Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекула азота, масса кислорода, масса

Рис. 1. Сочетания атомов углерода, водорода, азота и кислорода, представляющие целые молекулы с массой 200. Цифры вдоль оси абсцисс указывают на число атомов углерода, водорода, азота и кислорода соответственно. Например, группе цифр 12, 12, 0,3 отвечает формула С12Н12О3. Данная совокупность молекул включает в себя только те, которые содержат не более четырех атомов азота, четырех атомов кислорода или шести атомов кислорода и азота одновременно. Рис. 1. Сочетания атомов углерода, водорода, азота и кислорода, представляющие целые молекулы с массой 200. Цифры вдоль оси абсцисс указывают на <a href="/info/570725">число атомов</a> углерода, водорода, азота и кислорода соответственно. Например, группе цифр 12, 12, 0,3 отвечает формула С12Н12О3. Данная совокупность <a href="/info/503727">молекул включает</a> в себя только те, которые содержат не более четырех атомов азота, четырех атомов кислорода или шести атомов кислорода и азота одновременно.

    Следовательно, 1 молекула N0 образуется из /а молекулы азота и /з молекулы кислорода. Это может быть только в случае, если молекулы азота и кислорода двухатомны. Определяя молекулярные массы N2 и О2 одним из рассмотренных ниже методов и деля полученную величину пополам, находим их атомные массы, равные соответственно 14 и 16. [c.23]

    Обычно систему напуска располагают на некотором расстоянии от источника и отделяют от него натекателем . Образец должен находиться в системе напуска при давлении около 0,1 мм рт. ст., при котором он должен быть полностью испарен, и состав паров и исходного материала должен быть идентичным. Проблемы напуска образца будут рассмотрены ниже, но следует указать, что используемые в большинстве лабораторий методы не обеспечивают возможности анализа соединений, имеющих упругость пара менее 0,1 мм рт. ст. при 350°. Температура 350° — это температура, при которой большая часть органических кислород- и азотсодержащих соединений термически неустойчивы. Из этого следуют серьезные ограничения аналитических возможностей масс-спектро-метра Упругостью пара 0,1 мм рт. ст. обладают парафиновые углеводороды (наиболее летучие высокомолекулярные органические соединения, за исключением галогеносодержащих) с молекулярным весом около 600 или ароматические углеводороды с конденсированными кольцами с молекулярным весом около 400 присутствие в молекуле атома азота или кислорода в заметной степени снижает летучесть органических веществ. Тем не менее для тех соединений, для которых масс-спектр может быть получен, он является источником наиболее полной информации по сравнению со сведениями, получаемыми любыми другими методами. Обширная информация, получаемая на основании масс-спектров, обеспечивает дальнейшее расширение применения приборов для качественного анализа и более полное использование потенциальных возможностей метода. Ниже описывается последовательность операций, необходимых для идентификации. [c.300]

    Такие элементы, как водород, азот и кислород вносят очень небольшой вклад в изотопный пик (М + 1) или соответственно (М + 2). Поэтому их присутствие в молекуле нельзя установить по соотношению интенсивностей. При наличии таких элементов, как хлор, бром, бор, сера, изотопные пики характеризуются значительной интенсивностью. В их масс-спектрах наблюдается характеристическое распределение интенсивностей, по которому тотчас определяют вид и число атомов этих элементов. Для наглядности на рис. 5.38 приведены соотношения интенсивностей молекулярного и изотопных пиков, характерные для молекул с одним, двумя и тремя атомами хлора и брома. [c.290]


    Изменение концентрации с высотой при прочих равных условиях тем более сильно, чем больше масса частиц. Так, в суспензии гуммигута частицы обладают радиусом порядка десятитысячных долей миллиметра, т. е. их масса в миллиарды раз превосходит массу молекул воздуха (точнее — азота и кислорода). В такой суспензии уменьшение концентрации наполовину происходит на высоте не 5 км, как у воздуха, а всего лишь 30 мк (30 микронов), т. е. на высоте, в 160 000 000 раз меньшей. Следовательно, в этой суспензии при равновесии градиент падения концентрации с высотой очень велик, и на каждые 30 мк высоты концентрация уменьшается в два раза, т. е. на высоте 0,6 мм концентрация меньше в миллион раз (2 ). [c.513]

