Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общие свойства рентгеновских лучей

    Общие свойства рентгеновских лучей [c.135]

    Экспериментальные методы, применяемые для определения и характеристики структуры полимерных цепей и их совокупностей, упоминались в общем обзоре гл. 1. Дополнительную информацию по дифракции рентгеновских лучей [3], рассеянию нейтронов [4—6], электронов и света [4, 52, 53], оптической и электронной микроскопии [3, 14Ь], термическим [3, 54] и вязкоупругим свойствам [14с, 55—57] и методу ядерного магнитного резонанса (ЯМР) [3] можно получить из источников, указанных в списке литературы к данной главе. В гл. 5 и 6 соответственно будут рассмотрены методы инфракрасного поглощения (ИКС) и ЭПР. [c.35]


    Общая форма зависимости и г), представленная на рис. 40, а, наблюдается для молекул разного типа (правда, в большинстве случаев требуется еще учитывать зависимость потенциала и от угловых координат). Точное определение функции и (г) для данной пары молекул, однако, — задача чрезвычайной трудности. Экспериментальными источниками информации о количественных характеристиках межмолекулярных взаимодействий служат измерения различных свойств (зависимость р — V — Т для газов, вязкость газов, энергия кристаллической решетки, рассеяние рентгеновских лучей, нейтронов и молекуляр- [c.271]

    Как следует из данных табл. 27, отклонения от среднего для каждого из свойств значительно различаются. Известно, что физические свойства графита взаимосвязаны. Из изложенного выше следует, что они определяются у искусственных графитов, в основном плотностью (или общей пористостью) и совершенством кристаллической структуры графита. Последняя может быть охарактеризована диаметром или высотой кристаллитов (областей когерентного рассеяния рентгеновских лучей). [c.116]

    Изучение сплавов и металлов сложно еще в том отношении, что его следует производить на разных масштабных уровнях. До сих пор мы сталкивались с рассмотрением кристаллической структуры, определяемой в масштабах атомных размеров с помощью дифракции рентгеновских лучей. В этом диапазоне (2-10 - 10-10 " см) исследуются межатомные расстояния и относительное расположение атомов в кристаллической решетке. При наблюдении металлов в обычный микроскоп, позволяющий различать объекты величиной порядка 10 "" см, обнаруживается бесчисленное множество структурных неоднородностей, которые объясняют различные механические свойства металлов и сплавов. Особенности металлов, обусловленные структурами промежуточного размера (от 10 до 10 см), пока еще мало изучены. Все это показывает, насколько сложно строение металлов и сплавов и почему мы вынуждены ограничиться здесь лишь самыми общими сведениями о нем. [c.393]

    Такого плана я пытался придерживаться при подготовке второго издания Общей химии . Мною введены две новые главы, посвященные атомной физике (гл. П1 и Vni). В этих главах довольно подробно рассмотрены вопросы, связанные с открытием рентгеновских лучей, радиоактивности, электронов и атомных ядер, описана природа и свойства электронов и ядер, изложена квантовая теория, фотоэлектрический эффект и фотоны, теория атома по Бору, отмечены некоторые изменения наших представлений об атоме, внесенные квантовой механикой, рассмотрены другие вопросы учения о строении атома. Все это позволит студенту первого курса вычислить энергию фотона света данной длины волны и предсказать, приведет ли поглощение света данной длины волны к расщеплению молекулы на атомы. Некоторые разделы элементарной физической химии в книге изложены подробнее, чем это было сделано в первом издании. Введена отдельная глава, посвященная биохимии. Значительной переработке подверглось изложение химии металлов. Рассмотрение вопросов, относящихся к химии металлов, начинается теперь с главы, в которой показаны характерные особенности металлов и сплавов и описаны методы добычи и очистки металлов. Затем следуют три главы, посвященные химии переходных металлов в первой главе рассмотрены скандий, титан, ванадий, хром, марганец и родственные им металлы во второй — железо, кобальт, никель, платиновые металлы в третьей — медь, цинк, галлий, германий и ближайшие к ним по свойствам металлы. В той или иной мере пересмотрено и большинство других глав. [c.10]


