Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азотистые соединения полимеризация

    Стабильность. Под стабильностью топлива понимается способность его сохранять неизменными свои физико-химические свойства в условиях хранения, транспортировки, заправки и прокачки по топливной системе летательного аппарата. Все нефтяные топлива являются нестабильными. Нестабильность проявляется в том, что составные части их (углеводороды, сернистые, кислородные и азотистые соединения) окисляются, полимеризуются и уплотняются. Скорости процессов окисления, полимеризации, уплотнения зависят от качества топлива и от внешних условий. [c.27]


    Одной из важнейших стадий подготовки мономеров (изопрена, бутадиена) для стереорегулярной полимеризации считается очистка их от каталитических ядов циклопентадиена, ацетиленовых соединений, алленовых углеводородов, карбонильных, азотистых соединений и т.д. [c.122]

    Выделенный изопрен подвергается дополнительной очистке, так как требования к его чистоте для стереорегулярной полимеризации очень жесткие. Допустимое содержание примесей в изопрене в 10—20 раз ниже, чем в бутадиене для получения стереорегу-лярного бутадиенового каучука. Сильными каталитическими ядами при полимеризации изопрена являются циклопентадиен, а-алкины, карбонильные, сернистые и азотистые соединения — их допустимое содержание исчисляется десятитысячными долями процента. [c.178]

    Кислородные соединения нефтей и нефтяных фракций состоят из карбоновых кислот, фенолов, спиртов, соединений с карбонильной группой и гидроперекисей. Значительная часть кислородных соединений представляет собой высокомолекулярные продукты полимеризации, конденсации, окислительного уплотнения и других химических взаимодействий перечисленных выше соединений. Одновременно с высокомолекулярными кислородными соединениями в нефтях и нефтяных фракциях всегда находятся высокомолекулярные сернистые, азотистые соединения, продукты их окисления, т. е. соединения с двумя и более гетероатомами в молекуле (О, 3, К). [c.257]

    Большую группу инициаторов радикальной полимеризации представляют азотистые соединения — азосоединения, азены и т. п. В табл. 2 приведены основные данные об инициировании такими соединениями реакции полимеризации. [c.141]

    При сернокислотной очистке некоторых нефтяных фракций получают ценные побочные продукты. Бензин и керосин обрабатывают серной кислотой для удаления сернистых и азотистых соединений. При этом происходит полимеризация, а также в некоторой степени сульфирование углеводородов. Образующийся в результате сернокислотной очистки кислый гудрон обычно подвергают переработке с целью выделения из него смеси углеводородов и серной кислоты. [c.398]

    В нефтях содержатся некоторые количества связанного азота поэтому при термическом крекинге иногда образуются вредные азотистые соединения. Калифорнийская, венесуэльская и западнотехасская нефть, но-видимому, легче разлагаются в этом направлении, чем другие нефтИ Азотистые соединения в сырье, поступающем на каталитический крекинг, почти всегда превращаются в вещества, отравляющие катализаторы полимеризации. Отравление катализаторов полимеризации может иногда вызываться и такими основаниями, как едкий натр и диэтанол-амин, которые часто применяются для удаления сероводорода из сырья, направляемого на полимеризацию. Каталитические яды основного характера можно удалить из сырья, поступающего на полимеризацию, водной промывкой углеводородов. [c.239]


    Хотя этиленимин при хранении в отсутствие углекислоты при комнатной температуре вполне устойчив и только слегка полимеризуется при более высоких температурах, присутствие даже малых количеств H I вызывает быструю полимеризацию этиленимина уже при 25°. Джонс [46] обратил внимание на то, что одни и те же реагенты катализируют и реакцию полимеризации этиленимина и образование четвертичных азотистых соединений. Среди этих катализаторов имеются кислоты, алкилирующие средства (например, -хлорэтиламин), окислители (перекиси и т. п.) и акцепторы электронов, такие, как соли меди или трехфтористый бор. Поэтому процесс полимеризации объясняют цепным характером реакции между этиленимином и производным четвертичного основания этиленимина. Это представлено следующим уравнением  [c.57]

