Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействия в фазе ионита и в растворе

    Аппараты непрерывного действия могут работать в других гидродинамических режимах . вытеснения или смешения и как правило, при противоточном движении взаимодействующих фаз ионит — раствор. Противоток позволяет увеличить среднюю движущую силу процесса, сократить в 2— [c.261]

    Конкурирующие взаимодействия противоионов с водой и с локусами определяют не только равновесные ионообменные свойства ионита и электрический потенциал между фазами ионит — раствор. Они вносят важнейший вклад в энергию активации, которые определяют миграцию катионов из раствора в твердую фазу, а также миграцию катионов внутри твердой фазы. [c.195]


    Селективность. Под селективностью понимают свойство ионита в одних и тех же условиях по-разному вступать в. реакции ионного обмена с разными ионами. Для пояснения селективности существуют определенные модели, но-область их применения крайне ограниченна [44]. В соответствии с молекулярной теорией селективность ионита по отношению к ионам равных зарядов определяется степенью ассоциации активных групп ионитов с противоионами. В зависимости от плотности активных групп в ионите между ними (группами, способными к ионному обмену) возникает сила отталкивания, что является фактором, способствующим набуханию ионитов. Действию этой силы противодействует сила структурного взаимодействия. На основании изложенного можно сделать вывод, что селективность ионита возрастает с увеличением степени сшитости ионита, обменной емкости и с увеличением концентрации раствора, проходящего через ионит. Райс и Харрис-[53] дали количественное описание селективности, применимое для оценки селективности ионита в неводных средах, но непригодное для ионитов с низкой степенью сшитости и с высокой набухаемостью. В ряде теорий исходят из представления о границе раздела фаз ионит — раствор как о полупроницаемой мембране. В этом случае применимо уравнение Доннана [421, и можно сделать вывод, что селективность ионита зависит от его набухания или обменного объема. При этом не учитывают межионные взаимодействия, особенно сильные в случае ионитов с высокой обменной емкостью. Поскольку все указанные теории не являются общими, при оценке селективности ионита применяют следующие простые правила [54]  [c.376]

    С энергетической точки зрения образование ионов в растворе значительно облегчается по сравнению с газовой фазой, поскольку затрата энергии на преодоление электростатического взаимодействия разноименно заряженных ионов в значительной степени компенсируется энергией взаимодействия образовавшихся ионов с их сольватными оболочками. [c.30]

    При ионообменной хроматографии взаимодействующими веществами являются ионы твердой фазы и раствора. Разделение смеси ионов, находящихся в растворе, основывается на степени ионного сродства этих ионов к твердой фазе. Твердой фазой в этом случае должно быть вещество, способное обмениваться своими ионами и потому называемое ионообменником или ионитом. Анализируемая смесь может быть только в растворе. [c.12]


    Заряжение металла и раствора сопровождается изменением У и У. Допустим, что Усол> что соответствует рис. 11.1. Отрицательный заряд, который получает металл, приводит к понижению энергии ионов на металле и точка а, а вместе с ней вся кривая ааа" перемещаются вниз (кривая а а1а )- Положительный заряд, который получает раствор, повышает энергию ионов в растворе, поэтому точка Ь и вся кривая Ь ЬЬ" перемещаются вверх (кривая Электростатическое взаимодействие между металлом и ионами раствора препятствует беспредельному переходу ионов в одном направлении. В итоге, когда иа Оь, в системе металл — раствор устанавливается подвижное равновесие. На границе двух фаз формируется двойной электрический слой, которому соответствует определенное значение потенциала. Как было указано выше, условием равновесия в системах с заряженными частицами является равенство электрохимических потенциалов каждого сорта частиц (г) в контактирующих фазах I и II. Так как а, = ц, + 2,7 ф, а при равно- [c.166]