    Вторая причина многообразия структурных форм высокомолекулярных соединений нефти заключается в том, что с ростом молекулярного веса увеличивается число элементов, участвующих в построении молекул. Так, в углеводородной части масляных фракций из сернистых нефтей уже содержатся значительные примеси сернистых соединений, но практически отсутствуют кислородные соединения в составе смол наряду с серой уже находятся значительные количества кислорода, а нередко и азота наконец, в асфальтенах, кроме серы и кислорода, сконцентрирована основная масса азота, ванадия, никеля [30, 31, 32] и некоторых других микроэлементов. Таким образом, с увеличением молекулярного веса фракций нефти наблюдается постепенный переход от компонентов чисто углеводородного характера к смесям, состоящим из углеводородов и гетеро-органических соединений. Структура и состав этих соединений непрерывно усложняются в результате увеличения числа гетероатомов, входящих в Молекулу. Однако углеводородный скелет по-прежнему остается несущим каркасом молекул. Поэтому огромное разнообразие возможных структурных форм высокомолекулярных соединений нефти в случае смол и асфальтенов, в отличие от углеводородов, обусловлено не только изомерией углеродного скелета молекулы, но и изомерией, вызванной наличием в молекулах атомов серы, кислорода, азота и других элементов. В наиболее высокомолекулярной смолисто-асфальтеновой части нефтей уже встречаются заметные количества металлоорганических соединений, что еще более увеличивает качественное разнообразие структурных форм этих соединений. [c.22]

    Исследование высокомолекулярных углеводородов нефти сильно усложняется еще и тем, что молекулы их чаще всего имеют гибридную или смешанную структуру, включая в свой состав структурные элементы двух или же трех основных гомологических рядов углеводородов — парафины, циклопарафины и бензолы. Сложность и многообразие такого типа гибридных структур значительно возрастает с увеличением числа С-атомов в молекуле, т. е. с повышением молекулярного веса углеводородов, так как в этом случае наряду с моноциклическими структурными элементами появляются все в большей степени конденсированные бициклические формы, а также увеличивается число элементов, образующих молекулу вещества. Так, например, в масляных фракциях содержится уже зн чительное количество сернистых соединений, но практически отсутствуют кислородные соединения в составе же смол и асфальтенов содержатся, у е наряду с серой и кислородом, основная масса азота, а также такие элементы, как V, N1, Со, Ре, Сг и многие другие. [c.85]

    О резком различии в скорости диффузии молекул азота и кислорода, составляющих основную массу воздуха, и водорода [c.25]

    Число молекул азота, и кислорода в единице объема обозначим и Са, их массы т и тка, а диаметры столкновения соответственно через 01 И- Число столкновений Z в единице объема за единицу времени между двумя молекулами различного типа выражается уравнением (1) [39] [c.59]

    В смолах различных нефтей количество гетероатомов различно и колеблется (% масс) кислорода - от 1 до 7, серы - от десятых долей до 10, азота - от сотых долей до 2. Основная масса гетероатомов входит в состав циклических структур и незначительная часть - мостики между отдельными структурными фрагментами молекулы. [c.15]

    В молекуле уротропина конденсированы четыре шестичленных кольца. Недавно получены вещества аналогичного строения, содержащие вместо атомов азота атомы кислорода и углерода. Все они оказались, подобно уротропину, весьма летучими (несмотря на высокую молекулярную массу) и стойкими при нагревании. [c.131]

    А. Авогадро констатирует на основании данных Гей-Люссака, что вода образуется при соединении одной молекулы кислорода с двумя молекулами водорода, а аммиак — из одной молекулы азота и трех молекул водорода. Обсуждая теорию Дальтона с этих позиций, А. Авогадро приводит расчеты молекулярных масс многих соединений, принимая в качестве единицы атомную массу водорода, равную 0,5. Затем в своих статьях (1814, 1821) он помещает истинные формулы некоторых газообразных веществ (сероводород, сероуглерод, метан, сернистый газ и др.). В 1821 г. А. Авогадро принял атомную массу водорода за 1 и рассчитал близкие к современным нам величины атомных масс кислорода, азота, хлора, углерода и др. [c.89]


