Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Многоатомные молекулы и ионная связь

    Химическая связь - это вид межатомных взаимодействий в молекулах, ионах, кристаллах, характеризуемый определенной энергией, обусловливающих существование двух- и многоатомных соединений. К основным характеристикам химической связи, дающим информацию о геометрическом строении (структуре) молекулы и ее прочности, относятся длина связи, валентный угол и энергия связи. [c.61]


    Приближение метода линейной комбинации атомных орбиталей (ЛКАО). В разд. А настоящей главы все многоатомные молекулы и ионы анализировали, исходя из принципа образования ковалентной связи. В приближении метода ЛКАО для описания химической связи между разными атомами можно различным образом выбирать атомное валентное состояние. В зависимости от того, можно ли конфигурацию центрального атома описать линейной структурой, плоским треугольником или правильным тетраэдром, обычно берут валентное состояние центрального атома в гибридизации sp, sp или sp и полагают, что он образует одинарные связи с s-орбиталями (в случае Н), с р-орбиталями (галоген) или с соответствующим образом гибридизованными орбиталями (—0 , =0) окружающих атомов. Обычно энергии этих атомных орбиталей различны (рис. 4.1). Три из четырех зр -гибридизованных ор  [c.156]

    Дипольный момент — наиболее непосредственная характеристика полярности связи. Неполярны ((1 = 0) двухатомные гомонуклеарные молекулы (чисто ковалентная связь), в гетеронуклеарных молекулах связь полярна (ц Ф 0). Особенно велики значения [1 у ионных молекул. Неполярны многоатомные молекулы, имеющие центр симметрии (ВеРа, 8Рв и др.) или обладающие высокой симметрией, например [c.86]

    Уже говорилось о связи колебательной структуры полос фотоэлектронных спектров со строением молекул и распределением электронной плотности (см. гл. VI 2.3). По форме и колебательной структуре полос можно делать выводы о характере орбитали, с которой удаляется электрон, не только для двухатомных, но и для некоторых многоатомных молекул. Когда электрон удаляется со связывающей орбитали, то из-за ослабления связи частота соответствующего валентного колебания в ионе будет ниже, чем в исход- [c.153]

    Данные о величине энергии связи в молекулярных ионах являются ярким подтверждением справедливости метода МО. Метод МО позволяет рассмотреть и строение гетероядерных двух- и многоатомных молекул. Например, образование молекулы СО можно представить схемой [c.62]

    Радиусы ионов и атомов определяют по величине межатомного расстояния в кристаллах или молекулах, представляя это расстояние как сумму радиусов. Радиусы атомов могут быть определены как половина расстояния в симметричных молекулах с однородной связью или из расстояния между одинаковыми соседними атомами в многоатомных молекулах. [c.497]

    Ионные кристаллы обладают средней твердостью и достаточно высокими температурами плавления (приблизительно от 600 до 1400° С). В узлах решетки находятся одно- или многоатомные ионы, связь между которыми не имеет специфической направленности и обусловлена электростатическими взаимодействиями. Каждый ион контактирует с несколькими ионами противоположного заряда, поэтому отдельных молекул в ионном кристалле не существует. Число ионов, окружающих данный ион, называется координационным числом-, оно зависит как от соотношения зарядов, так и от соотношения размеров рассматриваемых ионов. Так, например, в хорошо известной структуре поваренной соли (рис. П1.51, а) ионы натрия и хлорид-ионы закономерно чередуются вдоль трех взаимно перпендикулярных направлений, так что координационное число каждого из них равно 6. [c.236]


    Максимальный дипольный момент наблюдается в молекулах с практически чисто ионной связью, например, в газообразных молекулах галогенидов щелочных металлов (табл. 9). Однако простое деление их дипольных моментов на суммы кристаллографических радиусов (см. табл. 7, с. 122) показывает, что заряды, локализованные на центрах ионов, никогда не достигают величины элементарного заряда, т. е. заряда протона или электрона. Это говорит о неполном разделении зарядов даже в самых типичных ионных молекулах, что принято связывать с определенной долей ковалентной связи в этих молекулах. Величины дипольных моментов значительны также у молекул с полярной ковалентной связью. Эти молекулы обычно состоят из атомов с сильно различающимися электроотрицательностями. При этом отрицательный заряд всегда локализован на более электроотрицательном атоме. Наличие дипольных моментов в многоатомных молекулах сразу же указывает [c.207]

