Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислота определение содержания в кислороде

    В сосуды заливаются щелочь, серная кислота, бром и пирогаллол. Раствор пирогаллола применяется для определения содержания кислорода, так как при работе в газ может попасть воздух (при отборе проб либо в процессе). Определение кислорода производится во всех газовых анализах. [c.214]

    В первичных продуктах окисления гуминовых кислот бурого угля [35] было обнаружено присутствие соединений с карбоксильными группами. Если содержание кислорода в карбоксильных и гидроксильных группах регенерированных гуминовых кислот сопоставить с общим содержанием кислорода, определяемым при помощи элементарного анализа, то между ними может быть обнаружено наличие значительного различия, говорящего о том, что при определении содержания кислорода в карбоксильных и гидроксильных группах от половины до трети содержания кислорода не учитывается вовсе. Весьма вероятно, что кислород этот находится в циклических или линейных эфирных структурах. Было проведено взаимодействие гуминовых кислот с реагентами, которые, как предполагалось, вступают в специфические [c.335]


    Сущность метода заключается в сжигании испытуемого продукта в калориметрической бомбе, в атмосфере кислорода в присутствии воды с образованием ортофосфорной кислоты и колориметрическом определении содержания фосфора в присутствии ванадиевокислого аммония и молибденовокислого аммония. [c.535]

    Определение стабильности масел против окисления по этому методу (ГОСТ 981—55) можно проводить в два этапа. Вначале окисляют масло в сравнительно легких условиях пропускают через него воздух в течение 6 ч при 120° С. После этого определяют в нем содержание нелетучих и летучих водорастворимых кислот. Если содержание их не превышает нормы (для трансформаторных масел не более 0,005 мг КОН на 1 з масла), то считается, что масло выдержало испытание на склонность к образованию водорастворимых кислот в начале старения. Второй этап называется определением общей стабильности против окисления. Здесь окисление ведется уже не воздухом, а кислородом при 120° С в течение 14 ч. В окисленном масле определяют процент осадка и кислотное число. Эти показатели и нормируются в технических нормах на турбинные, компрессорные и трансформаторные масла. [c.196]

    Проведение анализа. При определении содержания активного кислорода в пределах О—400 мкг/25 мл данные для калибровочного графика получают следующим образом. Растворяют 0,1270 г чистого иода в смеси 2 1 уксусной кислоты с хлороформом и в мерной колбе доводят объем этого раствора до 100 мл. В полученном растворе содержится 1,27 мг/мл иода, что эквивалентно содержанию активного кислорода 80 мкг/мл. Переносят пипеткой О, 1, 2, [c.192]

    Проведение анализа для определения малых количеств активного кислорода. При определении содержания активного кислорода в интервале 0—40 мкг данные для построения калибровочного графика получают следующим образом. Приготавливают раствор иода в смеси 2 1 уксусной кислоты с хлороформом с концентрацией [c.193]

    Сущность метода определение содержания углерода и водорода путем сжигания навески угля в струе кислорода и поглощения продуктов сгорания серной кислотой и едким кали в особых приборах, взвешиваемых до и после поглощения. По привесу этих приборов судят о количестве воды, образовавшейся от сгорания водорода, и углекислоты, образовавшейся от сгорания углерода, и на основе этих данных рассчитывают процентное со -держание водорода и углерода в исследуемом угле. Аналогичным путем определяют содержание водорода и углерода в других видах твердого топлива (кокс и т. п.). [c.44]


    Ускоренный метод можно применять для определения содержания двуокиси углерода, кальция и магния в известняках и доломитах [35, 72, 73]. Содержание двуокиси углерода оценивают по количеству титрованного раствора соляной кислоты, израсходованному на реакцию с карбонатами, с последующим титрованием избытка кислорода едким натром, затем в этой же пробе титруют кальций и магний комплексоном III с индикатором кислоты хром темно-синим. [c.82]