    Излучения высоких энергий вызывают разрушение кристаллической решетки, что приводит к изменению ряда химических и физических свойств облучаемого вещества. Рассмотрим основные аспекты действия облучения. Все сказанное ниже носит весьма общий характер и допускает многочисленные исключения. При облучении нейтронами, заряженными частицами, 7-лучами и рентгеновскими лучами часто получаются различные результаты. [c.334]

    Как уже было отмечено в общих чертах в предыдущем разделе, предположение о том, что определенные ионы металлов имеют характерные для них координационные числа и их координационные многогранники обладают определенной формой или симметрией, было высказано Вернером и теми из его современников, которые следовали его теории. Эта гипотеза послужила чрезвычайно плодотворной базой для интерпретации значительного числа фактов, непонятных с какой-либо другой точки зрения. Как будет видно из дальнейшего, предположение о том, что координационные сферы Сг , Со и постоянно октаэдрические, а координационные сферы и Р(1 постоянно квадратные, подтверждается множеством экспериментальных данных. В этом разделе будет рассмотрено понятие координационных чисел и формы координационных сфер более общим и понятным способом. Будут обсуждены координационные числа от 2 до 9, причем для каждой геометрической структуры известные и описанные в литературе случаи. Отметим также, что еще более высокие координационные числа встречаются редко. В заключение скажем, что в настоящее время имеется огромное число прямых доказательств, полученных при помощи изучения дифракции рентгеновских лучей, и косвенных доказательств, основанных на изучении дипольных моментов, магнитных свойств и электронных спектров, в отношении координационных чисел и геометрического расположения лигандов, так что эти идеи уже не гипотезы, а хорошо установленные факты. [c.153]

    В противоположность прямым методам, часто используемым в структурном анализе, таким, как рентгеноструктурный и электронографический, при помощи метода спектроскопии комбинационного рассеяния изучают преимущественно динамику решетки. А так как правила отбора для оптических переходов в конечном счете зависят от симметрии молекул и кристаллов, то этот метод может оказаться весьма полезным при установлении структуры кристаллов. В общем случае точное установление пространственной группы и межатомных расстояний для исследуемого кристалла невозможно, однако данные спектроскопии КР позволяют исключить некоторые структуры, а также выбрать одну структуру из двух возможных. Все сказанное особенно справедливо при сочетании метода комбинационного рассеяния с рентгеноструктурным анализом, так как атом водорода имеет очень небольшое сечение рассеяния рентгеновских лучей. Во всех случаях комбинационное рассеяние является источником ценной информации о силах межмолекулярного и внутримолекулярного взаимодействий, атомных и молекулярных движениях, а также о свойствах, которые непосредственно связаны с такими характеристиками твердых веществ, как удельная теплоемкость, пластичность, термическое расширение и теплопроводность. [c.355]

    Таким образом, эксперимент показал, что и вещество и излучение имеют двойственные корпускулярно-волновые свойства. Они ведут себя как волны в одних условиях и как пучок частиц в других это зависит от характера эксперимента. Следует подчеркнуть, однако, что мы не рассматриваем вещество и излучение как два различных аспекта одной и той же субстанции. Например, электрон обладает зарядом и массой, а фотон не имеет ни массы, ни заряда. Дифракционная картина, возникающая при облучении кристалла рентгеновскими лучами, в общем, похожа на ту, которая возникает нри падении пучка электронов на кристалл, но они не идентичны. Распределения интенсивности в обеих картинах различны, так как фотоны взаимодействуют с веществом по другим законам, нежели электроны. [c.22]

