Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк, влияние его содержания

    При исследовании процесса получения высокочистого стеклообразного сульфида мышьяка взаимодействием трихлорида мышьяка с сероводородом в газовой фазе показано влияние процессов хемосорбции на конденсацию сульфида мышьяка и содержание в нем примесей. [c.268]

    Сплавы на основе меди. Ингибированная морская латунь с содержанием приблизительно 70 Си — 30 2п с небольшими добавками мышьяка или сурьмы является в США стандартным материалом для конденсаторов, охлаждаемых морской или соленой водой, с трубными досками, изготовляемыми из прокатанной морской латуни (60 Си — 40 2п). В Великобритании и в европейских странах чаще используется латунь вследствие ее лучшего противодействия влиянию скорости потока. Латунь обладает коррозионной стойкостью в отношении конденсатов, содержащих СО2, в вакуумных конденсаторах паровых турбин и, как было показано выше, конденсатов с содержанием Н.23. Однако она подвержена воздействию растворов аммиака, и в случаях, когда конденсат или охлаждающая вода содержат аммиак, латунь обычно не используют. [c.316]


    Процесс платформинга осуществляется при температуре порядка 500°С под давлением водородсодержащего газа 2—4 МПа. Содержание водорода в циркулирующем газе от 75 до 90%. Коксообразование при этом сильно тормозится. Платиновый катализатор весьма чувствителен к сернистым соединениям. Дезактивация катализатора происходит и под влиянием азотистых соединений, а также соединений свинца и мышьяка. Особенно велики требования к чистоте сырья при использовании полиметаллических катализаторов, которые исключительно чувствительны к воздействию каталитических ядов. [c.244]

    ТАБЛИЦА 21. ВЛИЯНИЕ режима промывки на содержание МЫШЬЯКА [c.85]

    В табл. 35 приведены данные электролиза без анодной диафрагмы и с анодной диафрагмой из коллодия, пропускающей ионы, но -исключающей проникновение коллоидных частиц. Приведенные данные указывают на то, что переход сурьмы на катод осуществляется как за счет переноса и разряда ионов (электрод с диафрагмой), так и за счет катафоретического перехода на катод частиц основных солей, образующих при коагуляции хлопья пловучего шлама. Это, несомненно, имеет место и при переходе на катод мышьяка. Гидролиз солей мышьяка, сурьмы, висмута и образование коллоидальных растворов основных солей много опаснее с точки зрения попадания на катод примесей этих элементов, чем прямой разряд их ионов. Поэтому высокая кислотность раствора — обязательное условие для получения меди с минимальным содержанием примесей. Влияние кислотности на переход сурьмы в катодный осадок показано в табл. 36. [c.154]

    Совместное влияние примесей. Работами ряда авторов установлено, что совместное влияние двух примесей сказывается на выходе по току, ак правило, значительно сильнее, чем следовало бы ожидать исходя из предположения о независимом действии каждой примеси в отдельности. В частности, более сильным оказывается совместное действие таких примесей, как 8Ь и Со, 8Ь и Си, 8Ь и №. С другой стороны, клей и желатина уменьшают вредное действие ряда примесей, сурьма парализует действие органических примесей в электролите, марганец, благодаря образованию на аноде МпОа, обладающей адсорбционными свойствами, уменьшает вредное действие мышьяка сурьмы, меди. Поэтому, устанавливая допустимые пределы содержания в электролите той или иной примеси, необходимо учитывать это обстоятельство. [c.452]

    Висмут плохо растворяется в меди (менее 0,002%)- При содержании в меди 0,005% и выше висмута медь разрушается в процессе ее горячей обработки. Следует отметить, что присутствие в меди никеля, мышьяка и сурьмы несколько ослабляет вредное влияние висмута. [c.144]