    Жижина и Кругликова [308] изучали послесвечение облученных (при комнатной температуре) водных растворов дезоксирибонуклеиновой кислоты ДНК. Хемилюминесценция наблюдалась при нагревании облученных растворов выше 4 ° С. Проведенное исследование показало, что свечение связано с распадом неустойчивых перекисных соединений ДНК, образующихся в ходе облучения в присутствие кислорода. По кинетике затухания свечения методами, описанными в главе V, были получены значения константы скорости распада перекисных соединений и энергии активации (13 ккал моль). Начальная интенсивность свечения пропорциональна концентрации перекисных соединений ДНК, что может быть использовано как метод определения содержания перекисных соединений в облученных растворах. Хемилюминесценция в этих системах, очевидно, связана с реакциями свободных радикалов, о чем свидетельствует ослабление свечения нри введении антиокислителей. [c.239]

    Для определения содержания ртути в углях 20—400 мг образца в никелевой лодочке сжигают в потоке кислорода (около 35 л/ч) при 400 °С. Продукты сгорания пропускают через два поглотителя с 5 мл раствора перманганата калия в 0,5 и. серной кислоте (1 /о масса/объем). По окончании сжигания пробы поглотительные растворы сливают в колбу вместимостью 100 мл, поглотители моют водой и промывные воды присоединяют к раствору, добавляют 10 капель 20%-ного раствора гидрохлорида гидроксиламина и объем раствора доводят водой до 100 мл. Затем 50 мл раствора переливают в сосуд для аэрации, добавляют 5 мл концентрированной азотной кислоты и 2 мл 20%-ного раствора хлорида олова. Раствор продувают воздухом (около 84 л/ч). Пары восстановленной ртути вместе с воздухом проходят через осушитель с перхлоратом магния и поступают в абсорбционную кювету длиной 18 см СФМ Перкин-Элмер , модель 303. Аналитическая линия 253,7 нм, ток ЛПК 8 мА, ширина щели 1 мм, О содержании ртути судят по высоте абсорбционного пика. В качестве эталона используют водный раствор нитрата ртути, содержащий 0,05 мкг/г ртути. Стандартное отклонение при концентрации ртути 0,59 мкг/г составляет 9,3% [320]. [c.234]

    Определение содержании активного кислорода в висмутате натрия проводят следующим способом. Навеску в О,70О г висмутат натрия помещают в коническую колбу и прибавляют 25 мл стандартного кислого раствора сульфата железа (II) приблизительно 0,2 н. концентрации [для его приготовления 7 г сульфата железа (II) растворяют в 90 мл свежепрокипяченной и охлажденной дистиллированной воды и добавляют серную кислоту до объема 100 мл раствор этот приготовляют и устанавливают его титр непосредственно перед употреблением]. Закрыв колбу пробкой, дают постоять 30 мин, временами взбалтывая, и титруют избыток соли железа (II) стандартным раствором перманганата. [c.62]

    Пирогаллол получается обычно нагреванием галловой кислоты (см. стр. 482), от которой при этом отщепляется СОа. Пирогаллол весьма быстро окисляется в щелочном растворе кислородом воздуха. Для того чтобы показать легкую окисляемость пирогаллола, в колбу насыпают небольшое количество его, приливают раствор едкого натра и быстро закрывают отверстие колбы проб- кой, соединенной с трубкой, другой конец которой опущен в стаканчик с подкрашенной водой (рис. 65). При взбалтывании пирогаллол начинает быстро буреть, а вода по трубочке поднимается вверх, занимая место кислорода, пошедшего на окисление пирогаллола, Пирогаллол применяется в фотографии как проявитель, а также при анализе газов для определения содержания кислорода в газовых смесях. [c.462]