    Неравенство химических потенциалов служит причиной перераспределения ионов. Начинается переход ионов 1 из раствора на поверхность кристаллов Agi, где они будут химически взаимодействовать с ионами Ag+ за счет сил остаточных валентностей и достраивать кристаллическую решетку. Перенос ионов прекратится по достижении равенства электрохимических потенциалов в жидкой и твердой фазах  [c.344]

    Такой поворот в принципе возможен в газовой фазе. В растворе он не реализуется, так как для этого молекуле нужно преодолеть значительный потенциальный барьер. Дифракционный эксперимент позволяет определить равновесное расстояние ион—молекула воды, соответствующее абсолютному минимуму их ориентационного взаимодействия. [c.282]

    Для того чтобы понять, почему эти соединения включаются в образование мембран, необходимо рассмотреть факторы, влияющие на растворимость. Степень распределения вещества в растворителе определяется соотношением сил взаимодействия вещество — вещество в твердом состоянии с силами взаимодействия растворитель — растворитель и вещество — растворитель в жидкой фазе. В полярных соединениях эти силы связывания кристаллической решетки достигают больших величин (например, электростатическое взаимодействие в ионных или цвиттер-ионных твердых веществах либо многочисленные водородные связи в сахарах). Мало вероятно, чтобы такие соединения легко распределились в неполярном растворителе, где взаимодействие вещество — растворитель будет очень слабым и создаваемый при этом небольшой запас энергии будет недостаточен, чтобы компенсировать энергию, необходимую для отрыва молекул из кристаллической решетки. Наоборот, высокополярные растворители, вероятно, будут растворять неполярные вещества, поскольку включение молекул неполярного вещества между молекулами полярного растворителя должно нарушать относительно сильное взаимодействие между молекулами растворителя без какой-либо значительной компенсации взаимодействием вещество — растворитель. Итак, для тех веществ, которые при растворении распределяются в виде изолированных молекул, существует хорошо известное качественное соотношение между растворимостью и относительной полярностью вещества и растворителя. [c.337]

    Сравнение ионов внутренней и внешней обкладок показывает их существенное различие первые характеризуются химической определенностью (это — ионы, образующие данную решетку или изоморфные с ней) и прочно связаны с каркасом решетки химическими связями. Ионы внешней обкладки могут быть любыми по своей природе, поскольку кулоновские силы не специфичны, и единственным требованием является условие равенства абсолютных величин зарядов в обоих обкладках, иначе говоря, условие электронейтральности всей системы в целом . Энергия взаимодействия этих ионов с твердой фазой оказывается значительно меньше, чем энергия химических связей в твердых телах. Она имеет порядок единиц ккал/моль, а следовательно, по уравнению (IX. 31) противоионы обладают значительной подвижностью. Они непрерывно обмениваются с ионами, находящимися в растворе и, если раствор содержит несколько компонентов, заряженных одинаково, то нет причины ожидать, что освободившееся место во внешней обкладке займет такой же ион, а не ион другого вида (с зарядом того же знака). [c.183]

Рис. 12. Взаимодействие в водных растворах ионов ртути (II) с хлорид-ионами (в отсутствие твердой фазы) Рис. 12. Взаимодействие в <a href="/info/1484912">водных растворах ионов</a> ртути (II) с <a href="/info/5178">хлорид-ионами</a> (в отсутствие твердой фазы)
    В течение 1-часовой выдержки при этой температуре электросопротивление уменьшается. Это свидетельствует о продолжающихся процессах гидролиза и гидратации цемента, в результате которых жидкая фаза насыщается токопроводящими ионами. Сколько-нибудь значительного упрочнения системы в этот момент не происходит. При введении в цемент активного наполнителя (глины) в процессе твердения системы происходит взаимодействие ее с продуктами гидратации цемента. Оно выражается в поглощении глинистым минералом ионов Са , 0Н , ЗО и др. Хотя температура опыта не достигает заданного предела (130° С), электросопротивление растет в связи с тем, что концентрация ионов, находящихся в жидкой фазе, в этот период уменьшается. Происходит удаление их из раствора продуктами гидратации цемента в виде нерастворимых комплексов, образовавшихся в процессе взаимодействия указанных ионов с кремнеземистой и глиноземистой составляющими глинистого минерала [338]. Этот процесс сопровождается образованием кристаллизационных сростков в системе с последующим упрочнением пространственной структуры. Наиболее резко растет электросопротивление, а следовательно, нарастает прочность цементного камня при добавлении в цемент монтмориллонита и, особенно, палыгорскита, менее — каолинита и гидрослюды. [c.125]