    Актуальность работы. Одним из путей расширения сырьевой базы моторных топлив является вовлечение в переработку бензинов термических процессов. Однако наличие непредельных углеводородов (до 60 %), сернистых и азотистых соединений, невысокое октановое число не позволяет использовать крекинг-бензины в качестве компонента моторного топлива. Традиционно термические бензины добавляются к прямогонным фракциям, направляюш,имся на гидроочистку на А1-Со-Мо-и Р1-катализаторах с подачей в систему под давлением молекулярного водорода при высоких температурах (350 - 400 °С), что приводит к отложению кокса в теплообменной аппаратуре и быстрой дезактивации катализатора гетероатомными соединениями, а также продуктами полимеризации олефинов, присутствуюш,их в бензинах термического происхождения. [c.3]

    Большую опасность представляют собой твердые осадки (например, продукты полимеризации, осмоления), самовоспламеняющиеся на воздухе или разлагающиеся со взрывом в определенных условиях в закрытой аппаратуре. Отмечены случаи взрывов в аппаратуре производства дихлорамина, вызванные термическим разложением осадка и воспламенением при контакте с кислородом воздуха, в производстве этиленпропиленового каучука и в других производствах. Опасность взрывчатого разложения осадков и твердых отложений органических продуктов значительно увеличивается, если в их составе содержатся нестабильные кислородсодержащие веществ , такие, как соли азотной и азотистой кислот, перекисные соединения, хлораты и перхлораты и другие активные-окислители, усиливающие взрывчатое разложение в аппаратуре. [c.294]

    Нитрилы. В отличие от ранее описанных азотистых соединений нитрилы имеют нейтральный характер и являются производными цианистоводородной (синильной) кислоты. Они весьма склонны к реакциям полимеризации. [c.87]

    Азотистые соединения топлив термически весьма устойчивы. Они обнаруживаются в увеличивающемся количестве в смолах выпадающих из топлив, осадках и даже в нагарах, откладывающихся на стенках камеры сгорания и форсунок, где высокие температуры приводят к выгоранию менее термически устойчивых сернистых соединений. На этом пути азотистые соединения подвергаются процессам уплотнения (конденсации и полимеризации) и в меньшей степени окислению. [c.76]

    Установки, на которых применяется твердый фосфорнокислый катализатор, состоят из секций подготовки сырья, реакционной и разделения продуктов. Фракционированием нефтезаводских газов, содержащих олефины, выделяют фракцию Сд — С4, в которой обычно присутствует 40— 60% олефинов. Из этого сырья щелочной и водной промывкой удаляют меркаптаны, сероводород и азотистые соединения. Предварительно нагретое очищенное сырье направляют в реактор полимеризации. [c.230]

    С увеличением концентрации азотистых соединений в сырье, подвергающемся каталитическому крекингу, на катализаторе увеличиваются отложения кокса.уменьшается выход бензиновых фракций, газа и легкого газойля /12/ аже следы некоторых азотистых соединений нефтепродуктов отравляют катализаторы процессов риформинга, полимеризации и изомеризации. Азотистые соединения основного характера оказывают специфическое отравляющее влияние на гидрирующие катализаторы. Так, при введении [c.11]

    Назначение растворителя — разбавлять комплексный катализатор, растворять пропилен и легкие углеводороды, смывать образующиеся на катализаторе полимеры и поглощать тепло реакции полимеризации. Растворитель должен быть очищен от отравляющих катализатор компонентов, например, от влаги, сернистых и азотистых соединений, непредельных и ароматических углеводородов. [c.61]

