Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические кислоты, общие структуры

    Различные клетки многоклеточных организмов отличаются друг от друга, однако каждая растительная клетка имеет общие черты строения и в каждой находятся общие внутриклеточные структуры, выполняющие аналогичные функции. Каждая растительная клетка состоит из цитоплазмы и ядра. Цитоплазма окружена клеточной оболочкой, а ядро — ядерной оболочкой. Цитоплазма — это очень сложная коллоидная система. Дисперсной средой ее служит вода, в которой растворены минеральные соли, сахара, аминокислоты, органические кислоты и многие другие вещества. Во взвешенном состоянии в цитоплазме находятся различные включения и большое число органелл, или структур, разного состава и размера. В последнее время с помощью дифференциального центрифугирования, электронной микроскопии, и других методов исследования удалось установить огромную роль этих структур в обмене веществ и энергии в живых организмах. [c.27]


    Взаимодействие полимерных цепей с поверхностью наполнителя, приводящее к уменьшению, их подвижности, должно изменять кинетику кристаллизации в случае кристаллизующихся полимеров. Наполнители могут оказывать влияние также и на процессы заро-дышеобразования при кристаллизации. Эффективность зародышеобразующего действия определяется природой как полимера, так и наполнителя. Исследование влияния малых добавок солей органических кислот, использованных в качестве искусственных заро-дышеобразователей,-на кристаллизацию показало [118—124], что они приводят к изменениям надмолекулярной структуры полимера, так как с изменением концентрации зародышеобразователей изменяются условия кристаллизации и процесс протекает с большей скоростью. Механизм действия добавок заключается в том, что на поверхности твердых частиц зародышеобразователя в результате адсорбции возникают упорядоченные области полимера, играющие роль центров кристаллизации. Такие упорядоченные области сохраняются на поверхности и при температурах, при которых полимер переходит в расплав, когда в его объеме гомогенные центры кристаллизации полностью разрушаются. При достаточно большой концентрации добавок число гетерогенных центров на их поверхности значительно превосходит число гомогенных центров, которые возникают в объеме в ходе кристаллизации. Увеличение числа центров кристаллизации приводит к увеличению общей скорости кристаллизации и уменьшению размера сферолитов (наличие добавки не влияет на скорость линейного роста сферолитов). [c.63]

    В заключение сошлемся на статьи общего характера. Приведены рекомендации [437] по использованию перегородок в среде агрессивных веществ (неорганические и органические кислоты, основания, соли, окислители, органические растворители) представлены данные [423] о структуре и свойствах фильтровальных тканей, а также о нетканых материалах рассмотрены [438] пористость и проницаемость керамических, металлокерамических, пластмассовых и природных пористых материалов даны указания [439] о выборе фильтровальных тканей в зависимости от назначения и условий фильтрования, а также свойств суспензии и осадка с учетом структуры ткани сделан обзор литературы [440], в частности по проницаемости и задерживающей способности некоторых фильтровальных перегородок дана [441] классификация натуральных и синтетических волокон и рассмотрены принципы выбора фильтровальных тканей помещена [442] классификация разнообразных фильтровальных перегородок, а также приведены их характеристики и методы исследования рассмотрены [443] классификация и выбор фильтровальных тканей. [c.382]


    Книга состоит из 19 глав гл. 10—19 составляют часть 2, непосредственно посвященную органическим реакциям и их механизмам, а гл. 1—9 можно рассматривать как введение к части 2. Первые пять глав касаются строения органических соединений, в них обсуждаются типы химических связей, важные для органической химии, трехмерная структура органических молекул, строение частиц, в которых валентность углерода меньше четырех. В гл. 6—9 рассматриваются вопросы, которые помогают составить основу для понимания материала, излагаемого в части 2 кислоты и основания, фотохимия, соотношение между структурой и реакционной способностью здесь обсуждаются в общем виде механизмы реакций и способы их установления. [c.14]

    Горячая соляная кислота гидролизует белки с образованием смеси соединений, называемых а-аминокислотами. Как следует из названия, эти соединения представляют собой карбоновые кислоты, замещенные в -положении (или в положении 2) аминогруппой. Большинство аминокислот, входящих в состав белков, могут быть представлены общей структурой (рис. 12.1) и отличаются только органической группой К. [c.260]