    В системе (9.1) в результате такого действия скорость обратной реакции осаждения уменьшается. Ионы кристаллической решетки в это время продолжают взаимодействовать с растворителем и переходят в раствор с прежней скоростью. Поэтому при введении в насыщенный раствор труднорастворимой соли постороннего электролита состояние равновесия нарушается, часть твердой фазы будет переходить в раствор и растворимость осадка увеличится. Процесс растворения твердой фазы проходит до тех пор. пока активность ионов в растворе, т. е. их способность к взаимным столкновениям, не ст.анет такой же, как и до введения в раствор постороннего электролита. После этого снова установится динамическое равновесие между осадком и ионами раствора. Таким образом, из приведенного примера можно сделать вывод, что постоянной величиной является не произведение концентрации ионов, а произведение их активности, поэтому правило произведения растворимости формулируют следующим образом в насыщенном растворе малорастворимой соли произведение активностей ионов при постоянной температуре и давлении является величиной постоянной. Математически эту зависимость записывают следующим образом  [c.167]

    Отрыв каждого последующего электрона требует все большей энергии, так как электрон в процессе п-й ионизации должен покинуть ион с суммарным зарядом п— I. В качестве иллюстрации в табл. 4.4 приведены значения первых трех потенциалов ионизации элементов первого переходного ряда. Эти элементы в соединения обычно входят в виде многозарядных ионов (например, Fe +), что могло бы показаться удивительным, так как энергии, необходимые для образования таких ионов, очень велики. Однако значения, приведенные в табл. 4.4, относятся к энергии образования изолированных ионов в газовой фазе, в растворе они в значительной мере компенсируются энергией сольватации иона. Энергия сольватации в основном обусловлена электростатическим взаимодействием между ионом и дипольными молекулами растворителя (например, воды). [c.57]

    Для приготовления химически модифицированных электродов используют и угольно-пастовые электроды (УПЭ). Первоначально модифицирование УПЭ осуществляли введением в пасту деполяризатора (см. раздел 11.4). В этом случае угольная паста является электропроводящей средой, в которой распределены частицы электрохимически активного вещества, причем электродный процесс локализован на границе раздела фаз электрод/раствор. Если же в качестве модификаторов использовать электрохимически инертные вещества, то появляется возможность создания специфических электродов для определения различных веществ. В этом случае избирательность определений обеспечивается введением в угольную пасту вещества-модификатора, которое должно отвечать следующим требованиям быть электрохимически инертным в определенной области потенциалов, иметь малую растворимость и специфический характер взаимодействия с определяемыми ионами или органическими соединениями. [c.486]

    Некоторые указания на важность взаимодействия молекул в растворах дает тот факт, что из многих тысяч реакций, которые были изучены в растворе, менее чем 20 могут быть изучены для сравнения в газовой фазе. Изучение ионных реакций почти полностью ограничивается растворами по вполне понятным причинам при температурах ниже 1000° К скорость ионных процессов в газовой фазе практически равна нулю. Это объяснение приемлемо для большинства реакций, протекающих в растворах, поскольку, как показано далее, в большинстве реакций между полярными молекулами принимают участие ионы в качестве промежуточных частиц. Например, такая широко известная реакция, как гидролиз амилгалогенов или эфиров в газовой фазе, идет неизмеримо медленно (по крайней мере до тех температур, пока не начинают преобладать другие направления реакции). Единственный большой класс реакций, которые можно изучать как в газовой, так и в жидкой фазе,— свободно-радикальные реакции. Несомненно, этот тип реакций в дальнейшем будет все более тщательно изучаться и даст богатый материал для сравнения кинетического поведения веществ в газовой и жидкой фазах .  [c.423]