    Платиновый катализатор весьма чувствителен к действию различных примесей газообразных и твердых (пыли) веществ. Особенно вредным является углерод, образующийся при разложении нестойких в условиях синтеза углеводородов. Катализатор отравляется необратимо под влиянием этилена, пропилена и высших олефинов и особенно при наличии в газе 0,1% ацетилена. Присутствие в газе до 0,1% сероводорода приводит к обратимому отравлению катализатора. В отсутствие сероводорода в газе катализатор, ранее отравленный сероводородом, быстро восстанавливает свою активность. Содержание окисн углерода до 8—10% не оказывает влияния на действие катализатора, а присутствие водорода в некоторой степени благоприятно сказывается на работе катализатора, предотвращая отложение углерода на его поверхности Резкое снижение активности катализатора происходит при попадании на него л<елеза, меди, свинца, а также при содержании в газе ничтожных количеств (0,00001%) соединений фосфора и мышьяка. Поэтому исходные реагенты — метан, аммиак и воздух — тш.а- [c.482]

    Опытные данные показывают, что величина Я для разных веществ сильно разнится, а для одного и того же вещества зависит от температуры, плотности, структуры, влажности и других факторов. Наибольшая теплопроводность наблюдается у металлов, для которых значения к при 20 °С находятся в пределах 2,3—418 Вт/(м-К), причем верхний предел относится к серебру. Далее следуют красная медь (X 395), золото Я яй 300), алюминий ( t 210), цинк ( t = 113) и т.д. На коэ ициенты теплопроводности металлов оказывают большое влияние примеси и их концентрация, а также структурные изменения, вызванные термической обработкой, ковкой, вытяжкой и т. п. Так, например, следы мышьяка уменьшают коэффициент теплопроводности меди на 60—65%, а 1% примесей понижает к для алюминия на 15%. Величина к для углеродистой стали падает с ростом содержания углерода, марганца и серы. В результате закалки коэффициент теплопроводности углеродистой стали снижается на 10%. Наконец, для большинства металлов величина к уменьшается с ростом температуры. [c.267]

    Другим важным фактором является термический цикл, которому подвергается материал при изготовлении. У 1 % Сг, Мо стали наблюдается резкое увеличение когда осуществляется отпуск при температурах 350—450° С, которое сопровождается относительно небольшим уменьшением предела текучести (рис. 9.10). Таким образом, следует использовать сталь в таком состоянии, при котором достигается высокое значение Кю-В заключение рассмотрим влияние чистоты стали и сплавов на вязкость разрушения. Исследования [6] титановых сплавов показали,., что вязкость значительно увеличивается у материала более высокой чистоты, хотя и наблюдается некоторое уменьшение прочности. Исследования [5] 2% N1, Сг и Мо стали показали, что когда сталь подвергалась термообработке на предел текучести, равный примерно 125 кгс/мм , К, с для чистой стали составлял более 320 кгс/мм / , в то время как для стали, содержащей 0,014% 5 и 0,010% Аз в качестве примесей, К1с уменьшался до 135 кгс/мм /2. Результат показывает, что "наблюдается по крайней мере шестикратное уменьшение допустимого размера дефекта, вызываемое введением примесей серы и мышьяка. Таким образом, нельзя пренебречь влиянием чистоты стали на вязкость разрушения. Особенно это касается таких элементов, как сера, фосфор, мышьяк, олово и, возможно, сурьма, в то время как в большинстве спецификаций на сталь задается только максимальное содержание серы и фосфора и оно может быть достаточно высоким по сравнению со значениями, которые требуются для получения оптимальной вязкости разрушения. Вероятно, для создания сосудов давления, рассчитанных с учетом вязкости разрушения, потребуется пересмотреть спецификации на высокопрочные материалы. [c.392]

    Объемный потенциометрический метод является одним из лучших методов определения кобальта, подучившим в настоящее время широкое распространение. К сказанному о нем выше следует добавить, что никель не реагирует с Кз[Ре(СК) ] и не мешает титрованию кобальта, даже когда присутствует в большом количестве (например, при анализе металлического никеля). Не мешают также цинк, медь и мышьяк (V). Мешают железо (II), мышьяк (III) и значительные количества железа (III). Для устранения мешающего влияния последнего его связывают в комплекс винной кислотой или ее солью. При титровании надо соблюдать следующие условия температура раствора должна быть не выше 25 С раствор должен содержать 20—25 мл концентрированного раствора аммиака и не менее 5 з хлорида аммония в 100 мл следует добавлять iQ мл 30%-ного раствора лимонной кислоты или цитрата аммония содержание кобальта не должно превышать 0,05 г в 150—180 мл] концентрация применяемого титрованного раствора гексацианоферрата (III) калия должна быть не ниже 0,05 М. Кроме указанного выше обратного титрования, применяется и прямое титрование раствором Ks[Fe(GN)e]. [c.477]