    Дики и соавторы показали, что ди-грег-бутилперекись не реагирует с солями двухвалентного железа и не выделяет иод из раствора иодистого калия в уксусной кислоте Однако содержание активного кислорода в этой перекиси ожно определить путем нагревания ее в атмосфере инертного газа со смесью уксусной и 56%-ной иодистоводородной кислот при 60°С в течение 45 мин с последующим разбавлением и титрованием. С помощью этого метода определяют общее содержание перекисей, включающее и более реакционноспособные, а также и органические соединения неперекисного характера, способные реагировать с иодистоводородной кислотой. Определение активного кислорода в 2,2-ди-(грег-бутилперокси)-бутане, также медленно реагирующем в обычных-условиях, можно успешно провести при нагревании в течение 5 мин с иодистым натрием, уксусной кислотой и изопропиловым спиртом в атмосфере инертного газа к пробе затем прибавляют небольшое количество концентрированной соляной кислоты, снова нагревают до кипения, после чего разбавляют и титруют. Анализировать ди-грег-алкилперекиси этим способом не удается. [c.431]


    Химический анализ карбидов и нитридов обычно предусматривает определение углерода (связанного и свободного), азота и примесей в более тщательно проведенных работах прямым путем определяли также количество переходного металла. Содержание переходного металла обычно не определяют, потому что большинство методов приготовления образцов, в частности порошковая металлургия, обеспечивают малые потери металла. Эти анализы, однако, можно сделать для того, чтобы проверить точность определения углерода или азота при условии, что примеси присутствуют в малых концентрациях. Содержание углерода и азота может существенно изменяться в процессе приготовления образцов, и его необходимо определять. В карбидах, особенно богатых углеродом, не весь углерод связан, и в них присутствует вторая фаза в виде свободного углерода в этом случае необходимы специальные определения связанного и свободного углерода. Анализы примесей в основном включают спектральное определение предполагаемых примесей и определение содержания кислорода. Криге [39], а также Даттон и др. [41] дали исчерпывающие описания надежных методик химических анализов свыше 25 различных тугоплавких карбидов и нитридов. Количество связанного углерода можно определить как разность между общим и свободным углеродом. Содержание общего углерода определяется при нагревании карбида в токе кислорода карбид превращается в окисел, а углерод с кислородом образует СОг. Двуокись углерода абсорбируется аскаритом, и количество ее определяется по изменению веса последнего или цутем измерения теплопроводности горючей газовой смеси СОг—Ог, как это делается в теплотехнике. Чтобы определить количество свободного углерода, карбид растворяют в смеси плавиковой и азотной кислот. Свободный углерод не растворяется, образует осадок, который собирают, промывают, высушивают и затем сжижают до СОг для окончательного определения. При хорошей калибровке установки точность определения общего углерода составляет примерно 0,05%. Точность определения свободного углерода значительно меньше, что объясняется малым процентным содержанием свободного углерода в образце, образованием смол, потерей тонкоизмельченного углерода при фильтровании и, возможно, потерями свободного углерода, связанными с тем, что он находится в активированном состоянии [42]. [c.30]

    Определение содержания кислорода. Откупорив склянки, вносят в них пипеткой по 0,5 мл (в склянки вместимостью 250 мл, вносят по 1 мл) раствора МпС12 и реактив для осаждения. Склянки тотчас же закрывают пробками и хорошо взбалтывают. По осалсдении осадка склянки вновь открывают и вносят в них пипеткой по 2 мл фосфорной кислоты. Снова закрывают, встряхивают, чтобы весь осадок растворился, оставляют на несколько минут и титруют 0,01 н. раствором МагЗгОг до обесцвечивания, прибавляя в конце титрования 1 мл раствора иодида цинка и крахмала. [c.83]

    Далее учащиеся осваивают приемы определения содержания кислорода иодометрическим методом. Для определения железа применяют известные учащимся цветные реакции с роданидом или сульфосалициловой кислотой. [c.254]

    Отмечено, что метод с бензойной кислотой при определении содержания кислорода в литии дает лучшие результаты по срав- [c.156]

    Химический анализ эластомеров включает главным образом определение содержания кислорода, которое в случае не содержащих кислород полимеров должно быть менее 1%, и определение двойных связей при помощи хлориода или пербензойной кислоты. В натуральном каучуке и синтетических нециклизированных полидиенах находят число двойных связей, близкое к теоретическому. [c.496]