    Реакции МФК легко протекают в малополярных апротонных растворителях. Их диэлектрические проницаемости изменяются от 8,9 (дихлорметан), 4,7 (хлороформ) и 4,2 (диэтиловый эфир) до 2,3 (бензол) и 1,9 (гексан). Хотя растворимость обычных неорганических солей в этих растворителях пренебрежимо мала, органические четвертичные аммониевые, фосфоние-вые и другие ониевые соли, так же как и замаскированные органической оболочкой соли щелочных металлов, часто достаточно растворимы, особенно в дихлорметане и хлороформе. В этих растворителях концентрация свободных ионов незначительна и доминируют ионные пары. Вследствие слабого взаимодействия между ионными парами и молекулами растворителя реакция с электрофилами в органической фазе идет ыстро, и некоторые обычно слабые нуклеофилы (например, ацетат) оказываются сильными. Так, например, в гомогенных растворах в ацетонитриле относительная нуклеофильность солей тетраэтиламмония в реакции замещения с различными анионами от азида до фторида различается всего в 80 раз, причем фторид является наиболее сильным нуклеофилом среди галогенидов [127]. Различия в реакционной способности ионов в таких растворителях по сравнению с нормальным поведени- м в некоторых случаях бывают просто поразительными, и та- [c.18]

    Осадки, представляющие солп очень слабых кислот, взаимодействуют с ионами Н+ воды, т. е. подвергаются гидролизу. Гидролиз нарушает равновесие между твердой фазой н раствором. Некоторые твердые вещества, как АЬЗз, в результате гидролиза полностью разлагаются сернистый алюминий при этом превращается в гидроокись алюмииия. В других случаях, как при MgNHlP04, растворимость значительно повышается для уменьшения растворимости, обусловленной гидролизом, необходимо уменьшить концентрацию ионов водорода воды, например введением ЫН ОН, Вопрос [c.39]

    В весовом анализе чаще всего используют образование труднорастворимых соединений при взаимодействии двух ионов катиона В и аниона А . Один из этих ионов является определяемым компонентом, а другой — осадителем. Однако оба компонента реакции могут вступать во взаимодействия другого рода, что приводит к изменению растворимости осадка. Для многих анионов, обра зующих осадки, наиболее характерной является способность связываться ионами водорода, причем образуются молекулы слабой кислоты. Это взаимодействие рассмотрено в 10. Для катионов, образующих осадки, наиболее характерно взаимодействие с различными комплексообразователями. В результате связывания катиона осадка в комплекс состояние равновесия между твердой фазой и раствором сдвигается в сторону растворения осадка. [c.43]

    Однако предположение k onst а широком интервале потенциалов для всех систем строго не выполняется. Непостоянство к связано с зависимостью от потенциала контактного угла на границе трех фаз ртуть/стекло/раствор. Этот эффект обусловлен электростатическим взаимодействием между ионными двойными слоями на границах стекло/раствор и ртуть/раствор. Стекло в водных растворах электролитов заряжено отрицательно. В связи с этим между стеклом и отрицательно заряженной поверхностью ртути имеет место отталкивание. Следовательно, в этих условиях отсутствует смачивание стекла ртутью и О 0°. В то же время при > О возникает эф( )ект прилипания ртути к стеклу, образуется хорошо определяемый контактный угол > 0°. Чем больше положительный заряд ртути, тем сильнее смачивание ею стекла, больше и, следовательно, согласно уравнению [c.160]