    Изменение концентрации с высотой при. прочих равных условиях тем более сильно, чем больше масса частиц. Так, в суспензии гуммигута частицы обладают радиусом порядка десятитысячных долей миллиметра, т. е. их масса в миллиарды раз превосходит массу молекул воздуха (точнее — азота и кислорода). В такой суспензии уменьшение концентрации наполовину происходит на, высоте не 5 км, как у воздуха, а всего лишь 30 мкм, т. е. на высоте, в 160000 000 раз меньшей. Следовательно, в этой суспензии при равновесии градиент падения [c.505]

    Большинство ионов в масс-спектре образуется при мономолекулярных процессах, и в широком диапазоне давлений образца их количество прямо пропорционально давлению внутри ионизационной камеры. Однако часто встречаются пики (обычно мало интенсивные), высота которых измеряется с давлением значительно сильнее, чем в случае пиков, образующихся указанным выше образом. Такие ионы возникают в процессе столкновения двух или более молекул [1951]. Некоторые из пиков, высота которых подобным образом зависит от давления, являются острыми, другие размытыми это указывает на то, что эти ионы образуются при реакции, происходящей на пути движения ионов по направлению к коллектору, аналогично реакции метастабильных ионов. Острые пики характеризуют процессы столкновения, происходящие в ионизационной камере. Пики таких ионов, образующиеся при столкновениях в ионизационной камере молекул органических соединений, изучены очень мало, отчасти потому, что их чрезвычайно трудно наблюдать. Осколочные ионы, образующиеся при ионно-молекулярном столкновении в ионизационной камере, будут появляться в тех же самых точках спектра, что и ионы, образующиеся при мономолекулярном распаде, причем относительное число последних будет значительно больше. Ионы, возникающие при столкновениях, иногда обладают массой, большей массы молекулярного иона в этом случае они могут быть легко обнаружены, поскольку их пики не накладываются на пики других ионов. Их можно отличить от пиков примесей по зависимости от давления. Поскольку такие пики встречаются довольно редко, они используются в качественном анализе для установления присутствия определенных групп. Присоединение дополнительной химической группы к молекулярному или осколочному иону наблюдается чаще всего в случае соединений, содержащих атом кислорода или азота. Легче всего удаляется один из электронов неподеленной пары. Следствием его удаления является гибридизация электронных орбит, и проявляется связывающий характер третьей орбиты, так что трехвалентный  [c.281]

    Имеет большое значение разность масс между двумя пиками. Если для углеводородов эта величина равна 15, то она указывает на образование одного иона из другого вследствие отрыва метильной группы если разность равна 14, то это свидетельствует о замещении водорода в ионе с меньшей массой метильной группой, так что оба иона могут быть молекулярными и членами гомологического ряда. Наконец, ионы могут образовываться из молекулярного при потере осколков с массами 1 или 15, и, таким образом, оба могут быть осколочными. Например, такой распад имеет место при диссоциативной ионизации 2-метил-1,3-диоксолана (табл. 9, стр. 376). Аналогично присутствие пиков двух ионов, различающихся на 17 или 16 массовых единиц при наличии в молекуле кислорода, указывает на потерю гидроксильной группы с образованием осколочного иона или возможное присутствие двух соединений. Рассмотрение усложняется,"если предположить, что в молекуле одновременно присутствует азот и кислород. Тогда для окончательного заключения о составе молекулярной формулы должны быть привлечены и другие факторы. Если характер пиков, расположенных вблизи двух рассматриваемых, аналогичен, то это указывает на одинаковую вероятность отрыва атомов водорода и, следовательно, на возможное присутствие соединений, близких по строению. Если в области низких масс присутствуют пики, отношение между которыми близко по величине к рассмотренному выше, то это позволяет получить дополнительные данные о присутствии примесей. Двузарядные ионы с отношением массы к заряду гп1/2 и /И2/2, где mi и т , — массы однозарядных ионов, также могут использоваться для получения данных о двух различных соединениях. Дву-зарядные ионы могут образовываться не только с массами т 2 и /Л2/2, но и гпх—1)/2 и шч—1)/2 соответственно. [c.316]