    Для получения практического эффекта использования заряженных частиц для процессов сушки требуется максимально ослабить связи полярных молекул с молекулами вещества. И если вблизи полярной молекулы будет двигаться заряженная частица, она сравнительно легко вырвет молекулу из вещества. Следовательно, в таких условиях молекула с большим дипольным моментом легко адсорбируется на отрицательно активной молекуле или на ионе. Таким образом, если только в окрестности дипольной молекулы имеется соответствующая заряженная частица, то в результате их взаимодействия образуется новое соединение — комплексная молекула. Эта комплексная молекула может быть унесена потоком движущегося воздуха (в который могут входить активные молекулы) из объема сушилки либо может распадаться на отдельные более мелкие частицы и затем выбрасываться из объема потоком газа. Все это говорит о том, что в присутствии заряженных частиц процесс обезвоживания может протекать более интенсивно, что и подтверждается рядом проведенных экспериментов. Что касается использования этих положений в конкретных условиях, то эта задача решается в каждом отдельном случае в зависимости от природы высушиваемого вещества и природы растворителя. Рассмотренные явления справедливы не только для процесса сушки, а имеют общее значение. Изменения в макромолекулах под действием ионизированного излучения наблюдаются и в полимерах [44], где обнаруживается заметное изменение физико-химических свойств при слабо выраженном химическом превращении. При действии ионизированного излучения, под которым понимают рентгеновские лучи, -излучение, поток электронов, протонов, дейтронов, а-частиц и нейтронов, наблюдаются такие процессы в полимерах, как сшивание молекулярных цепей, деструкция и распад макромолекул с образованием летучих продуктов и молекул меньшей длины (вплоть до превращения полимеров в вязкие жидкости) и ряд других изменений. Все эти процессы, как правило, могут протекать одновременно, но скорости соответствующих изменений обусловливаются химической природой полимеров и определяют суммарный эффект изменения свойств полимеров в результате излучения. Как показывают исследования, радиационно-химические эффекты в полимерах, по-видимому, не зависят от типа радиации, а определяются главным образом химическим строением полимера и количеством поглощенной энергии. [c.176]


    Описанная выше схема в общих чертах является достаточно обоснованной, однако детали требуют дальнейшей разработки. В настоящее время не существует какой-либо общепринятой точки зрения на возможность существования симметричной водородной связи с одним минимумом потенциальной энергии где-либо, кроме иона бифторида. Не вызывает сомнений, что физические свойства сильных водородных связей качественно отличны от свойств обычных слабых водородных связей и что протон не находится в течение измеримого отрезка времени вблизи одного из атомов, образующих водородную связь спорным, однако, остается вопрос о том, делокализуется ли протон полностью по одной потенциальной яме или происходит чрезвычайно быстрый переход протона из одной потенциальной ямы в другую и обратно. Наиболее важные данные, необходимые для решения этих вопросов, были получены при помощи дифракции нейтронов и рентгеновских лучей и методами инфракрасной и видимой спектроскопии. [c.267]

    Аддитивные свойства и конститутивные эффекты. Измерение определенных физических свойств веществ, как, например, дифракции рентгеновских лучей и электронов, молекулярных спектров и даже постоянных электрических дипольных моментов, дает возможность получить некоторые непосредственные сведения о геометрии и энергии соответствующих молекул или об определенных атомах и связях в молекуле. Определение других физических свойств, как, например, преломления света, теплоты сгорания, молекулярного объема и т.д., не дает таких непосредственных сведений о строении. Однако и в этих случаях возможно разложить расчетным путем общий измеренный эффект, произведенный молекулой в целом, на частичные эффекты, которые можно затем приписать отдельным структурным элементам молекулы. Физические свойства, допускающие такую трактовку, называются аддитивными свойствами молекулы или вещества. [c.124]