    Кук и др. [40] для определения содержания кислорода в органических образцах массой 0,5—1,4 мг применяли инфра-расную спектроскопию. Кислород обычным способом превращали моноксид углерода и измеряли его поглощение в инфра-Расной области спектра с использованием азота в качестве к осителя. Олсон и Калвер [41] применяли при определении Р лорода метод изотопного разбавления. Образец смешивали 550 Р Рной кислотой, меченной кислородом-18, и нагревали до ЗИП пониженном давлении. Образующиеся газы анали- [c.329]

    Отклонения содержания кислорода, полученные предлагаемым мзтодом, от теоретического значения для гидрохинона и стеариновой кислоты составляет 0,03-0,28 абс. При анализе нефтепродуктов расхоадения между параллельными определениями составили 0,1 абс. [c.113]

    После продоля ительной работы катализатор теряет активность вследствие отложений на нем углеродистых и смолистых веществ. Его нужно подвергать регенерации, которая заключается в регулируемом окислении топочными газами, содержащими определенный процент кислорода. Обычно регенерацию проводят после того, как с каждого моля ортофосфорной кислоты получают 100 молей полимеризата. При среднем содержании фосфорной кислоты в катализаторе 75% это соответствует съему 170 л жидких продуктов с 1 КЗ катализатора. На практике катализатор необходимо регенерировать каждые 60 суток. До момеита необратимой дезактивации катализатора, когда регенерация ие может уже повысить его активность до ирежней величины, с 1 кг контакта снимают 550—750 л полимеризата. После этого катализатор заменяют свеишм. [c.294]

    За содержание закисного железа в угле может быть также принята разница между содержанием общего железа и железа колчедана. Первое из них может быть определено путем обработки золы угля соляной кислотой. Для этого зольный остаток, полученный в тигле при определении содержания золы, аккуратно переносят в коническую колбу, прибавляют 50—60 мл разведенной (1 1) соляной кислоты и кипятят в течение 15—30 мин. до обесцвечивания нерастворимого осадка. Если железо растворяется трудно, прибавляют еще 20—25 мл крепкой соляной кислоты и выдерживают колбу а огне в пределах 1 часа. Солянокислый раствор отфильтровывают, остаток тщательно промывают горячей водой до отрицательной реакции на хлор. Нерастворимый остаток может иметь разные оттенки, бумажный же фильтр должен быть белым. Если фильтр окажется окрашенным в бурый цвет, что указывает на присутствие окиси железа, его переносят в фарфоровую чашку и обрабатывают 15—20 мл разведенной (1 1) соляной кислоты при нагревании до исчезновения бурого оттенка. Полученный в чашке раствор присоединяют к полученному фильтрату, жидкость переливают в мерную колбу, доливают ее дистиллированной водой до метки и определяют содержание железа по одному из методов, описанных в гл. X. Содержание колчеданного железа подсчитывают по колчеданной сере (см. гл. VI) (р20з) = 1,25 или Fe = 0,875 S . Найдя, таким образом количество закисного железа, можно подсчитать весовое значение реакции (6). исходя из следующих соображений. При окислении FeO в РезОз на каждую молекулу присоединяется один атом кислорода, т. е. на каждые 160 г РегОз 16 г кислорода. Следовательно, увеличение веса золы за счет этой реакции составляет 0,1 РегОз, найденной, в солянокислой вытяжке. [c.101]

    Оксид графита. Так называется слабоокрашенное непроводящее вещество, которое получается при действии сильных окислителей, наиример азотной кислоты или хлората калия, на графит. Структура графита растягивается в одном направлении измерения расстояния между слоями в таких соединениях показывают, что оно увеличивается от 3,35 А до величин, заключенных в пределах 6-н11 А это расширение соответствует увеличению содержания кислорода. Состав соединения не является точно определенным, но предельное содержание элемептов приблизительно соответствует формуле С40(0Н). Структура оксида значительно разупорядочена, но результаты электронографического изучения дегидратированного вещества (расстояние между слоями 6,2 А) [2] дают возможность предположить, что кислород может быть присоединен к гофрированным графитоподобным слоям двумя способами  [c.20]