    Современные электронные теории органической химии оказались весьма полезными для многих корреляций свойств и структуры, в том числе и для объяснения относительной силы органических кислот и оснований. Согласно определению Аррениуса, кислотами являются соединения, которые в растворе дают ионы водорода Н+, тогда как основания образуют гидроксид-ионы ОН. Эти определения вполне приемлемы для реакций, идущих только в водных растворах, но поскольку кислотно-основные взаимодействия имеют чрезвычайно важное и практическое значение, то постепенно были сформулированы гораздо более общие концепции. Так, Бренстед определил кислоты как вещества, которые способны отдавать протоны, т. е. как доноры протонов, [c.63]

    Индикаторы - это чаще всего органические соединения, которые меняют окраску под влиянием кислоты или основания. Химическая структура этих молекул очень разнообразна. К индикаторам следует отнести различного вида органические соединения, общей чертой которых является то, что они подвергаются в растворе кислотной или основной диссоциации и являются слабыми электролитами. Общее уравнение диссоциации индикатора выражается следующим образом  [c.60]

    Еще в 1871 г. появились первые данные о том, что в клеточных ядрах содержатся органические вещества, молекулы которых содержат азот и фосфор. Впоследствии эти вещества получили название нуклеиновых кислот. Было показано, что они представляют собой полимеры, в состав которых входят гетероциклические основания (аденин, гуанин, цитозин, урацил, ТИМИН, а иногда и другие), моносахарид (рибоза или дезокси-рибоза) и фосфорная кислота. Схематически общую структуру нуклеиновых кислот можно представить формулой (9), в которой прямоугольником обозначены остатки пентозы, буквой В — остатки гетероциклических оснований, Р — остатки фосфорной кислоты. Таким образом, полимер представляет собой цепь, в которой чередуются остатки пентозы и фосфорной кислоты, а гетероциклические основания образуют боковые отростки . [c.414]

    В анилинокрасочной промышленности наряду с первичными ароматическими углеводородами в качестве исходного сырья используют и другие химические продукты, участвующие в промежуточных синтезах, но не входящие в структуру конечных химикатов. Это неорганические соединения - кислоты, щелочи и соли, а также ряд органических кислот, спиртов и других соединений. Общая номенклатура исходного сырья превышает 100 наименований. [c.65]

    Литература по электрохимическому восстановлению нитрилов и динитрилов органических кислот носит в основном патентный характер. Лишь отдельные работы содержа данные по влиянию состава электролита, плотности тока и температуры на процесс восстановления. Общим для всех работ является указание на важную роль материала и структуры катода, добавок катализатора [1—7]. Активность катодных материалов мы изучали при восстановлении динитрила адининовой кислоты, т. к. продукт его полного восстановления — гексаметилендиамин — имеет большое практическое значение. [c.172]

    В белках я-электронные системы сравнительно слабо проявляют себя. Исключительного развития эти системы достигают в соединениях, составляющих механизмы репликации и передачи наследственных признаков. Общей чертой биологически активных структур является сочетание в них областей (групп атомов), богатых энергией, групп, содержащих объединенные и обширные я-орбитали, и участков, разделяющих те и другие. Группы, богатые энергией, — это, как правило, остатки фосфорной кислоты, активные группы — органические основания определенных типов, а изолирующие вставки — углеводы (рибоза или дезоксирибоза). По такой схеме построена уже упоминавшаяся выше аденозинтрифосфорная кислота (основание —аденозин, углевод —рибоза, группа, богатая энергией, — трифосфатная —О—Р—О—Р—О— —Р—ОН). [c.349]


    Все известные ферменты представляют собой длинные цепи из а-амино-кислот (относительная молекулярная масса порядка 0,5 млн), свернутые в компактную форму, в которых имеется несколько реакционноспособных участков. Изучение природы ферментов показало, что, помимо белка, многие из них содержат и другие соединения. Так, например, в составе окислительных ферментов были обнаружены органические соединения железа. Эти соединения у различных окислительных ферментов оказались одинаковыми по составу. Кроме того, было выяснено, что такие же соединения железа входят и в гемоглобин крови, переносящий кислород в организме человека и животных. Комплексное соединение железа (гем) можно отделить от белка. Однако после этого ни белок, ни гем не проявляют ферментативных свойств. Отсюда следует, что высокая активность и специфичность свойственны только сложной системе, состоящей из белка и гема. В состав различных ферментов входят и комплексные соединения других металлов. В некоторых ферментах обнаружены медь, цинк, марганец, хром и другие элементы. Для некоторых ферментов уже известна первичная структура, т. е. последовательность аминокислот в длинной цепи. Вторичная структура — общий характер спирали, образуемый цепью, приближенно установлена для нескольких ферментов. О третичной структуре, т. е. природе реакционноспособных поверхностных участков молекулы, известно очень мало. [c.149]