    Отсутствие в соединении атома, легко фиксируемого благодаря преобладающему участию в рассеянии рентгеновских лучей, значительно уменьшает возможности исследования структуры на первых его стадиях. Главная трудность заключается в отсутствии разумных оснований для выбора фазовых коэффициентов или знаков структурных амплитуд при построении ряда Фурье первого приближения. К кристаллохимическим данным приходится прибегать уже на этой сравнительно ранней стадии исследования. Принципы плотнейшей упаковки молекул—в случае чисто органических кристаллов, плотнейшей упаковки шаров—в случае ионных кристаллов, плотнейшей упаковки комплексов и ионов внешней сферы—в случае комплексных соединений—часто позволяют найти одну или несколько правдоподобных моделей структуры. Иногда определенные соображения о размещении атомов могут быть высказаны, исходя из оптических, магнитных и других свойств кристалла. Расчет фаз дифрагированных лучей (или знаков структурных амплитуд при наличии центров инверсии) на основе этих данных позволяет построить ряд первого приближения. Распределение электронной плотности, получаемое в результате суммирования ряда, должно либо подтвердить, либо отвергнуть предполагаемую модель структуры. Если модель была в общих чертах правильна, расположение максимумов будет ей соответствовать, и дальнейшая работа заключается лишь в уточнении координат атомов путем перерасчета фаз и повторных построений ряда. Неправильность исходного варианта структуры обнаруживается при наличии резких разногласий между предполагаемыми координатами атомов и расположением максимумов электронной плотности. Может оказаться, что распределение электронной плотности, полученное в результате суммирования первого ряда, является настолько размытым, что не позволяет категорически подтвердить или отвергнуть структуру. В этом случае решение дается после построения нескольких повторных рядов. В случае правильности исходной модели последовательные приближения должны выделять структуру все более четко. В противоположном случае повторные построения рядов не приводят к положительному результату. Взятый за основу вариант строения кристаллов приходится отвергнуть и все расчеты производить снова, исходя из иного предположения о структуре. [c.515]

    Как известно из физики, все тела, встречающиеся в природе, могут излучать энергию различных видов. Носителями лучистой энергии являются электромагнитные колебания с длиной волн от долей микрометра (например, гамма-лучи, рентгеновские) до многих километров (например, радиоволны), распространяющиеся в вакууме со скоростью света (3-10 м/с). В общем случае интенсивность излучения зависит от природы тела, его температуры, состояния поверхности, длины волны, а у газов — также от давления и толщины слоя. Лучи с длиной волны в диапазоне 0,8— 800 мкм (инфракрасные), возникновение которых определяется температурой и оптическими свойствами излучающего тела, называются тепловыми, а явление их распространения — тепловым излучением. [c.304]

    Поглощение тепловых нейтронов, гамма-лучей, рентгеновских и видимых лучей. Показатель поглощения К. входящий в общую формулу (2.12), слагается из соответствующих свойств компонентов стекла. [c.330]

    Белки в значительной степени изменяют свои свойства (денатурируются) при действии кислот, оснований, этанола, ацетона, мочевины и под влиянием физических условий — при нагревании, встряхивании, высоком давлении, облучении рентгеновскими или ультрафиолетовыми лучами. При денатурации общее число молекул белка сохраняется, но нарушаются связи внутри молекул, что приводит к изменению расположения пептидных цепей, а следовательно, и свойств белка. При денатурации пептидные связи не гидролизуются, но дисульфидные связи разрушаются и образуются сульфгидрильные группы. Сложноэфирные связи тоже разрушаются и образуются свободные гидроксильные и карбоксильные группы. В некоторых случаях процесс денатурации может быть обратимым. Денатурированные белки не существуют в кристаллическом состоянии. [c.291]

    Радиоволны, инфракрасный, видимый и ультрафиолетовый свет, рентгеновские лучи и гамма-излучение представляют собой электромагнитные волны с различной длиной волны. Скорость света, с = 2,9979-10 ° см с , связана с его длиной волны X и частотой V соотношением с = Ху. Волновое число у-это величина, обратная длине волны, V = 1/Х. Все нагретые тела излучают энергию (излучатель с идеальными свойствами дает излучение абсолютно черного тела). Планк выдвинул предположение, что энергия электромагнитного излучения квантована. Энергия кванта электромагнитного излучения пропорциональна его частоте, Е = км, где / -постоянная Планка, равная 6,6262 10 Дж с. Выбивание электронов с поверхности металла под действием света называется фотоэлектрическим эффектом. Квант света называется фотоном. Энергия фотона равна /IV, где V-частота электромагнитной волны. Зависимость поглошения света атомом или молекулой от длины волны, частоты или волнового числа представляет собой спектр поглощения. Соответствуюшая зависимость испускания света атомом или молекулой является спектром испускания. Спектр испускания атомарного водорода состоит из нескольких серий линий. Положения всех этих линий точно определяются одним общим соотношением-уравнением Ридберга [c.375]

