Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография сравнение способов

    В таком случае вступает в свои права комплекс мощных аналитических методов — хроматография. Это способ анализа веществ, основанный на их физическом разделении. Например, при хроматографии на бумаге вещества двигаются по хроматограмме с током растворителя с различными скоростями, индивидуальными и характерными для данного вещества в данных условиях. Последняя оговорка весьма существенна в разных лабораториях и в разных руках точно воспроизвести абсолютные скорости — их называют хроматографическими подвижностями — весьма и весьма трудно. Позтому здесь не обойтись литературными данными — нужно прямое сравнение двух образцов. [c.58]


    Один из способов идентификации основан на применении двух детекторов. Один детектор неспецифичен, например детектор теплопроводности в газовой хроматографии или рефрактометрический детектор в жидкостной хроматографии, а интенсивность сигнала другого детектора зависит от природы вещества, например детектор ЭЗ в газовой хроматографии или УФ-детектор в жидкостной хроматографии. Сравнение хроматограмм, полученных с помощью двух детекторов, дает информацию о составе и функциональных группах веществ. [c.96]

    В практике качественного газохроматографического анализа используют следующие способы идентификации компонентов 1) сравнение параметров удерживания неизвестного вещества и эталонного соединения при идентичных условиях хроматографирования 2) применение графических или аналитических зависимостей между характеристиками удерживания и физико-химическими свойствами веществ (молекулярной массой, температурой кипения, числом углеродных атомов или функциональных групп и т. д.) 3) сочетание газовой хроматографии с другими инструментальными методами 4) применение селективных детекторов. [c.190]

    Газожидкостная хроматография обладает двумя преимуществами по сравнению с плоскостной распределительной хроматографией. Во-первых, скорость распределения вещества между подвижной газовой фазой и стационарной жидкой фазой (в виде пленки) намного выше, чем в случае жидкой подвижной фазы. Во-вторых, этот способ дает возможность разработать чувствительные н точные методы детектирования и автоматической регистрации фракций газового элюата. Однако применение метода ограничено устойчивостью разделяемых веществ прн температурах, необходимых для создания достаточного давления пара, а также сложностью аппаратуры. [c.43]

    Этот новый метод объединяет в себе ряд достоинств хроматографии на бумаге и адсорбционной хроматографии. При хроматографии в тонком слое адсорбента, нанесенном на стеклянную пластинку, так же как и при хроматографии на бумаге, удается быстро разделить небольшие количества смесей, причем на одной пластинке можно одновременно хроматографировать несколько образцов. Вместе с тем хроматография в тонком слое имеет по сравнению с хроматографией на бумаге ряд преимуществ. К ним относятся короткое время проявления (10—30 мин), образование сравнительно небольших, отчетливо различимых пятен и простота оборудования,-Большая емкость тонких слоев адсорбентов позволяет применять этот вид хроматографии и для микропрепаративных целей. Для обнаружения пятен, помимо способов, применяемых в хроматографии на бумаге, можно благодаря большей устойчивости неорганических адсорбентов использовать и ряд других методов. [c.365]


    Применение гель-проникающей хроматографии позволяет производить довольно быстрое фракционирование полимера с использованием небольших количеств материала, что является несомненным преимуществом этого способа по сравнению с другими, известными в настоящее время способами фракционирования. [c.240]

    Способ элюирования. В ходе разработки методики разделения многокомпонентной смеси необходимо решить вопрос о режиме элюирования. Анализ современных тенденций в жидкостной хроматографии показывает, что градиентное элюирование довольно редко применяют для анализа химических продуктов, но оно необходимо при разделении сложных смесей биологического происхождения. Существенным недостатком градиентного элюирования является то, что возврат к исходному режиму элюирования по окончании разделения требует довольно значительного времени (чаще всего 15—30 мин). При сравнении возможностей.градиентного и изократического элюирования продолжительность приведения колонки в исходное состояние следует суммировать с продолжительностью градиентного разделения. При таком подходе часто оказывается, что лучше провести длительное изократическое разделение, чем незначительно уступающее ему по продолжительности градиентное. [c.320]