    Интенсивному применению техники ЭПР для обнаружения и исследования электрохимически генерированных (ЭХГ) органических анион- и катион-радикалов положили начало опубликованные в 1961—1962 гг. работы А. Маки и Д. Джеске Дж. Френкеля и сотр. Такое сочетание спектроскопии ЭПР с ЭХГ связано с необходимостью учета ряда специфических обстоятельств. Главная особенность ЭХГ состоит в том, что образование радикальных частиц происходит не в объеме раствора, а на границе раздела фаз электрод/раствор и контролируется скоростью диффузионного подвода молекул деполяризатора к поверхности электрода. Тем самым ограничиваются возможности создания в растворе достаточно высокой концентрации ион-радикалов, необходимой для получения надежного спектра. Этот недостаток обычно не удается скомпенсировать увеличением концентрации исходного органического вещества, так как появление обменных взаимодействий ион-радикалов между собой, а также между ион-радикалами и молекулами реагента вызывает уширение линий и приводит к потере СТС. [c.225]

    Первое, особенно сильно проявляющееся при малых концентрациях, обусловлено электростатическим притяжением между противоположно заряженными ионами. Силы притяжения между ионами преобладают над силами отталкивания, т. е. в растворе устанавливается ближний порядок, при котором каждый ион окружен ионами противоположного знака. Следствием этого является уменьшение тенденции ионов покинуть фазу, т. е. усиление связи с раствором, что находит отражение в уменьшении коэффициента активности. Естественно, что взаимодействие между ионами возрастает при увеличении их зарядов. Так, например, для растворов одинаковой концентрации (т = 0,01) Си504, ВаС1а и НС1 величины f соответственно равны 0,41 0,72 и 0,904. Значения коэффициентов активности некоторых электролитов в зависимости от моляльности приведены в табл. 1Х.1. [c.168]

    Электростатическое взаимодействие между заряженным металлом и ионами раствора препятствует беспредельному переходу ионов в одном направлении. В конечном итоге в системе металл — раствор электролита устанавливается подвижное равновесие, а на границе раздела фаз возникает двойной электрический слой, образгованный избыточным зарядом металла и ионами раствора. [c.281]

    Таким образом, в отличне от протекания химических реакций, где основным условием является наиболее тесное соприкосновение реагирующих веществ в одной фазе (в растворе, расплаве и т. п.), при проведении электрохимического процесса необходимо разделение реагентов и образование гетерогенной системы, в кото1рой переход электронов от одной группы атомов к другой осуществлялся бы через особые каналы (металлические проводники — электроды). Развитая поверхность электродов как бы увеличивает вероятность взаимодействия электронов с определенными группами атомов или ионов. [c.10]

    Если в ионообменном процессе участвуют три и более ионов, находящихся в жидкой или твердой фазе, то, согласно гипотезе Б. П. Никольского и Е. Н. Гапона, обмен любой пары ионов протекает независимо от обмена других ионов, присутствующих в системе. Схематически обмен трех ионов может быть представлен следующими реакциями взаимодействия иоНообмейника с раствором  [c.90]