    Органические кислоты (R—СООН), присутствующие в топливах, чаще всего нафтеновые, молекулы их содержат радикал нафтенов, в основном циклопентанов, поэтому общую формулу кислот можно написать в виде С Нг - СОЭН. Вместе с тем встречаются и алифатические карбоновые кислоты, в молекуле которых R — радикал углеводорода, имеющего ценную структуру. [c.17]

    X Формальдегид реагирует с представителями подавляющего большинства классов органических веществ, за исключением лишь насыщенных углеводородов и эфиров. Рассматривая эти превращения, нетрудно убедиться, что исходя из формальдегида можно сравнительно просто перейти к соединениям практически любых классов — кислотам, спиртам, аминам, нитрилам и т. д. Поистине уникальным свойством формальдегида является высокоразвитая способность к интрамолекулярному взаимодействию (т. е. к взаимодействию молекул СН2О между собой), Этим путем образуются и линейные полимеры общей структуры [c.9]

    Высказывают предположение [171], что продукты этой реакции представляют собой соли тиофосфоновых кислот общей формулы R — PS(OH)j. Исследование кислот, получаемых подкислением промышленных моющих присадок и гидролизом продуктов взаимодействия полибутена с пятисернистым фосфором [2], привело к выводу, что присутствующие в реакцион ной среде органические соли представляют собой тиопирофосфонаты, которым в некоторых случаях сопутствуют 10—25% мол. тиофосфонатов и фосфонатов. Структуру соединений этих трех классов можно представить общими формулами  [c.25]

    В случае, если окисление является продолжительным, большая часть органическо11 массы угля превращается в вещества, растворимые в щелочах и нерастворимые в кислотах, а именно в так называемые регенерированные гуминовые кислоты . В све-жеосажденном состоянии они напоминают гидрат окиси железа, а будучи высушенными, имеют вид черных блестящих хлопьев, которые после измельчения образуют краснокоричневый порошок, напоминающий тонкораздробленный уголь. Превращение из стадии 1 в стадию 2 сопровождается выделением окислов углерода и образованием больших или меньших количеств растворимых органических кислот низкого молекулярного веса. Эти гуминовые кислоты, регенерированные путем окисления битуминозного угля, далеко не однородны, но, повидимому, имеют общий с обычными гуминовыми кислотами тин структуры, отличаясь от них лишь молекулярным весом и местами присоединения функциональных групп.  [c.323]

    Влияние давления на спектры веществ с водородной связью иллюстрируют спектры бензойной и янтарной кислот [45]. Относительно слабые водородные связи гораздо более чувствительны к увеличению давления, чем обычные ковалентные связи. Сжатие расстояний О О в водородносвязанных структурах упрочняет водородную связь, что в случае органических кислот приводит к сдвигу в сторону более высоких частот для внеплоско-стного деформационного колебания О—Н, а также к низкочастотному сдвигу валентного колебания С = 0. В общем большинство сильных сдвигов частот, наблюдающихся при давлениях ниже 50 кбар, и большинство сдвигов в сторону более высоких частот, которые имеют место при давлениях выше 10 кбар, происходят, когда в веществе имеются водородные связи. [c.286]

    Эффективность зародышеобразующего действия определяется природой как полимера, так и наполнителя. Исследование влияния малых добавок солей органических кислот, использованных в качестве искусственных зародышеобразователей, на кристаллизацию показало [384- 386], что при их введении изменяется надмолекулярная структура полимера, поскольку при увеличении концентрации зародышеобразователей повышается скорость протекания процесса. Механизм действия добавок заключается в том, что на поверхности твердых частиц зародышеобразователя в результате адсорбции возникают упорядоченные области полимера, играющие роль центров кристаллизации. Такие упорядоченные области сохраняются на поверхности и при температурах перехода полимера в расплав, когда гомогенные центры кристаллизации полностью разрушаются в его объеме. При достаточно большой концентрации добавок число гетерогенных центров на их поверхности значительно превосходит число гомогенных центров, которые возникают в объеме в ходе кристаллизации. Увеличение числа центров кристаллизации приводит к повышению общей скорости кристаллизации и уменьшению размера сферо-литов (наличие добавок не влияет на скорость линейного роста сферо-литов). [c.146]