    Введение N0 в область послесвечения вызвало в основном образование N2O. Продукты реакции активного азота и ацетонитрила были изучены масс-спектрометрически [668] детальное изучение кинетики реакции атомов азота в послесвечении с кислородом и окислами азота было проведено [1127] с использованием принципа реактора с мешал.кой и масс-спектрометра для определения установившейся концентрации. Реакции водорода, окиси углерода и аммиака с атомами азота [1129] протекают слишком медленно для того, чтобы их можно было обнаружить в описанной выше системе даже при 250°. В присутствии аммиака интенсивность послесвечения снижается благодаря передаче энергии электронов возбужденным молекулам азота и аммиака. Эгот процесс завершается диссоциацией аммиака. [c.454]

    Влияние изотопов элементов на вид масс-сиектра было рассмотрено в разд. 1.3. Ионы, содержащие углерод всегда сопровождаются ионами, масса которых на единицу больше, — изотопом С. Природное содержание изотопа так мало, что он почти не усложняет масс-спектр, за исключением соединений с большим числом углеродных атомов. Другие элементы, представляющие интерес для органической химии, такие, как азот и кислород, также имеют низкое содержание изотопов. Однако для некоторых элементов, например хлора, брома и используемых в металлоорганической химии металлов, характерно высокое содержание изотопов (см. табл. 1.3). Когда при масс-спектрометрическом исследовании встречаются элементы с большим содержанием изотопов, необходимо иметь представление о зависимости вида масс-сиектра от числа изотопных атомов в молекуле образца, т. е. знать ожидаемую изотопную картину спектра. [c.230]

    В высококипящих фракциях нефтей содержатся в значите 1ьных количествах высокомолекулярные гетероатомные соединения гибридной структуры, включающие в состав молекулы азот, серу, кислород, а также некоторые металлы. Выделить их в виде индивидуальных соединений и идентифицировать современными методами не удается. Поэтому их относят суммарно к группе смолисто-асфальтеновых веществ (САВ). Они не представляют собой определенный класс органических соединений. Содержание их в нефтях колеблется в значительных пределах от десятых долей процента (марковская нефть) до 50 % масс. Резкой границы в составе и свойствах при переходе от высокомолекулярных полициклических углеводородов к САВ не существует. [c.14]

    J. Изотопы углерода, водорода, кислорода и азота. Естественная распространенность тяжелых изотопов этих элементов невысока, поэтому пики при m/z (А/ + 1) и (А/ + 2) обычно малоинтенсивны, если только молекула не состоит из большого числа таких атомов. Так, для одного атома углерода обусловленная естественной распространенностью С относительная интенсивность пика при т/г (Л/ + 1) равна [(М + D/A/]-100 - (1,07 / 98,93) 100 - 1,08%. В случае кластера изотопных ИОВОВ, содержащих п атомов углерода, вероятность появления иона с одним атомом составляет 1,08п% следовательно, именно такую интенсивность будет иметь ион с m/z (М + 1). Аналогачные рассуждения применимы ш к изотопам водорода, азота и кислорода. Кислород, в котором естественная распространенность выше, чем 0, оказывает большее влияние на отношение интенсивностей пиков при m/z (М -t- 2) и Л/, чем пиков при m/z (М + 1) и А/. Пики при m/z (А/ + 2) обычно имеют невысокую интенсивность, поскольку они обусловлены ионами, имеющими два атома тяжелых изотопов углерода, водорода или азота, а вероятность появления таких ионов в случае минорных изотопов очень мала. В работе Бейнона и Уилльямза [11] имеются таблицы отношений интенсивностей (А/ + D/A/, а также (А/ + 2)/А/ для всех возможных сочетаний атомов С, Н, N и О до молекулярной массы 500. [c.189]

    Смолисто-асфальтовые вещества - сложная смесь наиболее высокомолекулярных компонентов нефти, содержшше которых достшзет 10-50 % масс. В высококонцентрированном виде смолисто - асфальтовые вещества находятся в природе в виде природных битумов. Смолисто-асфальтовые вещества представляют собой гетероорганические соединения гибридной структуры, включающие в состав молекул азот, ссру, кислород и некоторые металлы (Ре, Mg, V, № и др.). На долю углеводородной части смолисто-асфальтовых веществ приходится 80-95% всей молекулы. Наиболее богаты смолисто-асфатьтовьгми веществами молодые нефти ароматического основания. Нефти более старые, алканового основания, содержат смо-листо-асфальтовых веществ значительно меньше. [c.84]