    Все полученные вещества обладали основными свойствами. Они растворялись хорошо в спирте и эфире, а некоторые из них также растворялись в кислотах в воде эти вещества не растворялись. Судя по их свойствам и составу, их следует отнести к классу полиаминов. Возможно, что они являются аналогами азотистых соединений, полученных ранее Бертло Р ] взаимодействием в электрических разрядах углеводородов с азотом. Следует отметить, что продукт, полученный из этилена, содержал меньше азота, чем это следовало ожидать, если допустить его образование за счет полимеризации первично образующегося этиламина. [c.291]


    Очищенное от сернистых и азотистых соединений сырье подогревается и поступает в реактор. Продукты реакции после охлаждения направляются на стабилизацию. Процесс полимеризации проходит при температуре 150—205° С и давлении 63—80 ат,. Качество полимербензина аналогично качеству полимербензина, приведенному в табл. 8. Реакционное устройство двух типов башенное (аналогичное применяемому в процессе фирмы Калифорния рисерч ) и трубчатое. [c.27]

    Так, увеличение степени сжатия в карбюраторных двигателях Вызвало ужесточение требований к детонационной стойкости бензинов (росту его октанового числа). Это стимулировало развитие процессов в нефтеперерабатывающей промышленности, целенаправленных на повышение октановых чисел авиационных и автомобильных бензинов — вначале термического, а затем и каталитического риформинга, полимеризации, алкилирования, изомеризации и др. Развитие и техническое совершенствование этих процессов органически связаны с ростом требований к октановой характеристике бензинов. Надежность и долговечность карбюраторных, дизельных и реактивных двигателей в значительной мере зависят от наличия в составе топлив сернистых, азотистых и других гетероатомных природных соединений. Для удаления этих соединений были разработаны и получили широкое распространение процессы гидроочистки топливных фракций — бензиновых, керосиновых, дизельных. В результате гидрооблагораживания снижается содержание гетероатомных соединений и ненасыщенных углеводородов, что повышает химическую и термическую стабильность топлив, надежность и ресурс работы двигателя. [c.42]

    Большой практический интерес представляют Ы-винилирован-ные азотистые соединения, получаемые из ацетилена и соответствующего амина или амида в присутствии щелочи. Так, Ы-винил-пирролидон при полимеризации дает поливинилпирролидон, используемый в медицине как заменитель плазмы крови и в парфюмерной промышленности в качестве диспергирующего агента и загустителя косметических препаратов. [c.303]

    Схема описываемой установки представлена на рис. 107. Сырье освобождается от сернистых и азотистых соединений (диэтанол-амином и щелочью) и после промывки водой в колонне / поступает в отстойник 2, перед которым смешивается с потоком циркулирующего пропана. Пропан уменьшает концентрацию олефинов в сырье и тем самым смягчает процесс полимеризации, а выделяюи ееся [c.327]

    МИНАЧЕВ Хабиб Миначевич (р, 24,ХП 1908) Советский химик-органик, акаде МИК (с 1979), Р, в с. Новые Бик шики (ныне Чувашской АССР)) Окончил Московский ун-т (1939) С 1939 работает в Ин-те органи ческой химии АН СССР (в 1942— 1945 служил в Советской Армии) Научные работы посвящены ка талитическим превращениям угле водородов На основе систематиче ских исследований каталитических свойств редкоземельных элементов и их окислов установил связь между электронной структурой и каталитическими свойствами этих веществ. Разработал способы промотирования алюмохромовых катализаторов дегидрирования углеводородов (окислами редкоземельных элементов). Совместно с Н. И. Шуйкиным показал (1953), что наибольщую дегидрирующую способность имеет никелевый катализатор на окиси алюминия или окиси цинка. Предложил новые катализаторы для риформинга бензинов, гидрирования керосинов, селективного гидрирования поли-функциональных гетероциклических азотистых соединений, димеризации и полимеризации этилена, гидратации олефинов и др. Изучал каталитические свойства цеолитов, в результате чего создал промышленные катализаторы. [c.337]