    С явлением сольватации связывают химические процессы перестройки внешних электронных оболочек молекул и ионов вплоть до образования связей по донорно-акцепторному механизму. При этом решающая роль во взаимодействии приписывается или растворенному веществу, или растворителю, или отдельным частицам того или другого, или некоторым атомным группам многоатомных молекул или ионов. [c.80]

    Более общая классификация электролитов исходит из природы связи в молекуле и кристалле электролита. Б кристаллах с ионной связью, имеющей преимущественно электростатическую природу, в узлах кристаллической решетки находятся ионы одно- или многоатомные катионы и анионы. Электролиты, образующие ионные кристаллы, названы истинными электролитами. Для другого класса электролитов — потенциальных электролитов— характерно то, что в узлах кристаллической решетки находятся полярные молекулы. [c.413]

    Направленность ковалентных связей в пространстве придает многоатомным частицам (радикалам, молекулам, ионам) определенную форму — конфигурацию. От нее зависит внутренняя структура вещества, а следовательно, и его свойства. [c.55]

    Форма колебания определяется амплитудами колебаний всех атомов с данной частотой, т. е. в конечном счете изменением длины связей и межсвязевых углов при нормальном колебании. Если при колебании молекулы изменяется (растягивается или сжимается) какая-либо связь (или связи), то такое колебание называется валентным. Число валентных колебаний равно числу связей в молекуле. Если при колебании меняется межсвязевый угол (или углы), то такое колебание называется деформа-ционньш. Однако чисто валентные или чисто деформационные колебания встречаются только у линейных или же у высокосимметричных (октаэдр, тетраэдр, квадрат и т. п.) нелинейных молекул и ионов. В большинстве случаев колебания многоатомных молекул, ионов являются смешанными валентно-деформационными колебаниями, когда одновременно меняются и длины связей, и межсвязевые углы. [c.534]

    Направленность ковалентных связей в пространстве придает многоатомным частицам (радикалам, молекулам, ионам) опреде- [c.67]

    Число возможных адсорбционных связей заметно возрастает при переходе к более сложным многовалентным атомам. Здесь уже необходимо дополнительно учитывать образование связей с участием трех и четырех электронов, образование ионов более высокой валентности, а также образование одно- и двухэлектронных связей с двумя атомами поверхности. Многообразие форм адсорбции еще более возрастает для двух и многоатомных молекул благодаря диссоциации, возможности различной ориентации молекул. [c.164]

    Прн увеличении числа атомов в молекуле становится возможным случайный резонанс , когда молекула имеет возбужденное состояние, совпадающее по энергии с состоянием иона. Перезарядка с участием многоатомных молекул происходит в осн. с возбуждением образующего иона и послед, релаксацией энергии возбуждения либо диссоциацией молекулы (если энергии возбуждения хватает на разрыв связи). [c.259]

    У в-в, состоящих из П. м., поляризация обусловлена смещением электронной плотности под влиянием поля и ориентацией молекул в поле. Ориентации молекул препятствует тепловое движение, поэтому изучение зависимости поляризации от т-ры позволяет определять дипольный момент молекул (ур-ние Ланжевена-Дебая см. Диэлектрики). Для двухатомных молекул полярность часто связывают с приближенным представлением электронной волновой ф-ции в рамках валентных связей метода как суммы двух слагаемых, одно из к-рых отвечает ковалентной схеме, другое-ионной валентной схеме. Такое соотнесение позволяет ввести понятие о степени ковалентности или степени ионности хим. связи, причем полярность связи определяется в осн. ионной составляющей. Для многоатомных молекул также возможно подобное приближенное выделение в электронной волновой ф-ции ковалентной и ионной составляющих. [c.68]


    Многоатомные молекулы, образованные атомами металлоидов, очень разнообразны, но для сравнения мы рассмотрим в этом разделе общие для многих элементов гидриды, оксиды и галогениды. Большинство многоатомных групп, образованных металлоидами, являются ионами, но по геометрическому строению можно выделить ряды многоатомных молекул и классифицировать их по небольшому числу типов. Связь между атомами в принципе всегда ковалентная, но точнее ее можно описать, вводя понятие степени ионности. За исключением небольшого числа случаев типа углерода, между одинаковыми атомами редко образуется большое число связей, и в группе бывает не более двух-трех таких атомов. [c.151]

    Последняя многоатомная молекула, которую мы обсудим здесь,-это анион, получаемый удалением двух протонов из молекулы серной кислоты,-сульфат-ион, SO4 . Как и в рассмотренном выше примере с H2SO4, с правилом октета в данном случае согласуется структура с простыми связями и тремя неподеленными парами электронов на каждом атоме кислорода  [c.479]