    Примесь к цинку железа, меди, мышьяка и сурьмы очень сильно снижает сохранность элемента. Содержание железа не должно превышать 0,02%. Содержание меди, мышьяка и сурьмы должно быть (каждого) менее 0,005%. Отрицательное действие оказывают также олово , никель и кобальт. Значительная примесь кадмия к цинку несомненно сказывается отрицательно. Содержание нескольких десятых процента кадмия оказывает влияние только на механические свойства цинка. Алюминий, повидимому, не оказывает вредного влияния, к тому же он редко бывает примешан к цинку.  [c.71]

    Влияние концентрации стимулятора на наводороживание показано на рис. 20. Зависимость (рис. 21) стимулирующего действия добавки мышьяка от ее содержания проходит через максимум [c.43]

    Висмут в количестве, превыщающем 0,05%., неблагоприятно действует на стойкость аккумуляторных пластин в серной кислоте [9]. Вредное влияние оказывают также мышьяк, кобальт, медь, ртуть, олово и цинк при содержании 0,002—0,5%. Однако это действие проявляется не так сильно, как предполагалось первоначально [19, 20]. Незначительные присадки теллура (0,03—0,1%) улучшают стойкость в концентрированной серной кислоте [21]. В производстве серной кислоты по башенному методу степень чистоты, как правило, не оказывает решающего влияния на коррозию. Однако следует избегать загрязнений висмутом [20, 22]. [c.314]

    О влиянии мышьяка на содержание газа в стекле (сравните Е. 1, 59) см. R. Н. Dalton [267], 16, 1933, 430. О вопросах аналитического определения различных степеней окисления железаи марганца,одновременно присутствующих в стекле, см. F. Salaquarda [227], [c.847]

Рис. 69. Влияние содержания сс лена в наполннтело на интенсивности аналитических линий германия и мышьяка. По оси ординат для верхней кривой отложено нормированное отношение интенсивностей Ое/Аз, а для нижних кривых — нормированная абсолютная интенсивность. По оси абсцисс дан химический состав растворяющих добавок к основному материалу [192]. Взаимное положение аналитических линий и краев поглощения показано на рис. 68, IV Рис. 69. <a href="/info/403306">Влияние содержания</a> сс лена в наполннтело на <a href="/info/860463">интенсивности аналитических линий</a> германия и мышьяка. По оси ординат для <a href="/info/130983">верхней кривой</a> отложено нормированное <a href="/info/140982">отношение интенсивностей</a> Ое/Аз, а для <a href="/info/130984">нижних кривых</a> — нормированная <a href="/info/575401">абсолютная интенсивность</a>. По оси абсцисс дан <a href="/info/2736">химический состав</a> растворяющих добавок к основному материалу [192]. <a href="/info/1728731">Взаимное положение</a> <a href="/info/18842">аналитических линий</a> и <a href="/info/135144">краев поглощения</a> показано на рис. 68, IV
    Наличие мышьякосодержащих соединений в угле и коксе до по следнего времени не учитывалось. Между тем, влияние мышьяка так ж вредно, как и фосфора. Обычно мышьяк в виде сульфидов со провождает пириты, распределенные в угле. Однако строгой за висимости между содержанием, пиритов и количеством мышьяка нет Содержание мышьяка (в пересчете на триоксид) в углях достигае [c.60]

    Нами было исследовано влияние гексана, хлороформа, треххлористого фосфора и четыреххлористого кремния на поверхностное натяжение треххлористого мышьяка. Суммарное содержание примесей в ис-пользуембм.треххлористом мышьяке не превышало 1 10- мол, %, содержание исследуемых примесей — мол. %. Измерения про- [c.70]

    На практике описанные выше методы очистки обеспечивают меньшее содержание примесей. Особенно, вредное влияние на катодное осаждение цинка оказывают германий, мышьяк и сурьма. Возможно, что эти примеси равномерно распределяются в цинке при совместном осаждении, и перенапряжение водорода на них мало. Кроме того, они образуют гидриды типа ОеН4. [c.273]