    Качественные реакции. Измельченное сырье в количестве 0,04 г (см. раздел Определение содержания йода ) насыпают на кусочек целлофана (20X 20 мм), который сворачивают в виде пакетика, помещают в фиксатор и сжигают в колбе с кислородом вместимостью 300—400 мл (ГФ XI, вып.1, с.181). В качестве поглощающей жидкости используют 10 мл 0,5 % раствора крахмала, содержащего 0,2 % сульфаминовой кислоты. При наличии [c.377]

    Свойства. Оксиду графита нельзя приписать определенной химической формулы. Отношение С О колеблется между 6 1 и 6 2,5. Отношение С ОН составляет —4 1. Окраска сухого препарата может быть от коричневой до черной. Очень гигроскопичен из-за внутрикристаллического разбухания. При осторожном нагревании до 100 С и выше отщепляет СО и Oj быстрое нагревание сопровождается вспышками. Препарат обладает высокой способностью к обмену кислотных протонов (графитовая кислота) до 600 мг-экв на 100 г. Легко восстанавливается до графитоподобных продуктов при действии Sn2+, Fe +, HI, N2H4, NH2OH и др. Удельное сопротивление сухого препарата 10 —10 Ом-см (в зависимости от содержания кислорода). [c.676]

    Метод эмиссионной пламенной фотометрии рекомендован для определения содержания рения в молибденитах [742]. Предложенный метод анализа ие отличается экспрессностью выполнения, характерной для метода пламенной фотометрии. Рений(УИ) извлекают из кислых водных растворов экстракцией его циклогексаном после отделения основной массы молибдена в виде молибденовой кислоты фильтрованием. В кислород-ацетиленовое пламя подают полученный экстракт перрената. Абсорбцию света измеряют при 346 нм. Калибровочный график в данном режиме прямолинеен в области концентраций 25—500 мкг Яе/мл. Чувствительность определения составляет 1 —2,5 мкг Яе1мл. [c.164]

Рис. 97. Установка для определения содержания кислородаг 1 — баллон со сжатым водородом 2 — склянка, наполненная 30%-ным раствором едкого кали 3 — склянки, наполненные серной кислотой 4 — колонка с хлористым кальцием 5 — фарфоровая нлн кварцевая трубка, заполненная медной стружкой, для очистки водорода от кислорода 6 — трубкн с фосфорным ангидридом нлн ангидридом 7 — кварцевая трубка, закрыта с обоих концов резиновыми пробками со стеклянными трубками для входа н выхода водорода Рис. 97. Установка для <a href="/info/48177">определения содержания</a> кислородаг 1 — баллон со <a href="/info/838268">сжатым водородом</a> 2 — склянка, наполненная 30%-ным <a href="/info/148875">раствором едкого кали</a> 3 — склянки, наполненные <a href="/info/1812">серной кислотой</a> 4 — колонка с <a href="/info/32609">хлористым кальцием</a> 5 — фарфоровая нлн <a href="/info/377295">кварцевая трубка</a>, заполненная медной стружкой, для <a href="/info/48449">очистки водорода</a> от кислорода 6 — трубкн с <a href="/info/17324">фосфорным ангидридом</a> нлн ангидридом 7 — <a href="/info/377295">кварцевая трубка</a>, закрыта с обоих концов <a href="/info/49656">резиновыми пробками</a> со <a href="/info/49978">стеклянными трубками</a> для входа н выхода водорода
    Терефталевую кислоту получают окислением п-ксилола в среде уксусной кислоты в присутствии катализатора кислородом воздуха. Реакционная смесь при определенных соотношениях с кислородом может образовывать взрывоопасные концентрации. Парогазовая смесь л-ксилол- -уксусная кислота- -- -азот- -кислород- -вода при давлении 2,0 МПа взрывоопасна при содержании кислорода в отработанном воздухе свыше 5% (об.). Во избежание образования взрывоопасных концентраций пуск реактора необходимо осуществлять после продувки системы азотом. При содержании кислорода в отходяйшх газах более 4% (об.) должна срабатывать блокировка автадати-ческого отключения подачи реакционной смеси и технологического воздуха в реактор и включения подачи азота. [c.204]

