Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Свойства щелочных электролитов

    Амфотерный электролит—белок (ср. опыт 272) в растворе проявляет буферные свойства, т. е. может связывать как появляющиеся водородные, так и гидроксильные ионы. В результате окраска индикатора конго переходит от синей к красной (снижается кислотность), а розовая окраска фенолфталеина исчезает (снижается щелочность системы). В этих опытах особенно наглядно обнаруживается амфотерность белка, который в опыте А реагирует как основание, а в опыте Б—как кислота. [c.351]


    Щелочные никель-кадмиевые (НК) аккумуляторы по сравнению с НЖ-аккумуляторами обладают лучшей работоспособностью при пониженной температуре и повышенной токовой нагрузке. Саморазряд НК-аккумуляторов значительно меньше. Все эти преимущества связаны прежде всего со своеобразием электрохимических свойств кадмиевого электрода. Так, различие в сохранности заряда щелочных аккумуляторов объясняется тем, что железо в щелочном электролите термодинамически неустойчиво, тогда как потенциал кадмия в тех же условиях положительнее равновесного потенциала водородного электрода, и самопроизвольное окисление чистого кадмия в обескисло- [c.226]

    Введение гидроокиси лития в электролит щелочного аккумулятора увеличивает емкость и срок службы аккумулятора при обычных температурах и удлиняет рабочий интервал в сторону высоких температур. Это полезное действие, однако, наблюдается лишь при умеренных концентрациях едкого лития в электролите, превышение которых, наоборот, приводит к ухудшению свойств аккумулятора. Установлено, что при большой концентрации едкого лития в электролите он может образовать с. массой положительного электрода электрохимически инертное соединение Ь ЫЮ2, от чего емкость электрода падает. [c.138]

    Для придания необходимых физико-механических свойств в оксидную пленку могут вводиться находящиеся в электролите нерастворимые в воде в этих условиях металлы, а также мелкодисперсные тугоплавкие соединения (карбиды, бориды, нитриды) и окислы за счет электрофоретической доставки их на анод. Образование пленок происходит в локальных объемах порядка 10 см при температуре пробойного канала 2000 К и скорости охлаждения 10 - 10 градус/с. По такому принципу формируются керамические покрытия, применяемые для повыщения коррозионной и термической стойкости алюминиевых деталей. Керамические покрытия получают из водных растворов силикатов щелочных металлов, например из 3-4-модульного силиката натрия (концентрация 0,1-0,2 М), они представляют собой шпинели AlSiOj, сформированные при анодировании в режиме искрового разряда (напряжение 350 В). Дегидратация и спекание силикатов на аноде происходят в результате искрового пробоя окисного слоя, образующегося при анодировании алюминия. При электролизе на аноде происходит разряд гидроксил-ионов I. силикатных мицелл, а также образуются окислы  [c.124]

    Трудности в применении этого метода возникают при попытках изучения систем, содержащих компоненты, электродные потенциалы которых в данном электролите близки. При этом, помимо основной токообразующей реакции, возможна реакция между солью компонента А в электролите и компонентом В в сплаве, приводящая к изменению концентрации в поверхностном слое электрода и к его концентрационной поляризации. В этом случае определение термодинамической активности по уравнению (1) будет тем более ошибочным, чем меньше разница в электродных потенциалах компонентов и исходная концентрация компонента А в сплаве. Аналогичные трудности в равной степени возникают и при исследовании термодинамических свойств водных растворов смесей электролитов. Кроме того, при исследовании термодинамических свойств растворов солей щелочных металлов в воде с помощью цепей без переноса возникают осложнения, связанные с взаимодействием амальгамы щелочного металла с водой. Применение сложной техники проточного амальгамного электрода не устраняет до конца этих осложнений, в связи с чем измерения, проведенные при концентрациях растворов<0,1 н., становятся ненадежными [8]. [c.84]


    Длительное хранение больших количеств готового щелочного электролита не рекомендуется, ибо щелочной электролит обладает свойством жадно поглощать из воздуха углекислоту и постепенно переходить в негодное состояние. Небольшой оперативный запас электролита должен храниться в плотно закрытых стеклянных бутылях. [c.156]