    Сравнение различных методов интегрирования показывает, что стандартное отклонение или средняя квадратичная погрешность [70, 168] (о) расчета с помощью электронного интегратора лежит в пределах меньше 0,5% 94]. Одиако лишь незначительная часть хроматографов снабжена интеграторами, в результате чего обсчеты обычно производятся на основе ручных измерений по одному из перечисленных способов. Воспроизводимость полученных результатов в среднем лежит в пределах стандартного [c.172]

    ОДНО ПЯТНО, то это является очень хорошим показателем чистоты изучаемого вещества. Кроме того, идентичность неизвестного вещества может быть подтверждена (но не доказана. Почему ) путем сравнения положения пятен неизвестного соединения и известных стандартных веществ (рис. 3.5). На рис. 3.5 также показано, как с помощью тонкослойной хроматографии можно наблюдать за ходом химической реакции. Наиболее обычным способом описания результатов тонкослойной хроматографии является указание величины Rf (см. также рис. 3.6) на хроматографических пластинках данного типа и в данной системе растворителей  [c.54]

    Присутствие в органическом соединении небольших количеств радиоактивных побочных продуктов или продуктов распада невозможно установить ни при помощи классических критериев степени химической чистоты [ЮЗ], ни в результате использования обычных химических и физических тестов. Хотя радиоактивные загрязнения составляют небольшую часть общего количества вещества, однако они могут составлять значительную долю общей радиоактивности. Наиболее подходящим способом определения изотопной чистоты соединения является разделение исследуемого препарата при помощи какого-либо хроматографического метода на химически чистые фракции с последующим определением содержания в них радиоактивных изотопов. Наиболее удобным способом является, вообще говоря, бумажная хроматография в сочетании с радиоавтографией [104—107]. Если на рентгеновской пленке обнаруживается только одно пятно, то это указывает на высокую степень изотопной чистоты исследуемого образца. Очевидные преимущества этого метода состоят в чувствительности и экономии вещества, а также в возможности оценки самопроизвольного распада путем сравнения радиоавтографов, полученных в разное время [108—ПО]. [c.30]

    Фракционирование полимера методом осадительной хроматографии очень эффективно—за 30 ч можно получить до 50 очень узких фракций, хотя количество каждой фракции мало. Обработка результатов фракционирования описанным ниже способом позволяет получить кривые МВР со значительно лучшим разрешением по МВ,как в области низкомолекулярных, так и высокомолекулярных фракций, по сравнению с кривыми, полученными другими методами фракционирования. [c.155]

    Большие возможности перед исследователями привкусов и запахов открылись с развитием газожидкостной хроматографии (ГЖХ). В последние годы газохроматографический анализ приобретает все более широкое применение в различных областях научных исследований и аналитической практике как универсальный и высокоэффективный способ для изучения многокомпонентных систем [56—58]. Особенно перспективно его использование для исследования смесей летучих органических веществ, анализ которых весьма трудоемок. По сравнению с описанными ранее суммарными инструментальными методиками контроля запаха этот метод более чувствителен (10 —10 %) и, что особенно важно, позволяет выделять отдельные ингредиенты, обусловливающие запахи природных вод. Последующая идентификация их состава и свойств разрешает отказаться от сугубо эмпирического подбора дезодорирующих средств и создает предпосылки для разработки научно обоснованной технологии обработки воды. Между тем до последнего времени в литературе имеется пока лишь ограниченное число работ, посвященных газохроматографическому анализу запахов в природных водах. [c.72]