    ПОЛУПРОВОДНИКИ — вещества с электронной проводимостью, величина электропроводности которых лежит между электропроводностью металлов и изоляторов. Характерной особенностью П. является положительный температурный коэффициент электропроводности (в отличие от металлов). Электропроводность П. зависит от температуры, количества и природы примесей, влияния электрического поля, света и других внешних факторов. К П. относятся простые вещества — бор, углерод (алмаз), кремний, германий, олово (серое), селен, теллур, а также соединения — карбид кремния, соединения типа filmen (инднй — сурьма, индий — мышьяк, галлий — сурьма, алюминий — сурьма), соединения двух или трех элементов, в состав которых входит хотя бы один элемент IV—VII групп периодической системы элементов Д. И. Менделеева, некоторые органические вещества — полицены, азоаромати-ческие соединения, фталоцианин, некоторые свободные радикалы и др. К чистоте полупроводниковых материалов предъявляют повышенные требования, например, в германии контролируют примеси 40 элементов, в кремнии — 27 элементов и т. д. Тем не менее некоторые примеси придают П. определенные свойства и тип проводимости, а потому и являются необходимыми. Содержание примесей не должно превышать 10 —Ш %. П. применяются в приборах в виде монокристаллов с точно определенным содержанием примесей. Применение П. в различных отраслях техники, в радиотехнике, автоматике необычайно возросло в связи с большими преимуществами полупроводниковых приборов — они экономичны, надежны, имеют высокий КПД, малые размеры и др. [c.200]

    На практике описанные выше методы очистки обеспечивают меньшее содержание примесей. Особенно вредное влияние на катодное осаждение цинка оказывают германий, мышьяк, сурьма. Возможно, что эти примеси равномерно распределяются в цинке при совместном осаждении. Перенапряжение водорода на них мало, что снижает выход металла в катодном осадке. Кроме того, они образуют гидриды типа ОеН4. Выделение ОеН4 с поверхности катода или реакция АзНз и 5ЬНз с ионами Аз и ЗЬ, находящимися в растворе, способствуют разрыхлению поверхности цинка. [c.388]

    В прямогонной бензипо-лигроиновой фракции содержатся небольшие количества многочисленных примесей. Некоторые из них, в частности, сера, азот, хлор, кислород и различные металлы, папример мышьяк, могут вызывать отравление (или наоборот иромотпрование) катализатора. Металлы могут накапливаться на поверхности катализатора концентрация неметаллических примесей на зернах катализатора определяется главным образом равновесием адсорбции. При переходе на сырье, не содержащее неметаллических примесей, эти примеси испаряются с зерен катализатора, активность которого (в случаях, когда никаких других изменений не происходило) восстанавливается до первоначального уровня. При первых процессах риформинга, в частности при гидроформинге й стационарном слое, неуглеводородные примеси в сырье не оказывали отрицательного влияния частично вследствие того, что количество катализатора было весьма большим, благодаря чему влияние металлов значительно ослаблялось, а частично и вследствие влияния периодической регенерации катализатора, препятствовавшей накоплению примесей до нежелательного уровня. При современных регенеративных процессах, осуществляемых на недрагоценных металлах, влияние второстепенных примесей также сказывается незначительно. Однако превосходное соотношение между выходом и октановым числом, достигаемое при процессах риформинга на платиновых катализаторах, выдвигает необходимость удаления каталитических ядов для возможности переработки на этих катализаторах даже сырья с максимальным содержанием нежелательных примесей. [c.220]

    При изучении влияния мышьяка на результаты определения молибдена [760] раствор молибдата в 1,5 N Н2804, содержащий различные количества мышьяка, восстанавливали жидкой амальгамой цинка, затем титровали его 0,1 N КМПО4. При этом для молибдена всегда получали слишком высокие результаты, а конечная точка титрования была неотчетливой. Таким образом, мышьяк мешает определению молибдена. При растворении сталей в соляной кислоте мышьяк, улетучивается в виде АзНз и, таким образом, не мешает определению молибдена. Но при высоком содержании мышьяка в сталях (более 0,16%) необходимо произвести отгонку его в виде АзНз перед тем, как отделять шестивалентный молибден от железа при помощи бЛ NH40H. [c.183]