    Аноды для меднении. Выбор анодов зависит от состава ванны (кислая или щелочная). Для получения матовых покрытий наиболее пригодны аноды из чистой меди, а также из катаной или электролитической. В щелочных ваннах блестящего меднения применяют аноды из меди с добавками фосфора, не содержащей кислорода (содержание фосфора 0,02—0,03%). Такие аноды рекомендуется применять для электролитов с большой концентрацией сегнетовой соли (или других солей с буферными свойствами). Для указанных электролитов целесообразно использовать аноды нз меди особой чистоты (99, 99% Си). При покрытии деталей сплавами цннк — алюминий в пирофосфат-ных электролитах следует применять аноды нз меди особой чистоты. Чтобы уменьшить попадание шлама в электролит на аноды и корзины надевают чехлы из стойкой во всех электролитах полипропиленовой ткани с размером пор 20 - 30 мкм. [c.129]

    Некоторые сепараторы, например пленка типа целлофана и лак АП-14Л, представляют собой селективные мембраны, способные избирательно пропускать ионы, находящиеся в электролите. Лаковый слой АП-14Л на поверхности катода замедляет прохождение из катодного пространства в анодное растворимых в щелочах соединений ртути, серебра и марганца, снижая скорость саморазряда элементов. Диффузия ионов щелочных металлов и ОН через лаковую пленку происходит без заметных затруднений. Лаковый слой АП-14Л химически устойчив к воздействию сильных окислителей, которыми являются катодные активные материалы. Стойкость и избирательные свойства пленки выражены слабее, чем у АП-14Л, В отсутствие селективных мембран целлюлозные бумажные сепараторы постепенно окисляются соединениями тяжелых металлов, которые в некоторых случаях восстанавливаются до свободных. металлов, например ртути и серебра, и вызывают внутренние межэлектродные замыкания. Пленка также предотвращает возможность замыкания при выпадении из щелочного электролита окиси цинка, которая имеет нарушенную структуру и вследствие этого электронную проводимость. [c.151]

    Опыт показал, что поверхность металла даже при тщательнейшей очистке еще не готова для нанесения толстого электролитического покрытия с хорошим сцеплением. Мешают дефекты поверхности. Например, в результате механической обработки могут настолько измениться физические свойства поверхностного слоя, что адсорбция будет отсутствовать. Или же в процессе травления поверхность может сильно обогатиться углеродом. Очень часто и потенциал металла относительно электролита не благоприятен для хорошего осаждения первого слоя покрытия. Поэтому необходимы особые меры. Так, обрабатываемую деталь подвергают действию тока очень высокой плотности, например в хромовом электролите. Там, где это невозможно, применяют специальные электролиты для получения начального слоя, которые обладают особенно высокой кроющей и рассеивающей способностью. Выход по току при этом невелик, но это несущественно, так как детали находятся в ванне всего несколько минут. Чаще всего здесь применяются щелочные электролиты, в которых содержание свободного цианида калия или натрия значительно выше, чем в обычных растворах. (В случае меднения избыток цианида калия или натрия не должен быт) [c.680]

    В электролите 1 оксидирование ведут со стальными катодами. Пленки получаются толщиной до 30 мкм. Значительный рост толщины пленки и ее электросопротивления вызывает необходимость повышения подаваемого на ванну напряжения для сохранения заданной плотности тока. Пленки, получаемые в этом электролите, бесцветны и могут быть окрашены органическими красителями или пропитаны парафином или другими компаундами. Они характеризуются также высокой твердостью и износоустойчивостью. К недостаткам оксидных пленок, полученных в щелочном электролите, относится повышенная чувствительность к нагреванию. При температуре выше 100° С защитные свойства пленки ухудшаются [9]. [c.77]