    Кислые компоненты высококипящих дистиллятов американских нефтей (370—535 и 535—675°С) исследовались [36] с помощью ИК-, масс- и флуоресцентной спектроскопии определены карбоновые кислоты, фенолы, карбазолы и амиды. В ИКС обнаружены все характерные ПП 1750—1730 (С=0 мономера) и 1700—1710 (С=0 димера) карбоновых кислот 3585 и 3540 (О—Н) фенолов двух типов, 3460 (N—Н) карбазолов, 1700—1650 (С=0 мономера и димера) амидов. Для расчета относительных количеств каждого типа соединений предварительно были рассчитаны групповые молярные коэффициенты экстинкции из ИКС модельных соединений (табл. 1). Для всех типов соединений молекулярная масса принята равной 350. Для количественных определений предложены два ИК-метода. По первому снимались ИКС отдельных подфракций после гель-хроматографии кислого концентрата, измерялись площади под соответствующими ПП п вычислялось содержание каждого типа соединений в граммах. Затем строилась кривая весового распределения этого типа в подфракциях. Содержание каждого типа соединений в суммарном кислом концентрате определялось измерением площадей под кривыми весового распределения типов и сравнением их с площадью под кривой весового распределения кислого концентрата по подфракциям. Второй ИК-метод предусматривал запись ИКС всего кислого концентрата, определение интегральных интенсивностей для каждого типа соединений в концентрате и расчет концентраций в образце. Основная трудность состояла в правильном разрешении (рис. 2) сложных контуров поглощения в областях 3600—3400 (фенолы и карбазолы) и 1800—1600 см (карбоновые кислоты, амиды, ароматические кольца). Преимущество второго способа — в быстроте определения. [c.28]

    При помощи описанных выше методов могут быть исследованы такие количества образца, которых достаточно для поддержания необходимого давления в процессе съемки спектра. Во многих случаях малое количество исследуемого образца смешивают или адсорбируют на большем количестве относительно нелетучего материала. Так делают в тех случаях, когда, например, газообразный образец адсорбирован на активированной окиси алюминия, когда необходимо идентифицировать следы растворителя в измельченном материале с производства конкурента для того, чтобы выяснить способ его получения. Эта методика применяется при идентификации следов летучих примесей в почти чистом органическом материале (например, полупродукте, используемом в производстве полимера) или при выделении образца из смеси методом хроматографии на бумаге. При решении подобных задач в систему должно быть введено гораздо большее количество образца, и для получения паров в общем случае приходится повысить температуру по сравнению с той, которая была необходима для получения того же давления пара из неадсорбированного образца. Все остальные операции остаются без изменений. [c.190]

    Существует еще один способ идентафикащш, основанный на одновременном использовании двух детекторов. Один детектор неспещ1фичен (катарометр, рефрактометр), а интенсивность сигнала другого детектора зависит от природы вещества, например детектор ЭЗ в газовой хроматографии (ГХ) или УФ-детектор в жидкостной хроматографии. Сравнение хромато-1рамм, полученных с помощью двух детекторов, дает информацию, например, о составе и функщюнальных группах органических веществ. [c.290]

    Li J.W..Kim S.H., Kim H.J. - Пунсак хвахак,1974,12,JiI,8-Н(кор. рез.англ.) РЖХим.1974.23Д60. Изучение твердых носителей неподвижных фаз для анализа методом газо-жидкостной хроматографии.(Обсуждены способы измерения адсорбционных свойств носителя для сравнения различных носителей). [c.93]

    Несмотря на некоторые трудности работы с капиллярными колонками, они находят широкое применение при решении различных аналитических задач, иногда трудно разрешимых с помощью других способов газовой хроматографии. Это возможно вследствие ряда преимуществ капиллярных колонок черед наполненньши. Сюда относится возможность упеяичения скорости анализа при сохранении той же эффектиэностн разделения или увеличения эффективности по сравнению с обычной колонкой такой же длины при том же времени анализа возможность производить анализ с очень малыми пробами, что бывает необходимо, например, в важных биологических исследованиях возможность работы при давлениях, меньших, чем обычно требующиеся при [c.550]

    Известно 110—13], что более рациональным и воспроизводимым способом характеристики удерживания в газожидкостной хроматографии являются индексы удерживания, предложенные Ковачем 14, 15], основанные на сравнении удерживания веществ с удерживанием ряда однотипных стандартов — нормальных углеводородов. Несмотря на подробную разработку метода бесстандартной идентификации для углеводородов, их галогензамещен-ных и оксипроизводных [14—16], система индексов удерживания на азоторганические соединения распространена недостаточно [17—21], В работах [17, 18] приведены индексы удерживания первичных алифатических аминов. В работах Авотса [19, 20] приведены индексы удерживания метилпиридинов на 4 фазах (апиезон М, силикон Е-301, ТВИН 80 и полиэтиленгликоль 6000), а также 6 бициклических производных пиридинов на апиезонеМ и силиконе Е-301. Наиболее подробное исследование алифатических и гетероциклических аминов приведено в работе Андерсона с соавторами [21, 22]. [c.96]