    В последнее время использование рентгенофлуоресцептного метода для определения мышьяка значительно возросло. Это объясняется рядом преимуществ этого метода, в том числе большой экспрессностью анализа и хорошей точностью результатов. Последняя достигается при использовании стандартных образцов, в которых другие элементы содержатся в тех же количествах. В связи с этим рентгенофлуоресцентный метод удобен для контроля содержания мышьяка в металлах, их сплавах и материалах с постоянным содерн<анием других элементов. Делаются также попытки учета влияния других элементов, содерн аиие которых в анализируемом материале отличается от их содержания в используемых стандартных образцах [1126]. [c.98]

    Предложен метод определения германия, фосфора и мышьяка [625], основанный на спектрофотометрировании желтых" пятен гетерополикислот определяемых элементов после их разделения хроматографированием на бумаге и проявлении азотнокислым раствором парамолибдата аммония. В качестве подвижного растворителя применяют бутанол, насьпценный 10%-ной HNOg. Разделение проводят методом нисходяш ей хроматографии. Метод применим для определения 2 мкг фосфора в присутствии 20-кратного количества Si, As, V и 5-кратного количества Ge. Если количества Fe, Мо и W соответственно составляют менее чем 0,15, 1,25 и 2,5 ч. от присутствующего количества фосфора, то эти элементы не мешают анализу. Хром мешает определению, если содержание его составляет более чем 0,15 ч.от присутствзтощего содержания фосфора. Мешающее влияние Fe и Сг, по мнению авторов, обусловлено образованием фосфатных комплексов этих элементов. [c.102]

    При изучении кристаллов алмаза, полученных из шихты, содержащей Аз, установлено, что влияние этой примеси на полупроводниковые свойства образцов устойчиво проявляется только при одновременном присутствии в шихте и технологических добавок, обеспечивающих скорость роста кристаллов не более 1,7- 10 м/с. Очевидно, такие условия, при которых формируются практически безазотные кристаллы (см. гл. 18), и способствуют образованию в них электрически активных дефектов с участием атомов мышьяка. Легированный мышьяком в процессе роста алмаз обладает п-типом проводимости и удельным сопротивлением при ЗООК от 10 до 10 Ом м. На образцах с большим сопротивлением определить тип проводимости известными способами ие удается. На рис. 168 наблюдаются отчетливая корреляция между сопротивлением кристаллов и содержанием легирующей примеси в шихте, а также слабая анизотропия проводимости пирамид роста <111> и <100>. На температурных зависимостях сопротивления кристаллов п-типа проводимости имеются пологие участки, соответствующие энергии активации 0,008—0,03 эВ в низкотемпературной области и 0,25—0,58 эВ в высокотемпературной, что также можно объяснить наличием примесной зоны. [c.458]

    Токсическое действие. При использовании вещества в качестве антидота при отравлении свинцом в течение 19 дней токсического действия не выявлено. При этом содержание свинца в крови уменьшилось от 3,46 до 0,63 мкмоль/л. Побочных неблагоприятных эффектов не замечено. В то же время у 9 рабочих, в производственных условиях подвергавшихся воздействию свинца, после прекращения контакта с профессиональной вредностью без лечения содержание свинца в крови не уменьшалось. Введение внутрь вещества в дозе 30 мг/кг страдающим хронической энцефалопатией (в результате хронического отравления свинцом) дало положительный терапевтический эффект при отсутствии неблагоприятного побочного действия. Введение внутрь детям в возрасте от 1 до 5 лет в дозах 30 мг/кг в течение 5 дней и 20 мг/кг в течение 14 дней выявило хорошую переносимость препарата при высокой фармакологической эффективности. Как антидот при острых отравлениях мышьяком (0,7 ммоль/кг в/б или внутрь) наиболее эффективен среди различных дитиоловых соединений. В/в введение ежедневно по 20 мг/кг в течение 5 дней с последующим умещ.шением дозы до 10 мг/кг мужчине 26лет, принявшего внутрь Юг АзгОз, не оказывало неблагоприятного воздействия на ССС и состояние печени. При хроническом отравлении марган-цем влияние вещества на экскрецию его с мочой незначительно  [c.630]