    Среди дисперсных систем коллоидные растворы занимают промежуточное положение между суспензиями и истинными растворами диаметр распределенных частичек в жидкой фазе коллоидного раствора колеблется от 1 до 100 ммк. Коллоидные растворы могут быть получены двумя различными- методами дисперсионным (уменьшением величины частиц более грубых дисперсных систем) и конденсационным (увеличением величины частиц истинных растворов, обладающих молекулярной или ионной дисперсией вещества). Коллоидные растворы называются также золями. В отличие от истинных растворов коллоидные растворы являются оптически неоднородными системами, так как световые лучи в них подвергаются светорассеянию этим объясняется опалесценция коллоидных растворов (различные окраски в отраженном и проходящем свете), что служит отличительным признаком коллоидных систем. Так как величина частиц коллоидного раствора одного и того же вещества колеблется в широких пределах, то окраска этих растворов может быть различной. Для коллоидных растворов характерны все явления, происходящие на поверхности раздела двух фаз, особенно процесс поглощения различных веществ на поверхности (адсорбция). Одним из продуктов адсорбции из растворов могут быть молекулы растворителя, в частности воды. Коллоидные системы, в которых частички неспособны взаимодействовать с дисперсионной средой (в частности, с водой), а следовательно, и не могут в ней растворяться, называются лиофобными (гидрофобными). Например, к гидрофобным коллоидам относятся коллоидные металлы, сульфиды. Лиофильные коллоиды характеризуются тем, что дисперсная фаза взаимодействует с дисперсионной средой и способна в ней растворяться. Если дисперсионной средой служит вода, коллоиды называются гидрофильными (например, желатин, клей и др.). Частички коллоидного раствора, помимо молекул воды, могут адсорбировать на своей поверхности ионьь [c.244]

    При рассмотрении строения мицеллы было показано, что при взаимодействии лиофобных коллоидов с электролитами на поверхности ядра адсорбируются определенные ионы из раствора. Ядро с адсорбированными на нем ионами того или иного знака взаимодействует с окружающим раствором. При этом благодаря электростатическому притяжению ионы, обладающие знаком, противоположным по отношению к потенциалопределяю-щим ионам, стремятся расположиться к ним как можно ближе. В результате этого образуются два близко расположенных слоя ионов один на поверхности (потенциалобразующие ионы) и другой в растворе (противоионы). Такая система называется двойным электрическим слоем Гельмгольца (рис. 122). Следует помнить, что в целом эта система электроней-тральна. В представлении Гельмгольца двойной электрический слой по добен плоскому конденсатору, внутренняя обкладка которого находится в твердой фазе, а внешняя — расположена в жидкости параллельно твердой поверхности ядра на расстоянии молекулярного порядка. Общий термодинамический по- [c.319]

    Слабые силы взаимодействия, возникающие между олефиновыми углеводородами и ионами серебра, были успешно использованы при разделении трудноразделяемых олефинов (Уинстейн и Лукас, 1938 см. также Херлинг и сотр., 1962 Смит и Ольсон, 1962). Чаще всего в качестве жидкой фазы применяют растворы солей серебра в подходящем растворителе, прежде всего этиленгликоле. Можно полагать, что различие объемов удерживания является мерой стабильности комилексов олефинов и ионов серебра. [c.461]

    Растеоримостъ твердых веществ в воде и других растворителях—это видимое проявление конкуренции двух различных процессов. Первый, называемый кристаллизацией, —результат связывающих взаимодействий в твердом теле. В ходе кристаллизации происходит рост кристалла в среде, содержащей такие же ионы или молекулы, как и его собственные. Второй процесс, называемый растворением, является результатом взаимодействий молекул растворителя с молюкулами или ионами на поверхности кристалла. Это приводит к разрушению кристаллической решетки и образованию все более и более концентрированного раствора до тех пор, пока либо не растворится вся твердая фаза, либо не установится равновесие между конкурентными процессами, твердая фаза насыщенный раствор. [c.198]

    Для фторид-иона характерно интенсивное его поглошение почвами и породами, а также значительное влияние на свойства и состав зафязненных почв. Уровень связывания F определяется многими факторами. В первую очередь сорбция фтора почвами зависит от характера материнской породы. Почвы на известняках сорбируют примерно в 2 раза больше фтора, чем почвы на базальтах, и в 3—4 раза больше, чем песчаные почвы. Интенсивная сорбция фтора имеет важное экологическое значение это, в частности, снижает поступление фтора в почвенно-фунтовые воды при химическом зафязнении. Пре-имушественные механизмы связывания — взаимодействие фторид-иона с оксидами и гидроксидами алюминия и железа. При хемосорбции фторида на гидроксидах, вероятно, обменно вьщеляется в раствор гидроксид-ион и pH равновесного раствора повышается. Связывание фторид-иона гидроксидами железа зависит от концентрации F , от pH и строения минеральной фазы. Минимальное связывание наблюдается при pH > 7. В кислой среде связывание фторид-иона увеличивается в ряду гематит < лимонит < гидроксид железа. [c.80]