    Судя по характеру ионов, образующихся при диссоциации воды, можно притти к заключению, что вода по своей природе—амфотерный электролит в ней, наряду с катионами водорода, носителями кислотных свойств, имеются и гидроксил-ионы—носители щелочных свойств. Следовательно, вода, строго говоря, является одновременно и кислотой и щелочью то и другое свойство выражено в ней в крайне слабой, но равной степени. Поэтому чистая вода нейтральна по отношению к индикаторам (лакмусу и др.). Степень электролитической диссоциации воды ничтожно мала. Из 556 миллионов молекул воды в состоянии ионизации находится лишь одна. Следовательно, степень ионизации воды  [c.168]


    Повышение концентрации ОН -ионов в электролите замедляет коррозию таких металлов, как Ре, М (образование гидроокисных защитных пленок на аноде). У металлов же, гидроокиси которых обладают амфотерными свойствами (А1, 2п, РЬ), повышение щелочности среды на разрушение этих металлов действует убыстряющим образом (гидроокиси амфотерных металлов растворимы в щелочах). [c.366]

    Электрохимическое обезжиривание основано на электрокапиллярных явлениях. Кабанов показал, что при погружении металла, покрытого маслом, Б некоторые щелочные растворы происходит разрыв сплошной пленки масла и вследствие изменения поверхностного натяжения и увеличения смачивания поверхности металла растворо л—собирание маслз в отдельные капельки, которые всплывают и дают с раствором эмульсию. Такому удалению масла с поверхности и эмульгированию его способствуют добавки поверхностно-активных веществ, так называемых эмульгаторов (жидкое стекло, мыло, желатина, клей, а также полиэтилен гликолевые эфиры под марками ОП-7и ОП-10, КонтактПетрова и др.) (см. 34, 17 ). Если же на металл, покрытый маслом, наложить электродный потенциал, краевые углы капель, образовавшихся на поверхности при погружении в щелочной раствор, уменьшаются пузырьки газа, выделяющиеся на электроде, захватывают капли и поднимают их на поверхность раствора. Полезно перемешивать электролит и повышать температуру до 60—80°С. Применяют плотности тока 3—10 а/дм (при обезжиривании ленты или проволоки до 50 а/дм ) напряжение 6—10 в, продолжительность 5—10 мин. Вторые электроды — никелированная сталь, просто сталь или даже корпус ванны. Растворы аналогичны указанным выше, примерно вдвое слабее. После обезжиривания — тщательная промывка. Электрохимическое обезжиривание бывает чаще катодным, иногда анодным, иногда комбинированным, т. е. с кратковременным переключением на анод. Основным преимуществом электрохимического обезжиривания является скорость и управляемость процесса, основным недостатком катодного способа — наводороживание металлов на катоде и ухудшение их механических свойств от этого. [c.341]

    В прототипах батарей топливного элемента мощностью до 1000 вт исследуются в качестве топлива метанол и другие спирты при использовании в качестве окислителя воздуха или кислорода в кислых и щелочных электролитах. Основная трудность при работе со спиртами в щелочных электролитах—это образование продуктов окисления, которые нейтрализуют электролиты. Накопление продуктов окисления сопровождается постепенным уменьшением мощности. Однако за последние несколько лет были достигнуты значительные успехи в преодолении этой трудности. Например, силовая установка может работать около 8 час без смены электролита, после чего электролит можно обновить или восстановить его начальные свойства. Опыт показал, что после обновления электролита установка вновь достигает максимальной мощности. При напряжении 0,3 в легко получить плотности тока [c.443]

    Из существующих теорий для объяснения пассивного состояния металлов рассмотрим наиболее обоснованные и признанные — пленочную и адсорбционную. Пленочная теория пассивности объясняет состояние повышенной электрохимической устойчивости металлов образованием на их поверхности очень тонкой защитной пленки из нерастворимых продуктов взаимодействия металла со средой. Пленка состоит обычно из одной фазы, может быть солевой, гидроокисной или (наиболее часто) окисной природы. Поведение металла в пассивном состоянии определяется, таким образом, не свойствами самого металла, а физико-химическими свойствами пленки. Образовавшийся на анодной поверхности при электрохимическом процессе фазовый окисел вызывает более стойкое пассивирование в кислородсодержащем электролите, имеющем нейтральную или щелочную реакцию. Вместе с тем при анодной поляризации металла в кислородсодержащих кислотах образовавшаяся пассивная пленка находится в состоянии динамического равновесия с раствором, т. е. растворение внешней части пленки под химическим воздействием электролита компенсируется одновременным процессом анодного возобновления пленки. [c.28]