    Мэкстед [181] нашел, что в известных границах уменьшение активнссти катализатора является линейной функцией количества яда. Он исследовал влияние свинца, ртути и мышьяка в качестве ядов для платинового катализатора. Пфвоначальное действие мышьяка, как изображено на фиг. 34, значительно больше, чем действие тех же ко- личеств в конце. Аналогичные кривые для отравления получены Мэкстедом и Льюисом [ШО] для разложения перекиси. водорода на платиновой черни, отравлен-лой ионами ртути. Прп нанесении на трафик мономолекулярной константы этой реакции, как функции концентрации яда, они получили кривую, похожую на 3 изображенную на этом чертоке. Началь- ную прямолинейную часть можно считать обусловленной той частью изотермы ад- сорбции ртути на платине, которая сама по себе прямолинейна. Последующее увеличение концентрации ионов рт ти в растворе не увеличивало ее количества на Фиг. поверхности катализатора. Таким образом, прямое соотношение между активностью катализатора и содержанием яда обнаруживается до определенной концентрации яда, после которой наклон кривой становится менее крутым и катализатор приближается к полной инертности. [c.391]

    Никель осаждается количественно из аммиачных растворов, неполностью — из слабокислых растворов и совсем не осаждается из сильнокислых растворов. (Следовательно, для количественного отделения меди от никеля необходимо лишь поддерживать достаточно высокую концентрацию кислоты.) Серьезное мешаюшее влияние при определении никеля оказывают серебро, медь, мышьяк и цинк, которые, однако, можно удалить осаждением сероводородом. Присутствие железа (II) и хрома-тов нежелательно з , они могут быть удалены осаждением в виде гидроокисей. В присутствии кобальта осаждаются оба элемента, но для количественного осаждения кобальта необходимо добавить сульфит, препятствующий образованию аминов кобальта (III). Добавление сульфита, однако, приводит к загрязнению выделившихся металлов серой. Поэтому поступают следующим образом выделившийся осадок растворяют, никель определяют по реакции с диметилглиоксимом, серу — путем осаждения ее в виде сульфата бария, а содержание кобальта находят по разности. [c.349]

    Описана методика [278] анализа серы и кобальта в нефтепродуктах с использованием радиоизотопного источника излучения Фт/А . В [279] обсуждены проблемы прямого определения никеля в нефти. Использован спектрометр со смешанной оптикой фирмы Силине № 52 360 с кристаллом ЫР и Ш-труб-кой (55 кВ, 40 мА). Определение никеля проводили по линии никеля /Са, а в качестве внутреннего стандарта применяли непрерывный спектр вблизи этой линии. Образцами сравнения для градуировки аппаратуры служили нефти, в которых содержание никеля было установлено фотоколориметрическим методом. Интервал определяемых концентраций никеля в нефти составил от 2-10 до 10 %. Содержания серы, водорода и углерода в пробах нефти сушественно влияют на определение никеля. При анализе нефтей с малоизменяющимся составом перечисленных элементов это влияние легко учитывается. В топливном мазуте и нефти обнаружены ванадий, никель, железо, цинк, молибден, мышьяк и селен методом РФА с дисперсией по энергии. Для простоты проведения анализа употребляли микромишени (диаметром 3—4 мм), в которые вводили исследуемый образец и растворы хрома и родия в качестве стандартных элементов. При анализе маловязких образцов можно использовать метод добавки одного элемента [280]. [c.70]

    Методом графического расчленения кривой временного спада интенсивности фотопиков от радионуклидов ванадия-52, никеля-65, натрия-24 в [354, 361] устанавливали их содержание в нефти, ее фракциях и золах. Учитывая мещающее влияние радиоизотопов магния-27, галлия-72, натрия-24, авторы [355] показали возможность обнаружения марганца и меди в нефти, ее фракциях и золах. Применяя аналогичный подход к проведению анализа, в [356—358] разработаны методики деления никеля, ванадия, марганца, меди, хрома, железа, хлора, натрия в нефтях и нефтепродуктах. Относительная погрешность анализа на алюминий и ванадий составила 15—18% хлора, марганца и натрия— 8—13%, а предел обнаружения для алюминия — 5-10 %, ванадия — 10 , хлора — 2-10 марганца — 5-10 , натрия — 10 . В [359, 360] наряду с освещением отдельных методических вопросов активационного анализа изложены некоторые результаты, представляющие интерес для нефтяной геологии и геохимии. В комплект измерительной аппаратуры входили 256-канальный амплитудный анализатор и сцинтилляционные детекто--ры двух типов УСД-1 с кристаллом Nal(Tl) 40X40 мм и двухкристальный датчик с Nal(Tl) 80X80 мм. В большинстве случаев количественно определяли натрий, медь, марганец, бром, мышьяк и кобальт. Для количественной интерпретации гамма-спектров использовали программу МНК-512 и ЭВМ типа М-20. Для измерения активности радионуклидов элементов мышьяка, кобальта, железа и цинка использовали спектрометр суммарных совпадений с дискриминатором. [c.90]