    Наконец, образующиеся лейкосоединения полициклохиноновых красителей обладают значительным сродством к целлюлозному волокну (порядка 17—25 кДж/моль). Дело в том, что сродство красителей (в том числе и лейкосоединений кубовых красителей) к целлюлозе зависит от сил межмолекулярного взаимодействия (сил Ван-дер-Ваальса) между красителем и целлюлозой и сил водородных связей, которые могут возникать между гидроксигруппами целлюлозы и красителем при наличии у него подходящих заместителей (группы ОН, СО, СОЫН, ЫНг, атомы азота и кислорода гетероциклов, атомы галогенов и т. д.). Макромолекулы целлюлозы имеют линейную, близкую к плоской, форму и для усиления межмолекулярного взаимодействия между целлюлозой и красителем необходимо, чтобы молекулы красителя обладали значительными размерами (большой молекулярной массой), линейной и плоскостной конфигурацией. Увеличению сил Ван-дер-Ваальса способствует и электромагнитное поле, возникающее в молекуле красителя вдоль цепочки сопряженных двойных связей в результате смещений подвижных электронов, которое тем значительнее, чем длиннее сопряженная цепь. Все эти условия налицо в случае лейкосоединений кубовых полициклохиноновых красителей, молекулы которых плоски и, как правило, имеют значительные линейные размеры и мощную сопряженную систему. Нежелательным же последствием высокого сродства лейкосоединений полициклохиноновых красителей к целлюлозе является то, что в момент крашения краситель закрепляется на наиболее доступных участках поверхности волокна, плохо перераспределяется по поверхности и с трудом проникает вглубь. В результате окраска получается неровной (пятнистой) и в значительной мере поверхностной, что снижает ее устойчивость к трению. [c.146]

    В табл. 1.17 приведены масс-спектры молекул азота и кислорода [26]. В обон.х случаях преобладают молекулярные ионы Nt и 0J, следовательно, преимущественно происходит простая ионизация. Данные, характеризующие эффективность первичной ионизации основных компонентов воздушной среды при [c.24]

    Аналогичные рассуждения заставили его в случае оксидов азота отбросить варианты I и 3, так как пятиатомные молекулы противоречили его правилу простоты поэтому он верно определил и атомную массу азота, равную 7 (это значение могло быть получейо в том случае, если бы атомная масса кислорода была принята равной 8). [c.282]

    Несмотря на разнообразие нефтей, сэдержание углерода и водорода в асфальтенах колеблется в сравнительно узких пределах С 80—86% (масс.), Н 7,3—9,4% (масс.), отношение С Н также сравнительно постоянно и равно 9—П. Различие в содержании гетероатомов значительно больше. По данным Сергиенко содержание кислорода в асфальтенах в зависимости от природы нефти может колебаться от 1 до 9, серы, от О до 9, азота от О до 1,5— 3,0% (масс.). Химические и спектральные методы анализа показали, что кислород в асфальтенах входит в состав гидроксильных, карбонильных, карбоксильных и сложноэфирных групп. В нативных асфальтенах преобладают гидроксильные и карбонильные группы до 80% (масс.). В асфальтена.ч из окисленных битумов преобладают сложноэфирные группы [ 60% (масс.) кислорода] Некоторые исследователи считают, что 1 ера входит в состав суль фидных мостиков между фрагментами молекулы асфальтенов Другие, в том числе Сергиенко, придерхиваются мнения, что ато мы серы включены в циклические структурные элементы, содер жащие кольцо тиофена или тетрагидрэтиофена. Спектральными методами были также обнаружены циклические соединения, содержащие сульфоксидную группу. [c.211]

    Сырьем дпя производства нефтяного кокса являются тяжелые остатки атмосферной и вакуумной перегонки нефти-мазут и гудронь), крекинг-остатки от термического крекинга мазутов и гудронов, тяжелые газойли каталитического крекинга, остатки производства масел. Тяжелые остатки представляют собой смесь высокомолекулярных углеводородов и других соединений, в молекулах которых содержатся и гетероатомы серы, кислорода, азота и металлов V, N1, Со, Мо, Т1 и др, В состав тяжелых остатков входят масла, смолы и асфальтены. Следует иметь в виду, что остатки переработки нефти содержат асфальтено-смолистые соединения с более высокой молекулярной массой, чем у исходной нефти (см. гл. 7). [c.266]

