образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.234]

    Распределительная хроматография основана на распределении вещества между подвижной жидкой или газовой фазой и неподвижной жидкой фазой, закрепленной на твердой фазе (носитель) путем полимолекулярпой адсорбции. В первом случае распределение происходит за счет растворения компонентов газовой смеси в адсорбированной пленке жидкости. Соотношение между концентрацией компонента в пленке адсорбированной жидкой фазы и концентрацией (парциальным давлением) его в газовой фазе при условии равновесия между подвижной и неподвижной фазами определяется законом Генри ( 13.3). Поскольку растворимость газов и паров сильно зависит от природы растворителя, то варьирование жидкой фазы представляет практически неисчерпаемые возможности для подбора условий разделения летучих веществ, Распределительная газовая хроматография обычно называется газожидкостной (ГЖХ). [c.338]

    В большинстве случаев теоретическое определение коэффициентов массоотдачи проводят, рассматривая процесс массопереноса для каждой фазы в отдельности вне частицы (внешняя задача) или внутри частицы (внутренняя задача). Фактически это означает, что при решении задачи не учитывается влияние массопереноса в одной фазе на скорость массопереноса в др)той. Очень часто такая постановка вполне допустима. Во многих практических задачах перенос массы в одной из фаз либо вовсе отсутствует (растворение твердой частицы или пузырька однокомпонентного газа (пара) в жидкости, испарение капли однокомпонентной жидкости в газовом потоке и т. п.), либо скорость его значительно выше, чем во второй фазе. В последнем случае говорят, что процесс массопередачи лимитируется сопротивлением второй фазы. Так, при абсорбции хорошо растворимых газов и паров (NH3, НС1, HF, SO2, SO3, этанол, ацетон и др.) из газовой смеси водой в барботажных аппаратах скорость массопередачи лимитируется скоростью диффузии этих газов в пузырьках. Наоборот, процесс массопередачи при водной абсорбции плохо растворимых газов (О2, СО2, NO, N2O) лимитируется сопротивлением водной фазы. В обоих указанных случаях концентрацию переносимого компонента на межфазной поверхности со стороны г-й фазы можно считать известной и равной концентрации, находящейся в равновесии с постоянной концентрацией компонента во второй фазе. Таким образом, для решения уравнения (5.3.1.1) можно использовать граничное условие 1-го рода (см. подраздел 5.2.2). Это существенно упрощает решение задачи. В экспериментах определяют обычно не коэффициенты массоотдачи , (см. уравнение (5.2.4.1)), а коэффициенты массопередачи К(, определяемые уравнениями (S.2.6.2.). Однако проводить эксперимент стараются таким образом, чтобы массоперенос во второй фазе либо отсутствовал, либо протекал значительно быстрее, чем в первой фазе. Тогда коэффициент массоотдачи в первой фазе будет равен экспериментально определенному коэффициенту массопере- [c.274]

    В табл. 13.23 приведены следующие данные интервал температур, в котором измерена растворимость газа, значения энтальпии АН и энтропии Д5 раство-рёния, константы равновесия Кр. Для расплавов в скобках дается мольная дол компонентов. Единицами давления при выражении Кр служили атмосферы, за исключением растворов водяного пара и аммиака, когда давление измерялось в миллиметрах ртутного столба. В случае расплавов фторидов Кр вычислялась для температуры 1000 К, в остальном — 1,1 Т щ где Гпл—температура плавления соли или — для смеси солей — более низкоплавкого компонента. [c.466]

    При температурах, меньших критической температуры СО2, наблюдается равновесие жидкость — газ (рис. 1-6). Кривые этого равновесия (кривая растворимости гелия в жидкой двуокиси углерода и последней в сжатом гелии) начинаются в точке, соответствующей давлению насыщенного пара СО, при данной температуре. При гемпетату-рах, больших критической температуры СО. , кривые отрываются от оси ординат и образуют характерный рог. [c.19]

    Для кислорода, азота и других газов, не вступающих в химическое взаимодействие с водой, действителен закон Генри о пропорциональности между растворимостью газа и его парциальным давлением над раствором. Повышение температуры уменьшает растворимость газов в воде. Рассматривая равновесие между газом и раствором как равновесие между раствором и паром, можно использовать уравнение Клазиуса—Клапейрона для расчета парциального давления газа над раствором при разных температурах. Растворимость газов в водных растворах электролитов меньше, чем в чистой воде. Установлена эмпирическая зависимость между концентрацией (с> электролита в растворе и растворимостью газов (S)  [c.58]

    При абсорбции серного ангидрида водными растворами серной кислоты необходимо строго разграничить условия, соответствующие концентрации серной кислоты ниже и выше 98,3% (98,3%-ная концентрация соответствует азеотропной смеси с максимальной температурой кипения). Это требование обусловлено тем, что в области низких концентраций (до азеотропной точки) в газовую фазу выделяются пары Н2504 и Н2О, а в области высоких концентраций (после азеотропной точки) в газовую фазу выделяются пары Н2504 и ЗОд. Поэтому, если в газовую фазу, находящуюся в равновесии с серной кислотой с концентрацией выше 98,3%, ввести дополнительно некоторое количество паров 50з, равновесие нарушится и начнется процесс абсорбции 50 серной кислотой. Для расчета такого процесса могут быть использованы обычные уравнения, предложенные для абсорбции хорошо растворимых газов. Влияние различных факторов на константу скорости абсорбции установлено лабораторными исследованиями , числовое значение этой константы для башен с насадкой установлено обследованием заводских абсорберов . [c.221]