    Многоатомные молекулы и ионная связь [c.156]

    КОНФИГУРАЦИЯ РАВНОВЕСНАЯ, расположение атомных ядер молекулы (или радикала, иона) в пространстве, соответствующее минимуму ее потенц. энергии. К. р. двухатомной молекулы характеризуется расстоянием между атомными ядрами. Для описания К. р. многоатомных молекул необходимо исппльловат] такие параметры, как длины связей, валентные углы, а также двугранные углы (см. Номенклатура стереохимическая). К. р. молекулы зависит от ее электронного состояния. Так, в оси. состоянии молекула ацетилена имеет линейную конфигурацию, в возбужденном — трансоидную. Параметры молекулы (или ее геометрию) определяют методами рентгеновского структурного анализа, газовой электронографии, микроволновой спектроскопии, нейтронографии и др., а в случае простых молекул также рассчитывают квантовомех. методами. КОНФОРМАЦИИ молекул, различные пространств, формы молекулы, возникающие при изменении относит, ориентации отд. ее частей в результате виутр. вращения атомов или групп атомов вокруг простых ( вя 1еп, изгиба связей и др. При этом стереохим. конфигурация молекулы остается неизменной. Каждой К. соответствует определ. энергия. Так, для молекулы зтана можно представить существование двух максимально ра )личающихся по энергии К.— 1аслоненной (ф-ла la), для к-рой диэдральный угол Ф (см. Номенклатура стереохимическая) имеет значения О, 2, 4, и. заторможенной, или шахматной ([б), с ф = 1, 3, 3. Первой из них соответствует максимум энергии, второй — минимум. Поэтому молекулы этана существуют практически только в заторможенной К. [c.274]

    Элементарные процессы реакции. Химические реакции можно классифицировать с различных точек зрения, но самое важное в исследовании химической реакции — это изучение природы элементарного процесса, т. е. механизма разрыва и образования связи или переноса электрона. Рассматриваемые в этой главе многоатомные молекулы и ионы участвуют в разнообразных реакциях, и сопоставление с указанной выше точки зрения характерных примеров таких реакций поможет глубже понять связь свойств элемента с его положением в периодической таблице. [c.168]

    В результате развития физических методов исследования, в частности масс-спектроскопии, стало возможным определение энергии разрыва связей с большой точностью. Окончательно установлены величины энергии сублимации углерода (170,913 ккал при 25° С) энергии диссоциации хлора, фтора, азота, кислорода, окиси углерода и т. д. Далеко не так точно определяется энергия разрыва связи в многоатомных молекулах. В большинстве случаев для этого используется метод пиролиза в присутствии толуола как газа-носителя и метод электронного удара (масс-спектрометрия), где измеряется потенциал появления ионных осколков. По этим ионам и рассчитывается энергия образования радикалов или энергия разрыва связи. Точность этих методов порядка 2 ккал [17—19]. В основном энергия разрыва связей дана при той температуре, при которой велось определение (450—1000° С). Приведение энергии связи к стандартным условиям вносит элемент неточности. [c.7]

    В искровом ионном источнике при анализе образца происходит разрыв менее прочных связей, и многоатомные молекулы регистрируются в виде тяжелых ионов. При легировании кремния мышьяком или бором атомы последних, образуя раствор замещения, перераспределяют энергию в решетке, отчего возрастает вероятность разрыва связей в молекуле и выход молекул 51з— 51, снижается. Легко представить себе и такой случай, когда атом Аз замещает атом 2 в решетке (рис. 5,6). При этом произойдет уничтожение молекулы 512, а за счет этого образуется соединение 51 Аз, что и наблюдается на опыте. Нетрудно убедиться, что при больших концентрациях мышьяка (Л > Ю см ) начнут образовываться соединения типа Аз2, которые и наблюдаются в спектре масс. Отметим, что возможность существования подобных образований на примере фосфора предсказывалась ранее [21], но экспериментально они не были замечены, так как исследованию подвергались образцы с малой концентрацией примеси этого элемента. [c.39]