    Шах и др. [363] разработали методики нахождения микроэлементов в нефти по коротко- и среднеживущим изотопам. Они применили облучение образцов до интегральной дозы 12-10 н/см в полиэтиленовых ампулах. После двухминутной выдержки (охлаждения) облученных образцов проводили измерение серы, хлора, кальция, ванадия, марганца с использованием р-фильтров из бериллия и свинца. Второе измерение проводили спустя 5—20 ч для обнаружения натрия, калия, меди, галлия, брома уже без применения фильтров р-поглощения. При определении меди вводили нормализирующий фактор от влияния радиоизотопа натрия-24 для энергии 511 кэВ. Статистическая погрешность для кальция, серы, калия-<21%, для остальных эле-ментов<5%. Высокая относительная погрешность для кальция и ванадия соответственно 7,2 и 8,8% возникает из-за большой загрузки аппаратуры. Рассмотрены мешающие реакции при нахождении серы, марганца, меди от хлора, железа и цинка соответственно. Они же в [364] продолжили работу по разработке методики анализа по долгоживущим изотопам. Интегральная доза облучения составляла 2,3-10 н/см . После 48 ч охлаждения (в основном для спада активности натрия-24) устанавливали содержание мышьяка и золота. При втором измерении в течение 40 000 с (после 10—12 дней охлаждения) находили хром, железо, кобальт-58 (для никеля), цинк, кобальт, скандий, селен, ртуть, лантан (для урана), сурьму, европий. Учтены спектрометрические погрешности, возникающие от взаимного наложения полезных сигналов селена — ртути, скандия — цинка. Предложенная методика позволяет при двухкратном расходе образцов ( 2 г) определять 23 элемента. Подобный подход к анализу нефти применен в работе [365]. [c.91]

    Возникновение дефектов типа горячих трещин или образование трещин вследствие перенапряжений при охлаждении контролируется химическим составом основного и наплавленного металла. Контроль состава может обеспечить получение сварных соединений, которые не имеют трещин. Чувствительность высокопрочной стали к образованию горячих трещин увеличивается, если повышается содержание углерода, серы и фосфора. Кроме того, мышьяк, сурьма и олово также вредные примеси. Если требуется высокопрочная сталь, то для получения высокого предела прочности обычно повышается содержание углерода. При этом следует учесть влияние повышенного содержания углерода на сварку и одновременно ограничить содержание другйх вредных элементов. Соотношение между содержанием углерода, серы, фосфора и склонностью к образованию горячих трещин показано на рис. 9.11 [7, 8]. Диаграмма показывает, что если необходимо устранить возникновение горячих трещин, произведение процентного содержания углерода на содержание (5 % + Р %) должно быть не больше 0,007. Например, для стали с содержанием угле- [c.394]

    Малые количества мышьяка (<0,1 мг) могут быть извлечены из раствора соосаждением их с фосфатом магния и аммония, с которым аналогичная соль мышьяка образует смешанные кристаллы. Для этого мышьяк надо сначала перевести в пятивалентное состояние, прибавить двузаме-, щенный фосфат аммония в таком количестве, чтобы в 500 мл раствора содержалось 0,5 г PgOg, осадить магпезйальной смесью, отфильтровать и промыть осадок, как это делается при определении фосфат-ионов (стр. 784). Мешающего влияния железа, сурьмы, олова, алюминия и цинка можно избежать, прибавляя винную кислоту в количестве, достаточном для удержания этих элементов в растворе. Промытый осадок затем растворяют и в полученном растворе, определяют содержание мышьяка любым способом. [c.308]