    НЕЙТРОНОГРАФИЯ — метод изучения структуры молекул, кристаллов, жидкостей с помощью дифракции (рассеивания) нейтронов имеет много общего с рентгегюграфией. Дифракция нейтронов — типичное оптическое явление, аналогичное дифракции рентгеновских лучей, в котором ярко проявляются волновые свойства нейтрона. Для нейтронографических исследований требуются пучки тепловых нейтронов высокой интенсивности. Поэтому Н. начала развиваться лишь после строительства ядерных реакторов. Для исследования структуры вещества узкий направленный пучок тепловых нейтронов из реактора падает на монокристалл. Отражение нейтронных волн от кристаллической поверхности происходит в результате взаимодействия нейтронов с ядрами кристалла. Чтобы определить структуру кристалла, надо измерить углы, под которыми наблюдаются отражения первого порядка и интенсивность его. Н. имеет ряд преимуществ по сра-внлшю с рентгенографией благодаря зк1 чительному расширениво числа объектов исследования. [c.172]

    Входящая в это уравнение величина g(a.) называется радиальной функцией распределения. Она не поддается математическому анализу даже для простейших систем [14]. Однако, как будет показано в гл. XVI, радиальную функцию распределения можно найти из опытных данных по рассеянию рентгеновских лучей. Некоторые ее свойства можно установить из общих соображений. Функция ( ) равна нулю при а, равном нулю, и должна быть положительной при всех других значениях а она равна единице нри больших расстояниях и должна проходить через максимум при некотором расстоянии, не очень отличающемся от радиуса первой координационной сферы. Опытные данные подтверждают эти выводы и, кроме того, показывают существование пторичных максимумов на расстояниях, примерно соответствующих второй и третьей координационным сферам. Мы здесь примем, что для любой систе- [c.294]

    Постановка задачи. Теория Кирквуда, Боголюбова, Майера И др., основанная на применении радиальной функции распределения, доказала возможность расчета свойств жидкостей при помощи статистического метода Гиббса. Большим принципиальным достижением является тот факт, что теоретическая радиалы1ая функция распределения р (г, Т, ю) обладает такой же формой зависимости от г, Т, V, как и экспериментальная функция р (г, Г, и), получаемая с помощью исследования углового распределения рентгеновских лучей, рассеянных жидкостью. Таким образом доказана возможность теоретического расчета структуры жидкости на базе общих предположений статистической механики без привлечения эмпирических допущений. [c.174]

    Водные растворы электролитов обладают целым рядом особых, уникальных свойств, выделяющих их из общего ряда жидких растворов. Основной причиной этого служит проявление структуры воды в специфике взаимодействия ио1 вода. Гидратация ионов может быть охарактеризована так называемыми эффектами гидратации. Их количественной мерой являются термодинамические характеристики, изотопные эффекты гидратации, химические сдвиги ЯМР, смещение полос поглощения в ИК-спектрах, изменение частот спин-рещеточной релаксации, изменение дифракционных картин рассеяния рентгеновских лучей и неупругого рассеяния нейтронов и др. При интерпретации указанных проявлений гидратации все большее место занимают структурные представления, поскольку они позволяют глубже оценить роль среды в ионных реакциях в растворах. [c.136]

    Центральной частью курса является изучение основ общей теории дифракции на трехмерной кристаллической решетке. Все и зложение ведется с помощью понятий обратной решетки, которая вводится как физическая реальность — проявление определенной группы свойств кристаллов — наряду с ранее рассмотренным понятием кристаллической решетки. Обсуждение особенностей дифракции разного вида излучений — рентгеновских лучей, нейтронов и электронов — дается как на основе феноменологического описания соответствующих физических явлений, так и на основе квантово-механической теории. [c.8]