    Имеется сравнительно мало данных по измерению характерных времен распадов ионов с т 10 сек. Проводились эксперименты, основанные на ионизации сложных молекул электронным ударом в сравнительно сильном электрическом поле [151—153, 1319, 1323]. Было показано, что основные ионы в масс-спектрах этилена, этана и гексана образуются за время, меньшее 10 сек. Однако некоторые осколочные ионы в масс-спектрах гексана и толуола в значительном количестве образуются за время, большее 10 сек [153]. Если ионизацию молекул проводить не электронным ударом, а сильным электрическим полем, то в этом случае удается измерять времена распадов в интервале 10" —10" сек [461, 855]. Однако прямая связь данных по временам распада, полученных при автоионизации в сильных полях, с временами распада ионов, образованных электронным ударом, пока не установлена. По измерению анизотропии углового распределения продуктов распада молекулярных ионов, получающихся при электронном ударе, установлено, что некоторая доля многоатомных осколочных ионов образуется за время, меньшее 10 сек [336]. [c.368]

    Из приведенного выше ряда можно сделать некоторые выводы во-первых, одноатомные ионные лиганды вызывают обычно более слабые возмущения, чем многоатомные молекулы или ионы во-вторых, существенным фактором является поляризуемость лиганда в-третьих, способность лиганда к образованию it-связей с центральным ионом, по-видимому, усиливает вызываемое им возмущение именно последнее обстоятельство, вероятно, определяет положение галогенов в ряду, хотя существенным может быть и первый фактор. Первый фактор связан, по-видимому, с отсутствием разрыхляющих я-орбит, которыми обладают многоатомные молекулы и ионы, но которых нет и не может быть у одноатомных ионов, а поэтому этот фактор трудно отделить от третьего. [c.249]

    Осн, характеристики X. с.— прочность, длина, полярность. Прочность X. с. определяется энергией связи. В двухатомной молекуле опа равна теплоте диссоциации молекулы на отд. атомы. Энергии X. с. в многоатомной молекуле соответствует энергия атомизации — разность между полпой энергией молекулы и суммой энергий изолированных атомов и энергии нулевых колебаний молекулы. В расчете на одну связь энергии X. с. составляют от 10—20 кДж/моль (связи в молекулах и ионах dj, Н , связь С—С1 в радикале O I, слабые водородные связи) до > 1000 кДж/моль (тройные связи в молекулах N2, СО). Для многоатомных молекул с хорошо локализованными двухцентровыми связями полная энергия X. с. достаточно точно оценивается как сумма энергий отд. связей. [c.646]

    В случае сложных многоатомных молекул пе представляется возможным проведение подобного рода расчетов энергетических состояний. Все известные до сих пор спектры индивидуальных соединений получены опытным путем. Достаточно строгий теоретический расчет раепределения интенсивностей в масс-спектре удалось произвести только для молекулы Нг. Масс-спектры многоатомных молекул слишком сложны, чтобы их можно было рассчитать, исходя из простейших представлений, о выбивании из молекулы ионизирующим электроном валентного электрона с распадом образовавшегося иона по слабейшим связям. [c.17]

    Существуют системы, в которых атомы, ионы или их группы взаимодействуют с другими атомами или атомными группировками. Образуются простые и полимерные молекулы, сложные ионы, сольваты, комплексные соединения и т. д. Между частицами многоатомной системы существуют связи различного вида и прочности. [c.24]

    ХИМИЧЕСКАЯ СВЯЗЬ — взаимодействие между атомами, обусловлива-ющее образование устойчивой многоатомной системы (молекулы, радикала, молекулярного иона, комплекса, кристалла и др.). Все химические превращения сопровождаются разрушением химической связи. X. с. возникает вследствие кулоновского притяжения между ядрами и электронным зарядом, распределение которого обусловлено динамикой поведения электронов и подлежит квантовомеханическим законам. Электронный заряд многоатомной системы возникает нри обобществлении атомных электронов. Различают ионную (гетерополяр-ную, электровалентную), ковалентную (гомеополярную, атомную) и металлическую X. с. X. с. н зыз 1ЮТионной, если она возникает вследствие практически полного перехода электронов с орбитали одного атома на орбиталь другого. Например, во время реакции натрия с хлором атомы натрия теряют, а атомы хлора присоединяют по одному электрону, превращаясь в ионы Ыа+ и С1 (электронный заряд локализован на атомах). Если ионная связь возникает между ионами и полярными (дипольными) молекулами, то ее называют ионно-ди-10 8-149 [c.273]