    Групповой состав концентрагов сераорганических соединений, определялся методом линейной жидкостно-адсорбционной хроматографии [51. В исследованных концентратах содержание сульфидов составляет 60—65, тиофенов и моноциклических ароматических углеводородов —30 и нафтенопарафиновых углеводородов 5—Г0%. Сравнение результатов исследования группового состава концентратов сераорганических соединений, регенерированных из сернокислотного раствора двумя методами кoмбиниpoвaннымL способом и гидролизом водой показывает значительные преиму- [c.229]

    Один из способов расшифровки заключается в непрерывной съемке масс-спектра в широком диапазоне массовых чисел за время, малое по сравнению со временем появления одного хроматографического пика. Это возможно осуществить при использовании динамических масс-спектрометров. Голке [228] скомбинировал газо-жидкостной хроматограф и [c.127]

    Хроматография без газа-носителя . Непосредственное разделение компонентов смеси в отсутствие газа-носителя создает ряд преимуществ по сравнению с проявительным способом, где анализируемая проба разбавляется газом-носителем, а затем размывается в колонке, что осложняет определение микропримесей. При помощи этого метода удается решать задачи концентрирования в изотермическом режиме, определения количественного состава смеси по характеристикам удерживания, повышения точности анализа и определения физико-химических характеристик концентрированных растворов. Хроматография без газа-носителя позволяет коренным способом упростить хроматографическую аппаратуру, фактически устранить ошибки, связанные с дозированием. [c.21]

    Нередко применяют друмерную бумажную хроматографию проведя разделение способом, например, нисходящей хроматографии, лист бумаги поворачивают на 90° и повторяют разделение, но с другими растворителями (в этом случае разделяемые вещества будут характеризоваться уже другими значениями Rf). В результате после фиксации и окраски специфическими красителями получают хроматограммы (рис. 59), на которых пятна соответствуют каждому из разделяемых веществ. Для идентифицирования пятен обычно рядом со смесью разделяемых веществ наносят отдельно капельки чистых компонентов смеси (так называемые свидетели ) при сравнении их расположения [c.147]

    Нередко применяют двумерную бумажную хроматографию проведя разделение способом, например, нисходяп1ей хроматографии, лист бумаги поворачивают на 90° и повторяют разделение, но с другими растворителями (в этом случае разделяемые вещества будут характеризоваться уже другими значениями / /). В результате после фиксации и окраски специфическими красителями получают хроматограммы (рис. 67), на которых пятна соответствуют каждому из разделяемых веществ. Для идентифицирования пятен обычно рядом со смесью разделяемых веществ наносят отдельно капельки чистых компонентов смеси (так называемые свидетели ) при сравнении их расположения на хроматограмме с расположением пятен разделяемых веществ делают заключение об их тол<-дестве. Хроматограмма, приведенная на рис. 67, показывает, что смесь состоит из веществ А, В, О, какого-то неизвесгного вещества X и не содержит вещества С. [c.171]

    Преимущество газовой хроматографии по сравнению с другими способами разделения состоит в том, что в короткое время с высокой эффективностью при относительно малых производственных затратах можно провести аналитическое и препаративное разделение смеси веществ, В случае необходимости можно разделять небольшие количества пеществ (0,5—30 мг на колонках с носителем и всего несколько микрограммов на капиллярных колонках). Одновременно можно также проводить качественный и количественный анализы смессй. [c.100]