    Значительное влияние на чувствительность определения элементов оказывает и относительное содержание активирующегося изотопа в их естественной смеси. Оно может колебаться от 100% для мопоизотопных элементов (например, мышьяка, золота, тантала и др.) до десятых долей процента и даже менее для многоизотопных элементов. Влияние атомного веса много меньше, особенно если учесть, что легкие элементы до неона (М = 20) обычно не определяются с помощью активационного анализа на тепловых нейтронах. [c.115]

    Влияние pH раствора на степень осаждения мышьяка. Эта серия опытов проводилась при постоянной температуре реакционной смеси 20° С и изменении pH от 7 до 9,5. Методика исследования заключалась в том, что свежеото-бранная проба фильтрата после I ступени нейтрализации (осаждение мышьяка серной кислотой) нейтрализовалась содой до заданного условиями опыта pH и обрабатывалась определенным количеством 10%-ного водного раствора сернокислого железа. Образующийся осадок отфильтровывался, а в фильтрате определялось содержание мышьяка колориметрическим методом на фотоколориметре ФЭК. [c.133]

    Реакция заключается в том, что анализируемое вещество помещают в пробирку, где имеет место энергичное выделение водорода в результате взаимодействия металлического цинка с 20%-ной соляной кислотой. Как в пробе Марша на мышьяк, и в этом случае происходит восстановление серы водородом в момент выделения. При горении водорода, выделяющегося через газоотводную трубку с оттянутым кончиком, в центральной части пламени заметна синяя окраска в том случае, если ана.лизируемое вещество содержит серу. При очепь малых количествах серы направляют пламя на белую фарфоровую поверхность, например па фарфоровую чашечку тотчас обнаруживается синий светящийся кружок. Наблюдения рекомендуется вести в темноте. Автор указывает на высокую чувствительность это11 реакции например, она позволяет обнаруживать 0,тиофена содержание сульфата в одной капле водопроводной воды (0,1у 80 является достаточным для достоверного открытия в ней серы. По утверждению автора, на реакцию мало влияют всякого рода примес . Мешающими являются селен, в меньшей мере — теллур олово дает эффект, аналогичный сере, но несколько иного цвета. Мышьяк и сурьма служат помехой при малом содержании серы, так как выделяющиеся в пламени частицы металла делают незаметным свечение серы в нем к этому же сводится вредное влияние бензола и других углеводородов, дающих коптящее пламя. Автор детально в специальной установке изучал механизм. процесса, вызывающего свечение, и пришел к выводу, что высвечиваются [c.139]

    Так как на фоне этих электролитов при потенциале полуволны (—0,40 В) восстанавливаются свинец, мышьяк, германий, ыедь и другие металлы, то необходимо устранить их мешающее влияние. Для этой цели наиболее удобным и быстрым является метод отделения таллия почти от всех мешающих элементов экстра-гирование.м его эфиро.м в виде трехвалентного из растворов бромнстоводородной кислоты. Когда содержание меди превышает 5%, она частично переходит в эфирный слой. При низком содержании переход меди мал и ее можно удалить промывкой эфирного слоя бро.мистоводородной кислотой. [c.367]

    Определение фосфорной кислоты в рудах, содержащих мышья к. Небольшие количества мышьяка не оказывают существенного влияния на результаты определений, если при осаждении цолиб-деновокислым аммонием наблюдать за тем, чтобы температура не поднималась выше 70° С и чтобы избыток азотной кислоты не был слишком мал. При высоком содержании мышьяка его удаляют выпариванием с хлористым железом, бромистозоэдродной кислотой или бромистым аммонием и концентрированной солялой кислотой. Из остатка обычным способом выделяют фосфорную кислоту и определяют по одному из указанных выше методов. [c.52]


Смотреть страницы где упоминается термин Мышьяк, влияние его содержания: [c.223]    [c.305]    [c.221]    [c.450]    [c.53]    [c.173]    [c.77]    [c.158]    [c.427]   
Коррозия металлов Книга 1,2 (1952) -- [ c.0 ]

Коррозия металлов Книга 2 (1952) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Мышьяк, влияние его содержания ее сплавов

Мышьяк, влияние его содержания коррозионную стойкость меди



© 2025 chem21.info Реклама на сайте