    В том же году появились дальнейшие работы по исследованию элемента 61. В некоторых из них авторы приписывали себе заслугу более раннего открытие ими этого элемента . В ряде других работ критически обсуждались результаты предшествующих исследований. Тщательное изучение, проведенное рядом опытных исследователей, не подтвердило данных, приведенных Харрисом и др., относительно существования элемента 61 в природе. Решающее значение при этом имели работы Ноддак [N16, N23], Ауэр фон Вельсбаха [ 34] и Прандтля и Гримма [Р45, Р46, Р44 ]. В работах Ауэр фон Вельсбаха и Прандтля было показано, что спектр поглощения предполагаемого иллиния идентичен спектру искусственно приготовленной смеси соединений неодима и самария. Рентгеновские линии, которые приписывались иллинию, оказались линиями высшего порядка, характерными для. примесей (в частности, хрома, брома, бария и платины) доказательства, основанные на исследовании дугового спектра, также были отвергнуты. И. Ноддак и В. Ноддак в течение 8 лет безуспешно пытались воспроизвести некоторые из опытов Харриса, Интема и Хопкинса, а также Ролла и Фернандеса. Полагая, что элемент 61 способен существовать в степени окисления - -2, как это имеет место в случае европия и самария, И. Ноддак и В. Ноддак предприняли поиски элемента 61 среди щелочноземельных минералов. Однако эти попытки окончились неудачей. Недавно в поисках элемента 61 Такворян [ТИ] исследовал концентраты монацита (природный редкоземельный фосфат), пользуясь при этом методами поглощения и испускания рентгеновских луче , а также изучая спектры пламени и исследуя радиоактивность. Однако и эта попытка окончилась неудачей. Хотя Харрис, Интема и Хопкинс провели свое исследование весьма тщательным образом и их работа в значительной степени способствовала изучению общих свойств редкоземельных элементов, все же представленные ими доказательства существования элемента 61 в природе нельзя считать убедительными. То же самое можно сказать о работах других исследователей. [c.156]

    Дуализм волн и частиц присущ не только свету, но и обычным-материальным частицам электроны, протоны и атомы, падая пучком на кристаллическую решетку, обнаруживают на ней совершенно такие же явления диффракции, как и рентгеновские лучи диффракция является, однако, типично волновым процессом. Таким образом дуализм волн и корпускул является общим свойством материи. Выход из такой двойственности надо искать не е противопоставлении волновых и корпускулярных свойств, а в их объединении. Один из создателей квантовой механики Г е й з е н-берг так формулирует эту задачу свет и материя не могут одновременно состоять из волн и частиц, так как оба представления друг друга исключают. Свет (фотоны) и весомая материя суть единые физические явления и двойственность их свойств только кажущаяся. Она зависит от того, что наши представления и наш язык возникли из наблюдения на больших телах и что для атомных процессов они не были приспособлены. Это заставляег при описании таких процессов прибегать к неполным аналогиям, которые дают волновая и корпускулярная картины . [c.41]

    Принцип соответствия оставался однако по существу лишь изолированным от остальной физики принципом — волшебной палочкой для решения разных задач теории спектров и строения атома, как метко выразился Зоммерфельд Огромное его принципиальное значение заключается в том, что дуализм волн и корпускул впервые был признан и узаконен. Забегая несколько вперед, надо указать, что такой дуализм присущ не только свету, но и обычным материальным частицам электроны, протоны и атомы, падая пучком на кристаллическую решетку, обнаруживают на ней совершенно такие же явления днффракции, как и рентгеновские лучи диффракция последних является однако типично волновым процессом. Таким образом дуализм волн и корпускул — общее свойство материи. Выход нз такой двойственности надо искать не в протиоопоста- [c.62]

    В 4 и5 мыставпм своей задачей дать общее представление о флюктуациях как существенном элементе структуры чистых жидкостей и растворов. Заметим, что в принципе любая физическая величина, характеризующая состояние жидкости, может быть использована в качестве псточника сведений о структуре- жид1<ости. Поэтому, расслштривая различные свойства растворов, мы еще не раз вернемся к вопросу об пх структуре. Измерения рентгеновских лучей и лучей видимого спектра на современном этапе физических знаний дают указания о строении жидкостей более прямо и однозначно, чем многие другие измерения. [c.140]