    С помощью жидкостной хроматографии можно быстро определить химический состав топлив, в частности содержание непредельных и ароматических углеводородов. Регистрационная жидкостная хроматография по сравнению с газовой более перспективна и удобна для проведения экспресс-анализов. Типичная схема установки жидкостной хроматографии (диэлектрографа) приведена на рис. 120. Сущность метода заключается в последовательной десорбции элюен-тов предварительно адсорбированного образца и регистрации состава десор-бата. Состав десорбата может определяться различными способами, например по диэлектрической про- [c.339]

    Существует радиохимический метод определения соединений с гидроксильными группами, в котором не требуется ни вводить поправок на нерадиоактивные примеси, ни готовить чистое меченое производное для каждого из определяемых соединений [126, 127]. Этот метод основан на использовании п-иодбензоил- Ч-хлорида. Он имеет высокую чувствительность и поэтому в принципе применим к определению пробы любого веса. Однако в этом методе требуется, чтобы определяемые соединения этерифицировались количественно и, кроме того, чтобы образующиеся эфиры можно было выделять или разделять с помощью жидкостной хроматографии. После введения в колонку порции раствора эфира или смеси эфиров обычным образом ведут проявление подходящим растворителем. При этом от верхнего конца колонки к нижнему перемещают датчик сцинтилляционного счетчика, которым измеряют уизлуче-ние изотопа и определяют тем самым распределение радиоактивности вдоль колонки. В другую такую же колонку (колонку сравнения) вводят известное количество подходящего эфира, образованного тем же меченым реагентом, и тем же способом измеряют распределение радиоактивности вдоль нее. После этого определяют площади пиков на полученных радиохроматограммах. Содержание М (мМ) каждого соединения с гидроксильными группами в пробе вычисляют по формуле [c.80]

    На приведенных ниже диаграммах сравниваются некоторые хроматографические характеристики линейного и кругового разделения. В качестве основы для сравнения взяты различные величины 2/ элюента. Разделение проводили восходяш,им способом в N-кaмepe с насыщенной атмосферой или в чашке Петри, подавая растворитель к перевернутой пластинке через подводящий фитиль диаметром 2 мм. На рис, 6.1.5 сравнивается разрешение двух пар красителей при разделении линейным и круговым методами с помощью липофильного элюента. В круговом методе пробу наносили в центр пластинки. В обоих случаях величину измеряли от точки подвода растворителя. При разделении двух веществ с высокими значениями например фиолетового и зеленого красителей, разрешение i s (изменяется от 20 до 50 мм) значительно увеличивается в линейном варианте и в меньшей степени в круговом методе. Только при = 20 мм оба метода дают равноценную эффективность разделения. При = = 50 мм соотношение разрешений составляет 5,1 3,4, причем большая величина относится к линейной хроматографии, что соответствует относительному улучшению разделения на 50%.. Этот результат получен при сравнении эффективности разделения двух веществ с меньшими величинами например зеленого и голубого красителей. В последнем случае значительное улучшение разрешения с возрастанием длины пути разде.пения наблюдается в обоих методах. Когда 2/ = 20 мм, разрешение, полученное круговым методом, на 24% выше, чем линейным, но при 2/ -= 50 мм эта величина уменьшается до 3%. Приведенные результаты нодтверн дают хорошо известный факт, что круговую хроматографию лучше использовать для разделения веществ с более низкими значениями [c.140]

    Количественное определение сложных эфиров в условиях ТСХ проводят одним из трех методов 1) методом элюирования 2) измерением плоихади пятна ручным способом либо в отраженном свете с применением соответствуюихей аппаратуры 3) сравнением о/краоки с эталоном (полуколичественный метод). Эффективна для анализа пластификаторов газовая хроматография [64 . [c.62]