    При использовании варианта анализа, предложенного Дю-було, Монж-Хедд и Фондаре , определение содержания активного кислорода в окисленных жирах ириводит к более высоким значениям, чем по методу Ли. По этому методу растворенная в хлороформе навеска окисленного вещества нагревалась в течение 5 мин при 70—75°С с бензойной кислотой, растворенной в смеси этанола с хлороформом, и раствором иодистого калия с тиофлуоресцеином. Выделяющийся при этом свободный иод количественно расходовался на реакцию с индикатором, а иолу-чавщийся краситель затем определялся фотометрически по поглощению при 585 ммк. Для анализа гидроперекисей и диацилперекисей по недавно опубликованному методу образующийся иод непрерывно титруется стандартным раствором тиосульфата с помощью автоматического потенциометрического титрометра. Этот метод позволяет таким образом устранить присутствие свободного иода до окончания реакции. [c.430]

    Определение содержания озона в кислороде производилось путем пропускания определенного объема газа через раствор йодистого калия. Выделившийся йод по подкислении раствора разбавленной серной кислотой отгиг-ровывался 0,1 N раствором тиосульфата натрия [2]. [c.82]

    Для полуколичественного определения воды в порошкообразных веществах применяли силикагель, обработанный хлоридом кобальта(П) и фосфорной кислотой [37 ]. Этот реактив может быть использован и в качестве индикатора влажности. Так, например. Асами [5] показал, что для определения влажности кислорода, особенно если ее значения лежат в интервале 1—2%, удобно применять хлорид кобальта, нанесенный на силикагель. Индикатор влажности для жидкостей, в которых растворимость воды мала, можно приготовить, пропитывая активированный силикагель раствором, содержащим 2—3% СоВга и около 0,5% НВг [67]. Такой индикатор при 44 °С четко, но в то же время обратимо изменяет свой цвет по мере изменения содержания воды во фреоне 114 (дихлортетрафторэтан) от 10 до 20 млн . При уменьшении содержания воды до значения, меньшего чем 15 млн" , цвет индикатора меняется от розового до зеленого, а при достижении прежнего уровня влажности восстанавливается исходная розовая окраска. О пригодности такого индикатора можно судить на основании следующих данных. Титрованием с использованием реактива Фишера было установлено, что содержание воды в образцах фреона 114, окрашивавших индикатор в зеленый цвет, составляло соответственно 6, 9, 11, 14, 15 и 19 млн В образцах, в которых [c.349]

    Для определения содержания метилметакрилата измеряют волну от —1,8 до —2,0 в, после чего вводят фосфатный буфер (pH 7) и наблюдают волну гидрохинона. Перекиси и эфиры пировиноградной кислоты, образующиеся при автоокислении мономера, можно измерять с точностью до 2% (для перекисей) и 5% (для эфиров) при минимальных концентрациях 0,04 мМ перекисного кислорода и 0,001% эфиров [34]. Анализ проводят в смеси бензол — метанол 1 1 (по объему), содержащей 0,3 М L1 1, Описано также прямое определение перекисей в мономере исследована смесь, содержащая 25% мономера, 50% метанола и 25% воды [23]. [c.380]

    Через 2, 4 (или 5), 7, 10 суток от начала инкубации из термостата вынимают по одной склянке с испытуё1Мой и с разбавляющей водой и определяют в них растворенный кислород и содержание нитритов. Нитриты определяют в воде, налитой в колпачок склянки, который снимают так же, как надевали (т. е. перевернув склянку вверх дном. Определение нитритов см. стр. И82). Если в пробе начался процесс нитрификации, что обнаруживается по появлению в воде нитритов в концентрации, превышающей 0, 1 мг/л, то дальнейшее определение БПК не проводят. Если следы нитритов появляются на вторые или пятые сутки, то следующее определение производится через 4 и 7 суток соответственно. Если в лаборатории нет склянок с пришлифованными стеклянными колпачками, то для контроля за процессом нитрификации в термостат можно поставить дополнительно 8 неградуированных склянок любого размера, наполненных той же водой (испытуемой и разбавляющей), и в них определять содержание нитритов после каждого срока инкубации. Все склянки ставятся в термостате в сосуд, наполненный небольшим количеством дистиллированной воды, пробками вниз, так, чтобы горлышко склянок было погружено в воду, которая образует водяной затвор. Дистиллированную воду в сосуде обновляют при каждом определении. Если содержание азота нитритов в склянке будет больше ОД мг/л, определение растворенного кислорода производится с азидом натрия 1(см. стр. 77) либо по одному из следующих методов 1) с сульфаминовой кислотой или с раствором мочевины (вариант А) 2) с бикарбонатом натрия (вариант Б). [c.83]