    Стандартные характеристики растворенного вещества согласно общепринятому выбору стандартного состояния относятся к гипотетическому одномоляльному раствору, обладающему свойствами бесконечно разбавленного, т. е. к нулевой ионной силе, а химический эксперимент проводится при конечных концентрациях реагентов. Изучение равновесий, как правило, проводится в растворах с постоянным и довольно высоким значением ионной силы, причем полученные значения констант равновесия и тепловых эффектов далеко не всегда пересчитываются на нулевую ионную силу. Термодинамические характеристики реакций комплексообразования при конечных значениях ионной силы оказываются несопоставимыми с основными стандартными характеристиками ионов, фигурирующими в справочной литературе, что закрывает путь для многих расчетов и сопоставлений. Термодинамические характеристики для растворов с конечным значением ионной силы часто оказываются несопо-ставимыми и между собой, так как каждый исследователь выбирает значение ионной силы раствора и электролит для ее поддержания в значительной степени произвольно, используя чаще всего нитраты или перхлораты, а иногда хлориды щелочных металлов. [c.260]

    Напряжение щелочных аккумуляторов ниже, чем свинцовых. Во время разряда оно изменяется с 1,35 до 1,1 в, оставаясь в среднем равным 1,2 е, затем быстро падает до 1 е и ниже. Внутреннее сопротивление сильно возрастает по мере разряда у аккумуляторов ШН оно выше, чем у КН (той же емкости). Железный электрод растворяется в электролите, даже когда аккумулятор не замкнут,— выделяется водород. Кадмий устойчив в щелочных растворах, однако он значительно дороже железа, из-за чего кадмиевый электрод содержит иногда до 5% железа. Кроме того, присутствие железа в электроде благоприятно влияет на свойства его активной массы, повышая ее пористость. Свежезаряженный ЖН-аккумулятор имеет э.д.с. 1,48 е, КН—1,44. Однако через короткое время э.д.с. снижается у обоих аккумуляторов до 1,35 в. [c.403]

    Таким образом, свойства платиновых анодов и ПТА обусловлены образованием или наличием на поверхности анода окислов и xesto-сорбировапных слоев, на которых и происходит электродная реакция. Состояние поверхности анода и ход электрохимической реакции взаимосвязаны между собой и оказывают влияние друг на друга. В щелочных, сульфатных, фосфатных и других растворах, где основным анодным процессом является выделение кислорода, окисление поверхности анода протекает быстро, В хлоридных или содержащих ионы хлора электролитах основным анодным процессом на ПТА или платине может быть разряд хлор-ионов, поэтому окисление поверхности анода замедляется из-за низкой скорости образования кислорода в результате действия ионов хлора. Происходит частичное вытеснение кислорода хлором [88—91]. В присутствии хлор ИОнов в электролите в процессе анодной поляризации платины происходит взаимная конкуренция кислорода и хлор-ионов. Предварительное окисление поверхности анода снижает адсорбцию ионов галоидов в кислых растворах [92—94]. Аналогичные явления наблюдаются TaKHie при адсорбции поверхностью анода других частиц, в том числе и органических молекул. Так, на платиновом аноде при потенциале выше 1,6 В при адсорбции бензола и нафталина наблюдалось частичное вытеснение хемосорбированного кислорода. Адсорбция связана с внедрением органических молекул в поверхностный слой окисла и образованием устойчивых поверхностных соединений, влияющих на электрохимические свойства поверхности [95]. [c.153]