    Электроны Не переходят на эту орбиталь, более близкую по энергии к АО (Не), чем к АО (Н ). Атом Не —донор, ион Н — акцептор. По своей природе связь здесь ничем не отличается от ковалентной связи молекулярная орбиталь охватывает ядра Не и Н. Но в отличие от молекулы 2, где ковалентную связь осуществляют два электрона, но одному от каждого атома, в ионе НеН два электрона связи предоставлены одним атомом. Таким образом, правильнее говорить о донорно-акцепторном механизме образования ковалентной связи, а не о донорно-акцеп-торной связи, как принято обычно. Связь эта всегда имеет известную полярность, так как на доноре возникает положительный, а на акцепторе — отрицательный заряд из-за сдвига электронов от донора к акцептору. Донорно-акцепторный механизм широко распространен в реакциях комплексообразования с участием двухатомных и многоатомных молекул. Из рассмотренных молекул донором может быть, например, молекула СО. У многоатомных молекул донорами могут быть молекулы ННз,Н20 и др., у которых имеются несвязывающие МО, заполненные парой электронов. [c.140]

    Значения электроотрицательностей (по Полингу) можно использовать при анализе связи между двумя атомами как в двухатомных, так и в многоатомных молекула.ч, причем в последнем случае ти дви атома рассматривают изолированно от всех остальны.ч атомов и связей в молекуле. Значения электроотрицательностей по Полингу не следует применять к формульным единицам кристаллических структур, так как то может привести к неправильному представлению о характере связи в них. В случае СаСЬ, Na I или LiF использование этих значений даст картину связей в изолированных ионных парах, например Na (r.) l (г.). На самом же деле интерес для нас представ мяет [c.87]

    Помимо указанного признак происхождения X. с. используют и др. критерии, по к-рым м. б. охарактеризована X. с. Так, характер распределения электронной плотности определяет полярность X. с.- большее или меньщее смещение электронной плотности от одного атома к другому при образовании связи. Тип Х.с. (ионный, ковалентный и др.) м.б. соотнесен также с характером и относит, положением особых точек на картах распределения электронной плотности (точек минимума, перегиба, точек разл. максимумов и т. п.). Весьма важным критерием является энергетический, к-рый основан на сопоставлении каждой X. с. нек-рой энергии связи. Для двухатомных молекул энергия связи определяется как энергия диссоциации. Для многоатомных молекул эта величина является условной и отвечает энергаи такого процесса, при к-ром данная X. с. исчезает, а все остальные связи остаются без изменения. X. с. подразделяют на прочные, или сильные (> 500 кДж/моль, напр. 942 кДж/моль доя Nj), слабые (от 100 до 15 кДж/моль, нат. 69 кДж/моль для NO2) и ван-дер-ваальсовы (порадка 5 кДж/моль и менее, напр. [c.236]

    Самые распространенные соединения переходных металлов содержат только один ион металла или иногда нейтральный атом, окруженный несколькими группами, называемыми лигандами, по отношению к которым металлы обладают свойствами лыоисовых кислот (т. е. акцепторов электронов). В качестве лигандов могут выступать отдельные атомы нли одноатомные (простые) ионы, но ими могут быть также многоатомные (комплексные) ионы илн молекулы, Единственным требованием, предъявляемым к лигандам, является наличие у них неподелен-ных пар электронов, которые они могут обобществлять с металлом. Связь такого тнпа, когда оба электрона, образующие связывающую электронную пару, поставляются только одной частицей, принято называть координационной ковалентной связью (иначе донорно-акцепторной или дативной связью). Обсуждаемые комплексы часто называют координационными комплексами. Число лигандов, окружающих металл в комплексе, называется координационным числом металла. [c.313]

    В связи со сделанным выше замечанием отметим следующее. Обычное предположение о том, что электроотрицательность атома А постоянна, справедливо только для двухатомных молекул. В случае многоатомных молекул это предположение значительно менее правдоподобно, поскольку полярные и ионные эффекты в одной связи индуцируют соответствующие эффекты в соседних связях. В терминах метода МО можно сказать, что коэффициент К в выражении 115а + Я1 9в зависит не только от разности электроотрицательностей — Хв, но также и от электроотрицательностей других атомов или групп, присоединенных к связи А—В. [c.209]


Библиография для Многоатомные молекулы и ионная связь: [c.645]    [c.645]   
Смотреть страницы где упоминается термин Многоатомные молекулы и ионная связь: [c.270]    [c.566]    [c.566]    [c.101]    [c.8]    [c.43]    [c.271]    [c.646]    [c.52]   
Смотреть главы в:

Химия и периодическая таблица -> Многоатомные молекулы и ионная связь




ПОИСК





Смотрите так же термины и статьи:

Ион ионы связи

Ионная связь

Многоатомные ионы

Молекула ионная

Молекулы многоатомные

Молекулы связь



© 2025 chem21.info Реклама на сайте