    Если в лаборатории нет склянок с пришлифованными стеклянными колпачками, то для контроля процесса нитрификации в термостат можно поставить дополнительно 12 неградуированных склянок любого размера, наполненных той же водой (испытуемой и разбавляющей), и в них определять содержание нитритов после каждого срока инкубации. Склянки ставятся в термостате в сосуд (наполненный небольшим количеством дистиллированной воды) пробками вниз, так, чтобы горлышко склянок было погружено в воду, которая образует водяной затвор. Дистиллированную воду в сосуде обновляют при каждом определении. В том случае, если в конце периода инкубации содержание азота нитритов в склянке будет больше 0,1 мг/л, определение растворенного кислорода делается с азидом натрия, или с сульфаминовой кислотой, или с мочевиной (см. определение растворенного кислорода в аэротен-ке) или тотчас же после растворения осадка марганцоватистой кислоты в колбу для титрования прибавляют 1 г бикарбоната натрия и оттитровывают выделившийся иод тиосульфатом натрия. Возможно также определение по Миллеру. Надежным определением БПК должно считаться только определение в тех пробах, где нитрификация только началась. Если в жидкости при постановке БПК уже имеются нитриты в концентрации 0,1 мг/л и выше, то определение БПК следует вести с добавлением хлористого аммония. [c.22]

    Она появлялась не во всех опытах окисления эфира. Отсутствие этого вещества в количестве, достаточном для детального анализа, не позволило исследовать его подробно. Удалось только испытать его на некоторые качественные реакции и определить содержание активного кислорода. Эта жидкость имеет резкий запах, свойственный перекисным соединениям (не пахнет изопропиловым эфиром), и дает характерные для перекисей реакции, интенсивно (но не сразу) выделяя иод из раствора иодистого калия и окисляя раствор титановой кислоты реакция на перекись водорода с хромовой кислотой отрицательна. Содержание активного кислорода отвечает расходу 15,6 мл 0,1 N раствора РеС1з на 0,1 г перекиси при станнометрическом определении. [c.136]

    При изучении в аналитических целях растворов, флуоресценция которых изменяется от прибавления кислот и щелочей, необходимо прежде всего дать себе отчет, влияют ли на их флуоресценцию незначительные колебания концентрации водородных ионов, и при положительном ответе надлежит парализовать это влияние путем прибавления кислоты или щелочи. Однако это возможно не всегда, так как во многих случаях самими условиями анализа вызывается необходимость вести наблюдения при определенном pH применение буферных растворов помогает в этом случае избежать ошибку, которую могло бы вызвать случайное изменение концентрации водородных ионов. Поясним сказанное на конкретном примере при определении содержания озона в воздухе флуоресцентным методом, по измеряемому нарастанию концентрации акридина в растворе, анализ нельзя вести в щелочном растворе, так как в этих условиях слишком слаба флуоресценция акридина не годится и кислая среда, так как при лшлых pH дигидроакридин, окисляемый озоном в акридин, недостаточно индифферентен в отношении кислорода. При применении буфированного [c.40]


Смотреть страницы где упоминается термин Кислота определение содержания в кислороде: [c.431]    [c.157]    [c.139]    [c.95]    [c.401]    [c.143]    [c.132]    [c.162]    [c.109]    [c.68]   
Кислород и его получение (1951) -- [ c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород определение

Кислород содержание



© 2025 chem21.info Реклама на сайте