    Требуемое качество растворителей может быть достигнуто соответствующей очисткой. Одним из приемов очистки является гидрирование растворителей в присутствии катализаторов. При гидрировании кислород превращается в воду, азотистые соединения — в аммиак, серусодержащие — в сероводород, непредельные органические соединения — в предельные. После отмывки аммиака и сероводорода водой и осушки растворителя на молекулярных ситах, оксидом алюминия или азеотропной дистилляцией растворитель может быть использован для полимеризации бутадиена. При наличии некоторых нежелательных примесей растворители подвергают ректификации. [c.170]

    Адсорбционный метод очистки заключается в том, что нефтепродукты приводятся в соприкосновение с адсорбентами — так называемыми отбеливающими глинами. Отбеливающие глины. адсорбируют сернистые, кислородсодержащие, азотистые соединения, асфальты и смолы. При очистке бензинов происходит полимеризация углеводородов. По степени адсорбции углеводороды располагаются в такой последовательности диолефины — олефины — ароматические — нафтеновые — парафиновые. Таким образом, в первую очередь будут адсорбироваться легкополи-меризующиеся углеводороды, которые и должны быть удалены из очищаемого нефтепродукта. [c.477]

    В книге рассматриваются методы проведения каталитических, фотохимических и электролитических реакций органических сое-динеии11. Она состоит соответственно из трех глав. В гл. I дано описание аппаратуры для проведения каталитических реакции, путей ее применения, изложены методы приготовления катализаторов, а также методические особенности проведения каталитических реакций гидрирования, дегидрирования, изомеризации, полимеризации, конденсации, алкилироваиия и др. В гл. II рассматриваются фотссенсибнлизированные окисление и восстановление, реакции, протекающие с участием кетонов, альдегидов, азотистых соединений и соединений с ненасыщенными связями, а также молекулярные перегруппировки, цепные реакции и т. д. Описана применяемая в фотохимии аппаратура и, в частности, источники излучения. В гл. III даны сведения по электролитическим реакциям с большим числом примеров их осуществления в тщательно составленных таблицах систематизирован обширный материал с указанием выходов. [c.4]

    Подобным же образом детальное изучение влияния концентрации кислоты (вернее, концентрации воды) в случае опытов с фосфорной и серной кислотами и инактивирующего действия азотистых оснований на такие кислоты, окисные катализаторы и катализаторы Фриделя-Крафтса лишний раз подтверждает, что они должны быть сильными кислотами. Известно, что серная и фосфорная кислоты имеют наивысшую активность при концентрациях 98 и 107% с резким возрастанием ее по мере приближения к указанным величинам. Гамметт [62], а также Облэд, Хиндин и Миллс [136] на многочисленных примерах показали, что небольшие количества воды могут весьма заметно снижать активность сильных кислот. Подобным же образом небольшие количества азотистых соединений могут инактивировать используемые при полимеризации кислотные катализаторы. Несмотря на присутствие большого количества кислотных молекул, в одинаковой мере обладающих каталитической активностью, в каждый данный момент активны только некоторые из них. Это существенно для твердых кислотных катализаторов. Если взаимодействуют соседние участки, то деактивация небольшими количествами ядов не является доказательством, что только небольшое количество участков способно проявлять каталитическую активность. Активность твердой поверхности может быть сходна с каталитической активностью жидкой кислоты. Наряду с этим для твердых кислотных катализаторов в некоторых случаях возможно действительное существование неоднородных кислотных участков. [c.350]

    Таким образом, антиокислители в начале окисления, находясь в растворе нефтепродукта, окисляясь сами, задерживают окисление последнего. По мере возрастания процессов окислительной полимеризации антиокислителей они высаживаются из раствора и выбывают таким образом из строя. К числу веществ, способных задерживать окисление углеводородов, относятся фенолы (нафтолы, гидрохинон, пирогаллол), амины жирного и ароматического ряда, сернистые и азотистые соединения, смолы, ароматические углеводороды и т. д. Некоторые из этих антиокислителей способны задерживать полимеризадконные процессы, происходящие при окислении неочищенных дестиллатов. Известно, напр., что ряд веществ, применяемых в количестве, не превышающем 0,1°/о, способны задерживать процессы полимеризации в крэкинг-дестиллатах и тем сообщать им определенную стабильность. К числу таких стабилизаторов относятся гидрохинон, нафталин, антрацен, пирен, тетралин и ряд других. [c.92]