    Кремний во многих элементооргаиических соединениях обычно имеет ковалентность близкую к четырем и так же, как и углерод, — тетраэдрическую направленность ковалентных связей. Связь его с углеродом малополярна. Связи кремния Si-Si и Si-Н легко разрушаются в полярных средах, а соответствуюшие соединения энергично реагируют с кислородом. Устойчивых кремнийорганических соединений, по своей структуре и составу аналогичных органическим соединениям с двойной или тройной связью между атомами кремния, не существует. Это связано с общим свойством для элементов третьего периода неспособностью к образованию прочных -связей. Поэтому отсутствуют устойчивые кремниевые аналоги органических соединений ароматических углеводородов, альдегидов, кетонов, карбоновых кислот, сложных эфиров. [c.593]

    Линейные полифосфаты имеют общую структуру XXXVI, где М — анион (или органическая группа в эфирах фосфорной кислоты)  [c.118]

    В подавляющем большинстве случаев в адсорбционной хроматографии в качестве сорбента используют силикс1гель, который обладает совокупностью различных по своей природе силанольных и силоксановых групп. Популярность силикагеля связана с доступностью разнообразных по геометрической структуре образцов, высокой технологичностью их получения, относительно низкой себестоимостью и высокой селективностью при групповом разделении углеводородов, а также при разделении изомеров замещенных ароматических углеводородов. Последнее свойство широко используется при анализе группового состава различных фракций перегонки нефти и топлив. К числу существенных недостатков силикагеля можно отнести сильную адсорбцию на силикагеле ряда аминов и недосточно высокую гидролитическую устойчивость. Указанные недостатки менее характерны для оксидов алюминия и циркония, которые, в свою очередь, обладают высокой реакционной способностью по отношению к основаниям Льюиса, таких, как органические кислоты, фосфаты, фториды, что также ограничивает их применения. Общим недостатком использования всех минеральных оксидов в качестве сорбентов для адсорбционной хроматографии является высокая чувствительность к присутствию следов воды в элюентах на основе органических растворителей. Как правило, разделение на немодифицированных неорганических оксидах проводят в нормально-фазном или прямофазном вариантах, что на практике соответствует использованию полярного сорбента и неполярного элюента. Даже небольшие содержания воды в элюентах в этом варианте существенно изменяют селективность разделения и приводят к ухудшению воспроизводимости. Менее чувствительными к влаге являются силикагели, химически модифицированные полярными органическими молекулами с функциональными амино-, нитро, амидными или нитрильными группами. Однако при закреплении органических молекул на поверхности сорбента для хроматографии возникает вопрос о возможности разделений по механизму распределительной хроматографии. [c.365]

    Количество сернистых соединений в нефтепродуктах выражают в процентах общей серы или связанной в данной группе соединений. Во все схемы включено определение общей серы. Содержание дисульфидов устанавливают косвенно — после их восстановления цинковой пылью в уксусной кислоте до меркаптанов. Тиофены и органические сернистые соединения более сложной структуры относят к остаточной сере, которую во всех схемах рассчитывают по разности между количеством общей серы и суммой сероводородной, меркаптановой, сульфидной, дисульфидной и элементарной серы. Отсутствие надежного метода определения тиофеновой серы является недостатком почти всех схем. А между тем именно количество остаточной серы часто достигает половины общего ее содержания в нефтепродукте. [c.85]

    Как можио выйти из этого положения Яспо, что прип-ципиально возможно два решения надо д,обиться либо количественных выходов на хпмпческпх стадиях — конденсации и снятия заш,ит, либо стопроцентной чистоты выделения, причем любое из этих решений должно быть совершенно общим, работающим для пептидов любой структуры. Первый путь, снимающий саму проблему выделения — безошибочный синтез, н настоящее время представляется нереальным мы пока пе знаем почти ни одной органической реакции, гарантирующей в общем случае стопроцентный выход продукта. Реальным оказался второй путь. Здесь было найдено великолепное по простоте и остроумию решепие носящее вполне общий характер, которое оказалось пригодным для синтеза не только полипептидов, но и других апериодических полимеров, в том числе нуклеиновых кислот. [c.225]