    Твердые комплексы с водородной связью типа кислых солей карбоновых кислот делят на два класса по ряду различных физических критериев. К первому классу относят комплексы, для которых при помощи инфракрасной спектроскопии, дифракции нейтронов и рентгеновских лучей показано, что карбоксильная группа и карбоксилат-ион сохраняют в общем каждый свою индивидуальность, хотя их структуры могут быть искажены водородной связью, и что протон находится вблизи одного из атомов, с которым он образует связь. Эти системы несомненно отвечают водородным связям с двумя потенциальными ямами, хотя точный вид потенциальных кривых остается спорным. Ко второму классу относят твердые комплексы, обладающие рядом свойств, характерных для симметричных систем с одной потенциальной ямой. Эксперименты по дифракции нейтронов на смешанных кристаллах фенилуксусной кислоты с ее натриевой солью при низкой температуре указывают на то, что, в пределах довольно высокого разрешения этого метода протон находится посредине между двумя атомами кислорода, являясь участником, по-видимому, симметричной водородной связи [46]. Рентгенографические исследования ряда систем этого типа, таких, как комплекс трифторуксусной кислоты с ее натриевой солью с расстоянием О...О, равным 2,435 А, показывают, что две карбоксильные группы становятся эквивалентными и имеют ДЛ1ШЫ связей, промежуточные между длинами связей в свободной и ионизированной карбоксильных группах. Это значит, что либо система является симметричной (VI), либо протон может перемещаться между двумя карбоксильными группами таким образом, что обе группы выглядят идентичными при рентгенографическом анализе. [c.268]

    Когда было установлено, что существуют и другие виды электромагнитного излучения, распространяющиеся со скоростью света, стало-ясно, что свет не уникальное явление природы, а лишь видимое проявление гораздо более общего эффекта, к которому относятся также инфракрасное излучение (открытое Гершелем в 1800г.), электрическое излучение (открытое Герцем в 1887 г.) и рентгеновское излучение (открытое Рентгеном в 1896 г.). Все эти виды излучения относятся к той или иной части электромагнитного спектра (рис. 2.14). Электромагнитный спектр непрерывен и простирается от области чрезвычайно коротких длин волн и высоких частот, соответствующей космическим лучам, до области чрезвычайно длинных и низкочастотных электрических волн. Все виды излучения отличаются только длиной волны X, т.е. расстоянием между двумя последовательными максимумами волнового процесса. Любое электромагнитное излучение распространяется с одинаковой скоростью, которая в вакууме составляет 3,00-10 м/с (обозначается с), и проявляет волновые свойства. В спектре электромагнитного излучения принято выделять разлитаые области, однако между ними не существует четких границ правда, видимая часть спектра (380—760 нм) имеет довольно определенные границы, но это обусловлено ограниченной способностью человеческого глаза к восприятию излучения. Для обнаружения излучения в различных областях электромагнитного спектра созданы специальные приборы, называемые спектроскопами, спектрометрами или спектрографами в зависимости от того, каким образом в них производится регистрация излучения. [c.33]

    Основные научные исследования, связанные с развитием химии, посвящены вопросам прнменения Х-лучей к изучению строения вещества и эволюции учения с периодичности химических элементов. Выполнил классические исследования пьезоэлектрических н пироэлектрических свойств кристаллов. Установил взаимосвязь электрических и оптических явлений в кристаллах. Открыл (1895) излучение, названное им Х-луча-ми (впоследствии было названо рентгеновским), и создал первые рентгеновские трубки, конструкции которых в общих чертах применяются до настоящего времени. Всесторонне исследовал (1895—1897) свойства открытого им излучения. Автор фундаментальных исследований по магнетизму. [c.424]


Смотреть страницы где упоминается термин Общие свойства рентгеновских лучей: [c.14]    [c.86]    [c.21]    [c.32]    [c.278]    [c.70]    [c.480]   
Смотреть главы в:

Рентгеноструктурный анализ Том 1 Издание 2 -> Общие свойства рентгеновских лучей




ПОИСК





Смотрите так же термины и статьи:

Лучи рентгеновские

Рентгеновские лучи свойства

лучами рентгеновскими лучами



© 2025 chem21.info Реклама на сайте