    Для лужения применяют кислые и щелочные (станнатные) электролиты. В кислых электролитах ионы олова двухвалентные, в щелочных — четырехвалентные. Каждый из этих электролитов имеет свои преимущества и недостатки. В кислых электролитах можно применять значительно более высокую катодную плотность тока, чем в щелочных, и осаждать олово с выходом по току, близким к 100%. Электрохимический эквивалент олова в два раза больше, чем в щелочных электролитах. В целом скорость лужения в кислых электролитах в несколько раз выше, чем в щелочных. Наряду с этим кислые электролиты для лужения имеют ряд существенных недостатков малая катодная поляризация при осаждении олова, меньшая рассеивающая способность, чем щелочного электролита, крупнокристаллическое строение покрытий. Лишь при наличии в электролите поверхностно активных веществ образуются покрытия, удовлетворительные по физическим свойствам. [c.156]

    Нейтрализация (разрядка) ионов протекает на границе раздела фаз твердый электролит — вакуум. Здесь возможны два метода подачи электронов к месту нейтрализации ионов от специального электронного эмиттера или от омического контакта. В отличие от обычных электрохимических реакций, протекающих на границе раздела ионный проводник (электролит) — электронный проводник (катод, анод), реакции протекают в глубоком вакууме. Выделяющиеся при этом продукты реакции не взаимодействуют с электролитом. При выборе мембраны с униполярной ионной проводимостью вакуум-электрохимические процессы протекают строго селективно. Это свойство процесса переноса с последующей нейтрализацией ионов в вакууме позволяет получить щелочные элементы с высокой степенью чистоты. [c.76]

    Как уже было указано выше, весьма важной характеристикой защитных пленок является их теплостойкость. Одной из основных характеристик теплостойкости неорганических пленок является изменение их защитных свойств после нагрева. Оксихроматные пленки, полученные химическим путем, значительно снижают свои защитные свойства после нагрева выше 120 . Анодные пленки, полученные в щелочном электролите и состоящие в основном из гидроокиси магния, также выдерживают нагревы не выше этой температуры. Теплостойкость пленок изучалась в условиях нагрева при 300 в течение 100 час. и при 420°—15 час. В результате сравнительных коррозионных испытаний анодной пленки на сплавах МЛ5 и МЛ7 после прогревов и без прогрева во влажной атмосфере установлено, что свойства пленки после указанных прогревов не изменились. [c.178]

    Щелочной (станнатный) электролит используется для гальванического лужения преимущественно деталей сложной формы из стали, меди и ее сплавов. Рассеивающая способность станнатного электролита превосходит рассеивающую способность всех применяемых в гальванотехнике электролитов. Основными компонентами станнатного электролита являются станнат натрия ЫазЗпОд, свободная щелочь МаОН и уксуснокислый натрий СНдСООНа. Последний вводится в электролит для повышения его устойчивости и улучшения качества катодного осадка. В условиях производства хорошие свойства показал электролит следующего состава (в г/л)  [c.108]

    Имеется несколько предпосылок, определяющих особенности катодного процесса с образованием гидроксида никеля (II) и анодного процесса заряда оксидноникелевого электрода. Во-первых, метагидроксида никеля (III) существует в модификациях fi- и yNiOOH, отличающихся по свойствам, составу и структуре. Во-вторых, фактическая окисленность никеля в заряженном электроде заметно выше стехиометрической. В-третьих, ни одиа из модификаций NiOOH нерастворима в щелочном электролите. [c.205]

    Шайбы из щелочестойкой бумаги, которые применяют для предотвращения замыканий между соседними элементами в секциях элементов, также изготовляют штамповкой бумажных полос. Такие шайбы выполняют дополнительные функции. В случае нарушения герметичности одного из элементов секции бумажные шайбы впитывают выделяющийся электролит и предотвращают попадание раствора между несколькими последовательно соединенными элементами. Благодаря такому свойству шайбы предотвращают саморазряд секции элементов. В некоторых случаях для визуальной оценки степенп вытекания щелочного электролита пользуются бумажными шайбами, пропитанными в растворе фенолфталеина. Фенолфталеин является индикатором, меняющим свою окраску в присутствии щелочи. Даже при небольшом выделении щелочи фенолфталеин принимает малиновую окраску. [c.264]