    За последние годы достигнуты определенные успехи в синтезе особо специфичных ионитов, в структуре которых содержатся функциональные группы комплексообразователей или оса-дителей, а также жидких ионитов, представляющих собой растворы электролитов в органическом растворителе. Так, растворы аминов с достаточно длинной цепью (обычно 18—27 атомов С) в хлороформе, бензоле, нитробензоле и других органических растворителях обладают анионообменными свойствами. Кислоты, нерастворимые в воде, но растворимые в органических растворителях, не смешивающихся с водой, могут быть исходным материалом для изготовления жидких катионитов. Пример тому —сложные диалкиловые эфиры фосфорной кислоты и мо-ноалкиловые эфиры алканфосфоновых кислот (с общим числом атомов С 10—17). [c.670]

    В органическом синтезе (например, для получения азокрасителей) получают в зависимости от таутомерных форм два вида производных структуре (а) соответствуют эфиры азотистой кислоты — нитрит осоединения— общей формулы Н—О—N=0 (где Н — органический радикал) структуре (б) — нитросоединения К—N02. [c.258]

    Таким образом, замедление структурообразования в присутствии сахаров и винной кислоты неодинаково для мономинерального вяжущего и его смеси с глиной, но тем не менее общая тенденция к понижению прочности коагуляционных структур на ранних стадиях гвердения сохраняется. Замедление структурообразования может быть в первую очередь связано с особенностями гидратационного процесса клинкера в присутствии органических веществ. Для выяснения влияния замедлителей на фазовый состав новообразований были сняты термограммы, гидратированные в течение 3 ч при температуре 90° С (когда эффект замедляющего действия еще реально [c.164]

    Аддитивность изменения химических потенциалов при адсорбции из раствора была теоретически проанализирована в работе Осьцика и Ваксмуидского [34]. Рассматривая изменение химического потенциала в результате адсорбции многоатомных молекул из раствора, они приняли в качестве исходной позиции, что общее изменение А(х° представляет собой сумму инкрементов, характеризующих изменение химического потенциала в результате адсорбции отдельных элементов структуры молекул таких, как группы —СИз и =СН2, составляющие углеродный скелет органических молекул, или функциональные группы СООН, КО2 и т. п. Так, при адсорбции из раствора про-пноиовой кислоты [c.94]

    Кремниевая кислота не является индивидуальным химическим соединением. Ее нерастворимый гель можно выразить формулой тЗЮа гаНаО, где т я п изменяются непрерывно в очень широких пределах. При кислотном выщелачивании многих силикатов образуется гель (сиш-тоф), который пролходит через обычные фильтры и затрудняет отделение раствора от осадка. Такой гель представляет собой пространственную ажурную сетку из тетраэдров [8Ю4] , между которыми удерживается очень большое количество воды и различных катионов. Таким же многообразием строения обладают силикатные и алю-мосиликатные минералы. Из всех силикатов растворимыми являются только силикаты щелочных металлов с общей формулой МагО (КаО)- т 810г, известные под названием жидкое стекло (обычно т = 2- 2,5). Остальные силикаты нерастворимы в воде. В твердом виде они весьма разнообразны по структуре, что обусловлено множеством вариантов соединения между собой тетраэдров [8Ю4]". Это соединение возможно через грани, ребра, вершины с образованием линейных, плоских, объемных, циклических структур (см. также раздел 6.9.3). Это многообразие напоминает многообразие углеродных органических соединений, но для кремния характерна связь атомов через кислород, а для углерода — непосредственная связь атомов. [c.149]

    Химия нуклеотидов является одним из самых молодых разделов органической химии. Хотя первые представители этого важного клаюса были известны в более нли менее индивидуальном состоянии еще Либиху, который в 1847 г. описал так называемую инозиновую кислоту, и Мишеру, впервые выделившему нуклеиновую кислоту, тем не менее подлинному развитию химия нуклеотидов обязана последним 10—15 годам. В 1909 г. Левин, работы которого знаменуют первый период развития химии нуклеотидов, впервые выделил инозин из нуклеиновых кислот и в последующие годы (1910—1930) получил другие мономеры, входящие в состав нуклеиновых кислот, определил их состав и основные черты строения. Решающее значение для развития химии нуклеотидов имели работы, начатые в 1942 г. А. Тоддом, которым было окончательно установлено строение мономерных нуклеотидов и осуществлен их синтез, выяснены основные черты структуры полимерных нуклеотидов, осз ществлен синтез многих мононуклеотидов, являющихся коэнзимами важнейших ферментных систем. Приблизительно в это же время биохимиками и биологами была выяснена в общих чертах и биологическая роль нуклеотидов, их участие в важных процессах жизнедеятельности. Развитие химии нуклеотидов продолжается во все нарастающем темпе и трудно найти какой-либо другой раздел химии природных соединений, который в последние годы развивалоя бы так стремительно. [c.173]