    При другом способе комбинирования ГХ и ТСХ применяют микропрепара-тивные сборники фракций, отличающиеся более высоким процентом улавливания (при оптимальных условиях до 98%) разделенных веществ в сравнении с тонким слоем сорбента на пластинке. Преимуществом этого способа является возможность с помощью повторных разделений накапливать компоненты, присутствующие в разделяемой смеси в следовых количествах. В качестве ловушек применяют U-образные капилляры с внутренним диаметром от 1 до 3 мм [221, 222]. В капилляр вводят около 2 мкл подходящего растворителя (обычно четыреххлористого углерода). Ловушку опускают в сосуд Дьюара с жидким азотом. Как только детектор хроматографа начинает регистрировать хроматографический пик, ловушку с помощью силиконовой или тефлоновой трубки соединяют с выходом газохроматографической колонки. Фракция, элюирующаяся из колонки, почти количественно адсорбируется на пористой поверхности кристаллических частиц растворителя. После выхода зоны вещества ловушку отсоединяют и отобранную фракцию либо сразу хроматографируют в тонком слое, либо хранят в жидком азоте. По окончании газохроматографического разделения отдельные фракции размораживают, содержимое ловушек смывают соответствующим растворителем (около 20 мкл) и наносят на старт хроматографической пластинки. Для нанесения образца целесообразно один из концов ловушки предварительно вытянуть в капилляр. [c.144]

    Методы переработки для выделения подвергаемых хроматографическому разделению экстрактов определяются свойствами исходного материала, формой применения и количеством находяш ихся в нем витаминов. В природных продуктах витамины находятся не в свободном состоянии, а каким-то образом связаны. Искусственно полученные препараты для стабилизации часто заключают в желатину. Из однородных проб (раствор, порошок) витамины известным способом экстрагируют непосредственно или после гидролиза. Полученные таким образом экстракты после концентрирования и дальнейшей очистки (например, методом вымораживания или колоночной хроматографии) наносят на пластинки для ХТС и подвергают одно- или двумерному хроматографированию, используя соответствующ ие растворители. Обнаружение витаминов на пластинке осуш ествляют либо при рассматривании в свете с различной длиной волны, либо при опрыскивании соответствую-пщми реактивами . Для количественных расчетов целесообразно проводить сравнение со стандартом, прошедшим стадии хроматографического разделения, элюирования и последуюш,его физико-химического определения. Для определения витаминов можно использовать также биоавтографию, т. е. [c.212]

    Неоднородность химического состава арабиногалактанов может быть обусловлена ходом метаболизма его в процессе жизнедеятельности дерева. Однако абсолютное сравнение химического состава арабиногалактанов, скорее всего, неправомерно, поскольку они выделены и очищены различными методами. Так, например, различное содержание уроновых кислот в арабиногалактанах может бьггь следствием используемых способов очистки арабиногалактаны лиственницы сибирской, очищенные от сопутствующих компонентов методом хроматографии на ОЕАЕ-целлюлозе [18] и полиамиде [19], не содержат остатков уроновых кислот. [c.331]

    Интересное видоизменение неподвижной фазы было предложено Эггертсеном с сотр. которые заменили обычный инертный твердый носитель веществом с некоторыми адсорбционными свойствами. Таким путем была уменьшена отчетливо проявляющаяся хвостовая часть хроматографических пиков, обусловленная нелинейностью изотермы адсорбции, т. е. носитель с адсорбционными свойствами даже улучшает возможность разделения по сравнению с инертным носителем. Так, напри.мер, при использовании сажи, пропитанной (1,5% по массе) гидрогени-зированным скваленом (углеводород эмпирической формулы СзоНбо), было осуществлено разделение изомерных насыщенных углеводородов с пятью углеродными атомами, чего не удавалось достичь при обычном способе газожидкостной хроматографии. [c.551]

    Групповой состав кислых концентратов, выделенных щелочной экстракцией из сеноманской нефти (Вань-Еганское месторождение) и из нижнемеловой (товарная западно-сибирская) [23], приведен в табл. 4.6. Данные по групповому составу кислот показывают, что кислотные концентраты из нижнемеловой нефти содержат значительно больше алифатических кислот по сравнению с нефтью сеномана — 49,6 и 6,4% соответственно. В то же время концентраты кислот выделенные из нефти Самотлорского месторождения методом адсорбционной хроматографии на силикагеле, модифицированном силикатом калия [19], содержат значительно меньше алифатических кислот ( 24%), чем концентрат кислот товарной нефти (см. табл. 4.6), хотя эти нефти близки по своим физико-химическим характеристикам, вследствие того что самотлорская нефть составляет основную часть товарной. Различие в групповом составе кислот этих нефтей связано, видимо, со способом выделения концентрата кислот. Адсорбционная хроматография на модифицированном сорбенте позволяет выделить кислоты полностью, а щелочной экстракцией — в основном низкомолекулярные. По- [c.105]