    Уменьшить агрессивные свойства воды можно также с помощью хроматов. Концентрация хро1мата или бихромата зависит от состава охлаждающих или передающих энергию жидкостей и их температуры. Для обыкновенной водопроводной воды добавка 0,2—0,5% хромата вполне достаточна для прекращения коррозии стали при комнатной температуре. При большом содержании в воде хлоридо В (от 100 до 1000 мг/л) концентрация хромата должна быть повышена до 2—5%. Хромат, обладающий более щелочными свойствами, имеет преимущество перед бихроматом. При необходимости применять бихромат целесообразно электролит подщелачивать до рН = 8-+9, добавляя каустическую соду. Для воды с высоким значением pH можно применять бихромат без дополнительного подщелачивания. С повышением температуры электролита защитные свойства хромата и бихромата значительно понижаются. При температурах 80—90°С концентрация хромата или бихромата в обычной водопроводной воде должна быть повышена до 1—2%. [c.261]

    Большое наводороживание в щелочных цианистых электролитах связано с наличием в их составе ионов N , являющихся стимуляторами наводороживания (раздел 2.2). Ноэтому увеличение относительного содержания Na N в электролите при постоянном содержании цинка приводит к увеличению наводороживания стальной основы. В табл. 6.24 показано влияние концентрации Na N на количество водорода, абсорбированного сталью ЗОХГСА, и изменение ее механических свойств вследствие наводороживания. [c.307]

    Для повышения коррозионной стойкости предлагается вести осаждение РЬОг из кислых растворов нитрата свинца с добавкой нитратов меди и алюминия, органических веществ. Получению твердых осадков способствует введение в электролит тонкодисперсных добавок стекла, песка, графита, магнетита, диоксида свинца, наносимых на поверхность основы в качестве центров кристаллизации. Качество РЬОг улучшается при элек-трохим ическом осаждении в ультразвуковом поле, наложении переменного тока на постоянный. Для снижения внутренних напряжений, улучшения сцепления с основой и повышения коррозионной стойкости рекомендуется получение многослойного анода, который обладает физическими и электрохимическими свойствами, присущими обоим кристаллическим модификациям. Вначале на основу электроосаждается из щелочных растворов слой а-РЬОг толщиной 0,1 мм, затем на этот слой из кислых растворов наносится р-РЬОг толщиной 0,2—1,0 мм (пат. США 4064035). [c.41]

    Электролитический сплав 5п—2п, содержащий 80% 5п и 20% 2п, отличается высокими защитными свойствами в условиях атмосферной коррозии. В промышленной атмосфере оловянно-цинковые покрытия разрушаются меньше, чем цинковые покрытия. Этот сплав проявляет анодный характер защиты стали от коррозии и обладает меньшей пористостью, чем покрытия чистым оловом. При малом срдержании цинка в сплаве ( 10%), так же как и при содержании его более 50 %, покрытие сплавом теряет свои преимущества перед покрытием чистыми металлами. Важным достоинством этого сплава является способность к пайке, которая сохраняется длительное время [5, 53, 54]. В соответствии с ГОСТ 14623-69 этот сплав может применяться в очень жестких условиях эксплуатации. Имеются сведения о применении в США автоматических линий [55] для электроосаждения сплава 2п— 5п. Практическое применение получил щелочно-цианистый электролит, в котором оба металла присутствуют в виде комплексных соединений олово в виде станната, а цинк в виде цианистой соли. [c.213]