    Структура книги и рекомендации но ее использованию. После общих замечаний по планированию, подготовке и проведению органических реакций, по аппаратурному обеспечению эксперимента, ведению лабораторного журнала (гл. I) говорится о получении и превращениях соединений с простыми функциональными группами алкенов, алкинов, галогеналканов, спиртов, простых эфиров и оксиранов, органических соединений серы, аминов, альдегидов и кетонов, а также их производных, карбоновых кислот и их производных, ароматических соединений (гл. 2). Полученные соединения служат затем в качестве строительного материала для синтеза более сложных молекул. После описания важнейших методов образования связи С—С (разд. 3.1) следует раздел, посвященный образованию и превращению карбоциклов (разд. 3.2). гетероциклов (разд. 3.3) и красителей (гл. 4). Далее изложены. методы введения защитных групп и изотопных меток (гл. 5), а также приведены примеры регио- и стереоселективных реакций (гл. 6). Центральное место в книге занимают более сложные синтезы аминокислот, алкалоидов, пептидов, углеводов, терпенов, вита.минов, ферромонов, простаглан-динов, инсектицидов и фармацевтических препаратов, планирование и разработка которых обсуждаются с привлечением принципов ретро-синтетического расчленения (гл. 7). Почти все рассмотренные в этой [c.10]

    Так как весьма реакционноопособные р-лактоны обычно по лучают для того, чтобы превратить их в другие вещества, в настоящей главе будут рассмотрены вопросы, касающиеся, во-пер вых, получения Р-лактонов и, во-вторых, их реакций, имеющих значение для целей синтеза. Синтез и реакции некоторых типов соединений, аналогичных по структуре р-лактонам, в этом обзоре рассматриваться не будут. Обычно для димера кетена принимают строение енольного р-лактоиа [13—17]. Химия этого соеди- нения а также димеров высших кетенов, повидимому, не всегда обладающих аналогичным строением [18], была рассмотрена в соответствующей статье другого тома Органических реакций [19]. Не будут также рассмотрены и другие енольные -лак-тоны, описанные в литературе [20—22]. Отт [23] включил ангидриды диалкилмалоновых кислот в свой краткий обзор Р-лакто-нов. С точки зрения химии, эти соединения, повидимому, имеют мало общего с Р-лактонами, а потому в настоящей статье о ник говориться не будет. [c.393]

    Итак, в ФСК достигается структурное соответствие, реализуемое в полости молекулы фермента. Как показывает сопоставление всех изученных рентгенографически структур, их общая особенность состоит в том, что внутренняя поверхность полости образована преимущественно неполярными остатками. Вследствие гидрофобных взаимодействий полярные остатки выведены наружу. Неполярное нутро белковой молекулы имеет малую диэлектрическую проницаемость, что облегчает электрические взаимодействия. Фермент является не только специфическим реагентом, но и средой реакции. Нерутц писал Мы можем спросить себя, почему химические реакции, нормально требующие мощных органических растворителей или сильных кислот и оснований, могут протекать в водном растворе вблизи нейтрального pH в присутствии ферментных катализаторов. Органические растворители имеют преимущества по сравнению с водой, обеспечивая среду с низкой диэлектрической проницаемостью, в которой могут иметь место сильные электрические взаимодействия между реагентами. Неполярные внутренние области ферментов обеспечивают живую клетку эквивалентами органических растворителей, применяемых химиками . [c.192]


Смотреть страницы где упоминается термин Органические кислоты, общие структуры: [c.55]    [c.60]    [c.29]    [c.29]    [c.70]    [c.195]    [c.7]    [c.605]    [c.275]    [c.285]    [c.142]   
Идентификация органических соединений (1983) -- [ c.130 ]




ПОИСК





Смотрите так же термины и статьи:

Кислота органическая



© 2025 chem21.info Реклама на сайте