Рис. 5.4. Одномерная диаграмма изменения энтальпии в ходе экзотермической бимолекулярной реакции Финкельштейна С1 +СНзВг->С1СНз+Вг в газовой фазе и в водном растворе [469, 474, 476]. На оси ординат отложены величины стандартной молярной энтальпии реагентов (а), непрочных ионно-молекулярных ассоциатов, стабилизированных взаимодействиями типа ион-диполь и ион-индуцированный диполь (б и г), активированного комплекса (а), продуктов реакции (д). Ось абсцисс отражает только последовательность образования и превращения перечисленных частиц, комплексов и ассоциатов в ходе реакции. Рис. 5.4. Одномерная <a href="/info/106969">диаграмма изменения</a> энтальпии в ходе <a href="/info/840010">экзотермической бимолекулярной реакции</a> Финкельштейна С1 +СНзВг->С1СНз+Вг в <a href="/info/3194">газовой фазе</a> и в <a href="/info/6274">водном растворе</a> [469, 474, 476]. На оси ординат отложены <a href="/info/677959">величины стандартной</a> <a href="/info/224624">молярной энтальпии</a> реагентов (а), непрочных <a href="/info/18043">ионно-молекулярных</a> ассоциатов, стабилизированных <a href="/info/1182657">взаимодействиями типа</a> ион-диполь и ион-индуцированный диполь (б и г), <a href="/info/5967">активированного комплекса</a> (а), <a href="/info/9325">продуктов реакции</a> (д). Ось абсцисс отражает только <a href="/info/306038">последовательность образования</a> и превращения перечисленных частиц, комплексов и ассоциатов в ходе реакции.
    Переход от газовой фазы к растворам может влиять не только на скорость, но и на природу продуктов реакций, т. е. изменять направление процесса. Например, в зависимости от степени сольватации реакция гидроксид-иона с ацетонитрилом протекает тремя различными путями взаимодействие есольвати-рованного, сольватированного одной молекулой НгО (в газовой фазе) н сольватированного в растворе иона НО с ацетонитрилом приводит к образованию продуктов замещения, переноса протона и гидролиза соответственно [488]  [c.202]

    Ко второму виду осадочной хроматографии могут быть отнесены те случаи, когда формирование осадков происходит в колонках, состоящих из двух химически взаимодействующих фаз жидкой, содержащей растворенное вещество, и твердой, вещество которой, вступая в химическое взаимодействие с компонентами раствора, образует нерастворимые осадки. Кроме осадителя, в твердую фазу должен еще входить носитель. Носителем может быть практически нерастворимое в применяемом растворителе высокодисперсное вещество, химически инертное ко всем составным частям хроматографируемого раствора и хорошо удерживающее на своей поверхности образующиеся осадки. Образование осадков в таком случае происходит на поверхности носителя в результате взаимодействия адсорбированных молекул осадителя с ионами раствора. [c.116]


Смотреть страницы где упоминается термин Взаимодействия в фазе ионита и в растворе: [c.223]    [c.256]    [c.394]    [c.109]    [c.294]    [c.120]    [c.251]    [c.236]    [c.181]    [c.189]    [c.178]    [c.93]    [c.137]   
Смотреть главы в:

Ионный обмен  -> Взаимодействия в фазе ионита и в растворе




ПОИСК





Смотрите так же термины и статьи:

Взаимодействия ионные

Ионные взаимодействия в растворах

Ионов взаимодействие

Раствор ионный



© 2025 chem21.info Реклама на сайте