    Интересно рассмотреть теперь, какие виды межатомных связей установлены химиками в результате изучения химии элементов. Все атомы, кроме атомов инертных газов, обладают способностью соединяться с атомами других элементов, хотя и не обязательно со всеми элементами. Атом водорода обычно присоединяется только к одному атому в простых молекулах и, следовательно, обладает одной валентностью. Галоиды и щелочные металлы во многих своих соединениях также одновалентны. Первоначальные работы по электролизу расплавленных солей и растворов солей указали на электрическую природу межатомных сил, а также установили возможность разделения атомов на электроположительные и электроотрицательные. Первые, например Н, N3, К и т. д., выделяются при электролизе на отрицательном электроде, а вторые — галоиды, кислород и т. д. — на положительном электроде. Поэтому Берцелиус в 1812 г. предположил, что силы между атомами в их соединениях имеют электростатический характер. Этот взгляд был оставлен к середине XIX столетия, так как он не мог объяснить многие факты из области органической химии. Так, электроположительный атом Н может быть заменен в углеводородной молекуле, например в СН4, электроот ицательным атомом С1 без существенного изменения свойств соединения, что наводит на мысль о том, что связи в таком соединении в большей степени являются неполярными связями, а не электростатическими связями между противоположно заряженными атомами. С появлением теории электроли- [c.56]

    Снижение перенапряжения процесса растворения — выделения металла часто происходит в результате образования поверхностных комплексов с анионами раствора электролита. Так, в присутствии адсорбирующихся галоидных анионов возрастает величина тока обмена, например, между амальгамой цинка и раствором его соли [296]. Как мы видели, ионы хлора в щелочных растворах депас-сивируют железо. Галоиды оказывают активирующее действие, адсорбируясь в виде ионов, причем образующийся комплекс, очевидно, гидратирован. Вероятно, во многих случаях такого рода активация может быть объяснена на основании теории двойного слоя при учете г з 1-потенциала. Гидратированный поверхностный комплекс металла с галоидом легко теряет связь с основной массой металла и переходит в раствор. Этим объясняется, например, тот факт, что скорость анодного растворения платины при постоянном потенциале оказывается пропорциональной концентрации ионов хлора в электролите [265]. Пассивирующее действие аниона связано, вероятно, с более глубоким взаимодействием между анионом и металлом, приводящим к образованию поверхностных соединений, теряющих гидратирующую воду и получающих свойства пленки. В настоящее время нет еще простой теории, которая бы объясняла полностью наблюдающиеся в этом случае кинетические эффекты. [c.147]

    Образование предволны (максимума тока) в щелочных растворах наблюдается не только на капающем, но и па твердых электродах (см. ниже). Помимо этого, другие свойства указывают на нетурбулентную природу максимума. Ток в максимуме (г ) пропорционален концентрации перекиси (с ), и хотя чувствителен к условиям опыта, но всегда остается меньше он не меняется от добавления подавителей максимума. Очевидно, в области предволны на электроде восстанавливаются продукты некоторой химической реакции, в которой участвует перекись. Предположение, что это каталитический распад на жирную кислоту (соответственно спирт) и Ог, можно сразу отвергнуть в одинаковых условиях (электролит — 0,1 М NaOH 0,9 М Na 104) максимум тока лежит в случае НУК при —0,10 в (в случае ГПА — при [c.373]

    Электрод из нержа-вещей стали в щелочном растворе можно рассматривать как электролитический коцценсатор, обкладками которого служат металл и электролит, а диэлектриком - пленка продуктов коррозии из гидроокиси железа и никеля. Можно предполагать, что изменение емкости во вренени при зарождении и развитии Пущины связано с изменением электрических свойств фазовых пленок по всей поверхности нержавеющей стали. [c.15]


Смотреть страницы где упоминается термин Свойства щелочных электролитов: [c.39]    [c.39]    [c.229]    [c.8]    [c.341]    [c.167]    [c.86]    [c.201]    [c.102]    [c.292]    [c.83]    [c.4]   
Смотреть главы в:

Аккумуляторные батареи Издание 4 -> Свойства щелочных электролитов




ПОИСК





Смотрите так же термины и статьи:

Свойства щелочных

Стаханова, Г. И. Микулип, М. X. Карапетъянц, К. К. Власенко, Баалова. Термодинамические свойства смешанных растворов электролитов IV. Изменения энтальпии при смешении водных растворов хлоридов щелочных металлов

Стаханова. Термодинамические свойства смешанных растворов электролитов. V. Изменения избыточного изобарно-изотермического потенциала при смещении водных растворов хлоридов щелочных металлов

Электролит щелочные

Электролиты свойства



© 2025 chem21.info Реклама на сайте