    В настоящей главе рассматриваются термодинамические свойства бериллия и некоторых его простых соединений с кислородом, водородом, фтором, хлором и азотом. Более сложные соединения бериллия с этими элементами (ВеНа, ВеОН, Ве(0Н)2, ВезМг и т. п.) не рассматриваются в первую очередь вследствие отсутствия в литературе данных об их строении и молекулярных постоянных. Можно предполагать, что большинство таких сложных молекул будут нестойкими при высоких температурах, и термодинамические расчеты, проводимые без учета их образования, будут приводить к результатам, близким к истинным. Однако делать такого рода прогнозы нужно с большой осторожностью, так как результаты последних масс-спектрометрических работ показывают, что во многих случаях наблюдается обратная картина — при высоких температурах в насыщенных парах сложные молекулы становятся относительно более стабильными. Так, при испарении окиси бериллия было обнаружено [1106], что при высоких температурах все большее значение приобретают полимерные молекулы (ВеО) . Кроме того, в восстановительных условиях важную роль может играть молекула Ве20[72]. Из продуктов испарения окиси бериллия в Справочнике рассматриваются только Ве и ВеО. Поэтому эти данные недостаточны для полного описания системы бериллий — кислород, они могут дать сведения только о количествах атомарного бериллия и окиси бериллия в парах. [c.786]

    В настоящей главе рассмотрены термодинамические свойства магния и его простейших соединений с кислородом, водородом, фтором, хлором и азотом. Рассматривается также ионизованный одноатомный магний, образование которого возможно в системах, содержащих магний, при температурах 5000—6000° К. Имеющиеся данные позволяют считать систему магний — кислород более простой по сравнению с аналогичной системой бериллий — кислород. Масс-спектрометрическое исследование состава продуктов испарения MgO [3305] показало, что в парах присутствуют только Mg и MgO. Отсутствие устойчивых газообразных гидроокисей магния [2626] позволяет полагать, что и система магний—кислород— водород также достаточно полно описывается приведенными данными. Низкое значение энергии диссоциации молекулы Mga (7,2 ккал/моль [3813, 29]) позволяет исключить эту молекулу из числа рассматриваемых компонентов. В Справочнике рассматриваются все известные соединения магния с фтором и хлором MgF, MgF a, Mg l и Mg lg. Сведения о существовании полимерных молекул типа (MgXa) в литературе отсутствуют. [c.809]

    ТЫСЯЧНЫХ долей миллиметра, т. е. в миллиарды раз превосходящими по массе молекулы воздуха (точнее — азота и кислорода). В такой суспензии падение концентращ1и наполовину происходит на высоте не 5 км, как у воздуха, а всего лишь 30 (30 микрон), т. е. на высоте, в 160 000 000 раз меньшей. Следовательно, в этой суспензии при равновесии градиент падения концентрации с высотой очень велик и на каждые 30 высоты концентрация уменьшается в два раза, т. е. на высоте 0,6 мм концентрация меньше в миллион раз (2 °). [c.364]

    Научные работы относятся к различным областям физики и химии. В 1811 заложил основы молекулярной теории, обобщил накопленный к тому времени экспериментальный материал о составе веществ и привел в единую систему противоречащие друг другу опытные данные Ж. Л. Гей-Люсса-ка и основные положения атомистики Дж. Дальтона, отвергнув часть последних. Открыл (1811) закон, согласно которому в одинаковых объемах газов при одинаковых температурах и давлениях содержится одинаковое количество молекул (закон Авогадро). Именем Авогадро названа универсальная постоянная — число молекул в 1 моле идеального газа. Создал (1811) метод определения молекулярных масс, посредством которого по экспериментальным данным других исследователей первым правильно вычислил (1811—1820) атомные массы кислорода, углерода, азота, хлора и ряда других элементов. Установил количественный атомный состав молекул многих веществ (в частности, воды, водорода, кислорода, азота, аммиака, оксидов азота, хлора, фосфора, мышьяка, сурьмы), для которых он ранее был определен неправильно. [c.10]