    Большинство из азотистых соединений приведенных типов склонны к окислению, конденсации и полимеризации. Поэтому обнаруживаемые в нефти и продуктах переработки горючих ископаемых соединения следует рассматривать как начальные формы, подвергающиеся дальнейшим, более глубоким превращениям. Глубина и характер превращений, а следовательно, структура получающихся в этом случае азотистых соединений, особенно в высококипящих фракциях, изучены мало. В отсутствие кислорода простейшие азотистые соединения остаются стабильными при весьма высоких температурах [8]. Нагрев в запаянной ампуле в течение 30 мин при 475 °С хинолина не приводил к каким-либо изменениям. При 500 С наблюдалась конденсация хинолина с образованием тяжелого остатка и разрывом кольца. Так же, но с несколько большей скоростыо реагировал изохинолин. [c.87]

    Под влиянием азотистых соединений происходит частичная -дезактивация катализаторов крекинг-процессов из-за значительных отложений кокса, в связи с чем уменьшается выход бензиновой фракции, газа и легкого газойля [49]. Следы некоторых азотистых соединений отравляют катализаторы, применяемые в процессах риформинга, полимеризации н изомеризации. Азотистые основания оказывают специфическое отравляющее влияние на гидрирующие катализаторы. Так, при введении в смесь олефгшов 0,22% вес. азотистых оснований степень ее гидрирования над никелевым катализа- [c.95]

    Возможен и другой способ регенерации связанных хлоридом железа соединений. Координационная связь может быть разрушена либо термически [116], либо химически, например обработкой колонки, содержащей комплекс хлорида железа с азотистыми (кислородными) соедане-ниями, аммиаком [118] или H S [106]. За этой обработкой следует промывка колонки растворителем (например, 1,2-дихлорэтаном) для элюирования освобожденных азотистых (кислородных) соединений. Реакция разложения комплекса аммиаком очень экзотермична. Поэтому необходимо сильное разбавление аммиака азотом (1 200) и охлаждение колонки, чтобы предотвратить разогревание и возможную полимеризацию азотистых соединений [118], о чем уже говорилось выше. Полученная в результате выделения на колонке с хлоридом железа фракция представляет собой концентрат нейтральных азотистых и кислородных соединений, так как наряду с ними она может содержать поликонденсиро-ванные ароматические углеводороды, сульфиды и некоторые другие соединения [106]. [c.98]

    Большой практический интерес представляют М-винилирован-ные азотистые соединения, получаемые из ацетилена и соответствующего амина или амида в присутствии щелочи. Так, ] -винилпир-ролидон дает при полимеризации поливинилпирролидон [c.430]

    Высокое содержание (93—98%) моновинилацетилена в продукте полимеризации можно обеспечить, пропуская ацетилен при 100° над катализатором, состоящим из СигСЬ, растворимых солей металлов 1—3 группы (например, Mg b) и неорганических или органических азотистых соединений (соли NH , мочевина, хлоргидрат анилина, амиды, нитрилы, амины) или же многозначных алифатических спиртов (гликоль, бутиленгликоль, сорбит, маннит, дульцит). Составные части катализатора смешивают, полученную пасту наносят на подложку (глиняные черепки, пемза) и высушивают в токе инертного газа. Целесообразно добавлять немного ледяной уксусной, пропионовой или масляной кислоты. Этот способ сходен с термической полимеризацией моновинилацетилена, в котором применяют пропускание над контактами". [c.90]