    Разработанные к настоящему времени методы определения растворимости газов в жидкостях весьма многочисленны и разнообразны [1-6]. Общепринятой является классификация, предложенная Баттино и Клевером [1,3], которые взяли за основу разделения методов природу измеряемых величин и способ их измерения. Классифицированные по этому принципу методы делятся на физические и химические. Такая классификация является достаточно условной, поскольку, с одной стороны, химическими методами измеряется физический параметр -масса растворенного газа, а с другой - многие основанные на физических принципах методы относятся к арсеналу современной инструментальной аналитической химии. В этой связи мы предлагаем разделить существующие методы на термодинамические (волюмо-манометрические) и аналитические. Термодинамические (волюмо-манометрические) методы позволяют косвенным путем определять количество абсорбированного газа на основе измерения рУТ параметров парожидкостного равновесия и последующего термодинамического анализа системы пар - жидкость. Методы, относящиеся к этому классу, широко распространены. В наиболее совершенных конструкциях достигнут очень высокий уровень точности (погрешность 0,1% и ниже). Сюда относятся методы насыщения и методы экстракции. В первом случае обезгаженный растворитель насыщается газом при контролируемых рУГ-параметрах, а во втором - растворенный в жидкости газ извлекается и проводится анализ рУГ-параметров газовой фазы. В аналитических методах проводится прямое или косвенное измерение количества абсорбированного газа путем анализа жидкой фазы. Для этих целей применяются объемное титрование (химическе методы), газовая и газожидкостная хроматография (хроматографические методы), масс-спектрометрия, метод радиоактивных индикаторов, электрохимические методы (кулонометрия, потенциометрия, полярография). Аналитические методы (за исключением хроматографического и масс-спектрометрического) не обладают той общностью, которая присуща термодинамическим методам. Они используются для изучения ограниченного круга систем или при решении некоторых нестандартных задач, например для проведения измерений в особых условиях. Погрешность аналитических методов составляет, как правило, несколько процентов. Учитывая указанные обстоятельства, а также принимая во внимание изложенные во введении цели данного обзора, мы ограничиваемся рассмотрением лишь химических и хроматографических методов. [c.232]

    Принцип работы прибора заключается в следующем. Вакуумированный абсорбционный сосуд А емкостью 0,4-0,8 дм (в зависимости от величины растворимости газа) через соединение а заполняется обезгаженным растворителем и через шлиф h соединяется с системой. Затем установка вакуумнруется и заполняется предварительно насыщенным парами растворителя в барботажном сосуде Е газом до атмосферного давления, контролируемого ртутным манометром В. После включения магнитной мешалки D жидкость циркулирует по боковым кики центральному g капиллярам, в результате чего происходит процесс растворения газа. Полное насыщение жидкости газом наступает приблизительно через 4 ч. Постоянное давление в системе поддерживается по показаниям манометра В путем напуска ртути в измерительную газовую бюретку С (компенсатор) из уравнительной емкости L. По разнице показаний бюретки до и после достижения равновесия определяется количество растворенного газа. Аппаратура расположена в водяном термостате таким образом, чтобы внутренние объемы вакуумных кранов были также термостатированы. [c.237]

    Рассмотрим диффузионнзгю систему, изображенную на рис. 16-1, где жидкость А испаряется в газ Б, и представим себе, что имеется приспособление, которое поддерживает уровень жидкости z = z . Непосредственно на поверхности раздела жидкость — газ концентрация А в газовой фазе, выраженная в мольных долях, равна Xai-Допустим, что она отвечает условиям равновесия с жидкостью на поверхности, т. е. концентрация xai равна давлению пара А, деленному на общее давление (pT lp), при условии, что газовая смесь А VL В идеальна. Далее примем, что растворимость газа В в жидкости А незначительна. [c.457]

    Для многокомпонентной жидкой смеси, находящейся в равновесии со сжатой посторонней газовой смесью, расчет величин Vi и Xj, входящих в уравнение (23), встречается со значительными трудностями. Для упрощения авторы приняли, что растворимость газов в жидкости мала и зависит только от температуры и состава (влиянием давления пренебрегают). Предлагается также замена смеси жидкости одним представительным компонентом. Ему присваивается индекс 1, а компонентам газовой смеси индексы 2, 3,. .., п. Если растворимость газов в жидкости мала, то viXi = 1. При малом давлении насыщенного пара и в отсутствие постороннего газа fo (SP) заменяется давлением насыщенного пара Фдх. В случае твердых веществ оба предположения всегда выполняются. Для малых давлений насыщенного пара Xi также очень мало, так что в уравнении (23) суммирование начинается с индекса 2. При этих предполо- [c.16]


Смотреть страницы где упоминается термин Равновесие паров, Растворимость газов: [c.227]    [c.246]    [c.260]    [c.187]    [c.48]   
Абсорбционные процессы в химической промышленности (1951) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Газы растворимость

Растворимость в паре

Растворимость газов

Растворимость паров

Растворимость равновесие



© 2025 chem21.info Реклама на сайте