    Для измерения Др существует несколько способов. Первый из них основан на разделении острием призмы светового луча, прошедшего через полую призму с раствором и растворителем и измерении разности сформированных таким образом световых потоков. Передвигая призму, можно добиться выравнивания световых потоков. При этом перемещение разделительной призмы будет пропорционально Are" и может быть соответственно зафиксировано регистрирующим прибором (эта схема используется в рефрактометрическом детекторе хроматографа ХЖ-1302). Сравнение световых потоков может производиться путем измерения электрического сигнала, соединенных навстречу друг другу фотодиодов, если освещать их соответственно разделенными призмой лучами (рефрактометр R-401 фирмы Waters ). Это сравнение сигналов может производиться и путем последовательного отбрасывания обоих световых потоков на фотоумножитель (рефрактометрический детектор хроматографа ХЖ-1303). Для измерения отклонения луча используется также растровая техника, где падающий на призму световой луч проходит через растровую маску и затем после преломления попадает на фотодиоды, прикрытые растрами, смещенными па одну полосу друг относительно друга. В этих условиях свет, падающий на один фотодиод, будет усиливаться, а на второй, соответственно, ослабляться. Вполне понятно, что растровый метод удваивает чувствительность измерения отклонения светового луча, прошедшего через призму. [c.93]

    Топчиева и сотр. [11] изучали методом газовой хроматографии зависимости удельных удерживаемых объемов циклогексана, бензола, метилциклогексана, метилциклогексенов, толуола и н-ген-тана на окиси алюминия от температуры. Величины удерживаемых объемов убывали при переходе от ароматических к циклогексановым углеводородам, а введение метильного радикала в кольцо увеличивало удерживаемый объем. Циклогексан имел большую теплоту адсорбции, чем циклогексеп меньшая энергия взаимодействия циклогексеиа с окисью алюминия объясняется авторами тем, что имеет место реберная ориентация циклогексеиа на поверхности сорбента [12]. Так как циклогексеп легче подвергается каталитическим превращениям на окиси алюминия, делается заключение, что более каталитически активный на данном сорбенте углеводород обладает не только меньшей теплотой смачивания, как было установлено ранее [13], но и меньшей теплотой адсорбции. Аналогичная зависимость была найдена и для углеводородов состава С,. Более высокую теплоту адсорбции, полученную в этой работе, по сравнению с данными Эберли [7] авторы объясняют различием способов приготовления окиси алюминия и структурных характеристик. [c.123]

    КИСЛОТОЙ карбоксиметилцеллюлозу в кислотной форме получали обработкой ее натриевой соли 1 М соляной кислотой с последующим промыванием дистиллированной водой со скоростью 1 мл/мин до исчезновения хлорид-ионов). Поскольку сродство карбоксиметилцеллюлозы с ароматическими аминами по сравнению с альгиновой кислотой ниже, в качестве подвижной фазы применяли воду. Этот способ позволяет отделять л-аминобен-зойную кислоту от других аминов, в частности от п-аминобензойной кислоты и л<-нитроанилина. Аналогичным способом на альгиновой кислоте можно разделить все изомеры аминобензойной кислоты. Амины, которые прочно связываются с карбоксиметилцеллюлозой, можно элюировать 1 М уксусной кислотой. Применение этого растворителя позволяет отделять бензидин от м- и п-фенилендиаминов. Обратимую хроматографию ароматических аминов можно проводить на тефлоне-б, обработанном циклогексаном [15]. [c.282]


Смотреть страницы где упоминается термин Хроматография сравнение способов: [c.402]    [c.560]    [c.152]    [c.182]    [c.85]    [c.239]    [c.18]    [c.126]    [c.10]    [c.290]   
Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.149 ]




ПОИСК







© 2024 chem21.info Реклама на сайте