    Общее содержание азотистых соединений, а именно этаноламинов и продуктов их полимеризации и взаимодействия с органическими соединениями серы определяется в виде аммиака  [c.218]

    Ряд работ посвящен подбору и испытанию ингибиторов полимеризации диеновых мономеров при их выделении и очистке. Например пред-лонено [84] изопрен обрабатывать водным раствором аммиака, гидро-ксиламина или его солей, затем промывать очень слабым раствором серной кислоты и водой, после чего дважды перегонять с добавкой О,1-0,2% гидрохинона и променуточной осушкой над СаС 2 При очистке изопрена от бутина-2 в качестве ингибитора применили серу и диме-тилсульфид [85]. Для удаления ингибиторов аолимеризадии изопрена-оС-ацетиленов и циклопентадиена - изопрен обрабатывали порошком металлического натрия и пропускали через молекулярное скто 5А [Вб] такие ингибиторы, как сернистые соединения, диметилформамид, амины, азотистые соединения предложено удалять пропусканием изопрена через активированный уголь АГ-2 или СКТ, пропитанный раствором сернокислой меди [87]. [c.54]

    Прочие реакции серной кислоты с компонентами нефтяных фракций. Имеющиеся в составе нефти гзотистые соединения взаимодействуют с серной кислотой, образуя сульфаты, переходящие в кислый гудрон. Нафтеновые кислоты частично растворяются в серной кислоте, а частично сульфируются, причем карбоксильная группа нафтеновых кислот при сульфировании не разрушается. Продукты взаимодействия нафтеновых 1 серной кислот ослабляют эффективность действия серной кислогы на другие соединения, поэтому целесообразно перед сернокислотной очисткой предварительно удалить из очищаемого продукта нафтеновые кислоты. Условия очистки. Технологический режим сернокислотной очистки зависит от ее назначения. Дли очистки, имеющей целью удаление смолистых веществ из мaзo ныx масел, повышение качества осветительных керосинов, удаление сернистых соединений, применяют 93% кислоту. При деароматизации используется 98% кислота или олеум. Легкая очистка бензина, предназначенная для улучшения цвета или удаления азотистых оснований, проводится серной кислотой с концентрацией 85% г ниже. Применение разбавленной кислоты там, где это возможно, предпочтительнее, так как кислый гудрон образуется в меньших количествах, ослабляются процессы полимеризации. [c.317]

    Непредельные соединения, образовавшиеся в процессе перегонки нефти, полимеризуЮтся под действием кислоты и удаляются с кислым гудроном. Асфальто-смолистые вещества частично растворяются в кислоте без изменений, частично уплотняются за счет реакций конденсации и полимеризации и осаждаются с кислым гудроном. Азотистые соединения почти полностью переходят в кислый гудрон в виде сульфатов. Сернистые соединения извлекаются в незначительных количествах. Нафтеновые кислоты растворяются и сульфируются. Из углеводородной части дистиллята в большей степени удаляются полициклические ароматические углеводороды с короткими боковыми цепями [2.1, 2.2]. Увеличивая концентрацию и количество кислоты, можно добиться почти полного удаления смолистых веществ и ароматических углеводородов. Однако такое бесцветное и переочищенное масло будет нестабильным [c.36]

    Исходное неокисленное горючее представляет собой истинный раствор сернистых, кислородных, азотистые соединений и смолистых веществ в углеводородной среде. Первичные продукты окисления хорошо растворимы в горючем. Поэтому в процессе окисления гомогенность системы до определенного момента сохраняется. По мере развития процесса окисления, полимеризации и конденсации состав продуктов окисления усложняется. При известных условиях гомогенная система переходит в гетерогенную. Молекулы продуктов окисления нерастворимых в горючем, объединяются и образуют коллоидные частицы. После образования первых частиц небольших размеров начинается их коагуляция. Возникающие более крупные частицы выпадают в осадок. Осадки по своей структуре состоят из аморфных и кристаллических веществ. В присутствии металлов содержание осадков кристаллических веществ увеличивается. [c.79]

    При Д. И. Менделееве вопрос получения углеводородов путем каталитического синтеза не был разработан в-достаточной степёди. С особой показательностью он выступает в вышеупомянутых опытах Сабатье, где роль катализаторов играет никель. В носдед-нее время исследования Бергиуса показали, что гидрогенизация непредельных соединений может происходить и без наличия катализаторов, но при высоком давлении и температуре в 200— 300° С. Опыты В.. Н. Ипатьева также показали, что в случае высокого давления и- присутствия окислов металлов возможны реакции полимеризации ацетилена и его ближайших гомологов и образование ароматических углеводородов, которые при последу-юш,ей. гидрогенизации дают нафтены. Другимп исследователями произведен ряд опытов по полимеризации и гидрогенизации разного рода ненасыщенных углеводородов, в результате которых получались углеводороды аро. штического и нафтенового рядов. Одним словом, при действии воды на карбиды и в результате последующих реакций полимеризации и гидрогенизации, при наличии катализатора, пли высокого давления и температуры могла возникнуть сложная смесь углеводородов, являющихся главнейшей составной частью современных нефтей. Допуская же существование в земных недрах не только карбидных, но и карбонильных соединений железа, никеля и других тяжелых металлов, а также нитридов металлов, п принимая во внимание наличие в земной коре сульфидов, можно вполне объяснить присутствие в нефти азотистых, сернистых соединений, водорода и окиси углерода, т. е. всех второстепенных компонентов современных нефтей и все разнообразие пх. [c.304]

    По своему химическому характеру диспергенты делятся па зольные и беззольные. Первые содержат в своем составе металлы в виде солей нефтяных сульфокислот (сульфонаты кальция или бария) или нафтеновых кислот. К незольным диспергирующим присадкам относятся алифатические алкила-мипы, а также так называемые полярные полимеры, представляющие продукты совместной полимеризации двух (или трех) мономеров, из которых один — носитель активных свойств присадки и содержит полярную группу (азотистое основание), а другой — неполярное соединение, являющееся олеофилыюй частью присадки, обеспечивающей ее растворимость в топливе. Третий мономер, если он прпсутствует, не выполняет дополнительных функций и служит удлинителем цепи сополимера. [c.324]

    Действие серной кислоты на смолистые вещества, по данным А. Н. Саханова и Н. А. Васильева [51], проявляется в трех направлениях. Часть смол растворяется в серной кислоте без видимых изменений. Другая часть подвергается полимеризации с образованием асфальтенов. Третья часть смол при воздействии на них серной кислоты образует сульфокислоты. Все это увязывается со сложным составом смолистых веществ, описанным выше. Азотистые основания, по исследованиям К. П. Лихушина [52], при действии на них серной кислоты переходят в кислый гудрон. Нафтеновые кислоты растворяются в серной кислоте и частично сульфируются [53]. Серная кислота является эффективным обессеривающим агентом. Сернистые соединения в дистиллятах масел относятся к ароматическим сульфидам и гетероциклическим соединениям, содержащим серу в кольце. Реакционная способность этих веществ с серной кислотой, по-видимому, крайне незначительна в условиях обычной очистки масел. [c.231]


Смотреть страницы где упоминается термин Азотистые соединения полимеризация: [c.29]    [c.891]    [c.97]    [c.97]    [c.276]    [c.115]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.891 ]




ПОИСК





Смотрите так же термины и статьи:

Полимеризация азотистых соединений группами

Полимеризация азотистых соединений замещающих фенильных групп

Полимеризация азотистых соединений замещения метильными

Полимеризация азотистых соединений кислот

Полимеризация азотистых соединений крекин на первичные

Полимеризация азотистых соединений при крекинге

Полимеризация азотистых соединений реакции

Полимеризация азотистых соединений с олефи

Полимеризация азотистых соединений этилена



© 2025 chem21.info Реклама на сайте