    Допустим, что масс-спектр органического соединения дает нам отчетливый пик, принадлежащий молекулярному иону, и лишь малые пики ионов, на одну или две массовые единицы меньшие молекулярного, образующиеся вследствие отрыва водорода от молекулярного иона. При этом наложение на молекулярные ионы осколочных, обедненных водородом, содержащих тяжелые изотопы, будет незначительным. Элементарный состав такого иона может бьггь получен путем измерения его массы с достаточной точностью. В приложении 1 собраны массы различных комбинаций атомов углерода, водорода, азота и кислорода. Каждому массовому числу, приведенному в таблице, соответствуют комбинации не только целых молекул, но и осколков, и ниже описан способ, позволяющий различить молекулярный и осколочные ионы. То, что состав ионов может быть получен на основании измерения масс, указывалось выше, но следует рассмотреть точность, необходимую в тех случаях, когда присутствуют только атомы углерода, водорода, азота и кислорода, поскольку эти элементы являются основными в органической химии. Точность, необходимая при измерении масс синглетных ионов, может быть установлена на основании изучения дублетов, поскольку разделение компонентов дублета характеризует требуемую точность измерений. Дублеты, перечисленные в приложении 3, показывают, что пики с одинаковыми массовыми числами, не содержащие тяжелых изотопов, могут отличаться по массам на одну из следующих разностей  [c.308]

    В масс-спектрах ароматических гидроксильных соединений пики молекулярных ионов обладают еще большей интенсивностью. В спектре фенола пик молекулярных ионов максимален. Пик, соответствующий ионам с массой М — 1), мал. Очевидно, разрыв связи О—Н, находящейся в Р-положении к кольцу, происходит с меньшей вероятностью из-за наличия кислорода. В масс-спектре наблюдаются интенсивные пики ионов с массами 65 и 66, образованные при разрыве кольца. Как было установлено измерением масс, эти ионы отвечают формуле СО и СНО. Состав ионов с массой 65 и 66 может быть получен также на основании изучения дейтерированного фенола и тиофенола, как это было сделано Моминьи [1426]. В масс-спектрах этих соединений были соответственно обнаружены пики с массами 65, 66, 67 и 65, 66. В масс-спектре анилина также имеются пики сравнимой интенсивности, соответствующие ионам с массами 65 и 66, которые образовались благодаря отрыву соответствующих соединений азота H N и H2 N. Аналогичные осколочные ионы наблюдаются также в спектре нафтолов [190]. В спектрах крезолов имеется интенсивный пик молекулярных ионов, и даже больший пик, соответствующий ионам (М — 1) образования последнего следовало ожидать по аналогии с толуолом. В данном случае от исходной молекулы легко происходит отрыв СНО, но не СО. Наличие перегруппировочных ионов с массой 77 указывает на аро матический характер соединения. Масс-спектры соединений типа 2-фенилпро панола и 2-фенилэтанола близки к спектрам ароматических углеводородов В обоих случаях диссоциация [751] происходит с разрывом связи, находя щейся в Р-положении к кольцу и атому кислорода, а также с отрывом спирто вой боковой цепи и образованием соответствующих ионов с массами 91 и 105 Диссоциация с отрывом метильного радикала из 2-фенилпропанола, соответ ствующая разрыву другой р-связи по отношению к кольцу, осуществляется с малой вероятностью. Образуются перегруппировочные ионы с массами 92 и 106. Изучение спектров соответствующих дейтерированных соединений, в которых дейтерий введен в гидроксильную группу [751], показало, что в значительной степени эти ионы образованы с миграцией водорода гидроксильной группы. В общем случае ароматические и нафтеновые гидроксильные производные идентифицируются легко, частично на основании интенсивных пиков молекулярных ионов. Спектры алифатических спиртов труднее поддаются расшифровке. Некоторые факторы, затрудняющие идентификацию, будут рассмотрены ниже. [c.359]

    Чтобы лучше понять мысль Авогадро, следует заметить, что термин составная молекула обозначал у него физическую молекулу, а под простой молекулой подразумевался атом. В первой части цитированной статьи Авогадро прилагает свою теорию к конкретным случаям и приходит к оригииалетым выводам. Исходя из этой гипотезы,— пишет он,— мы получаем средство для довольно легкого определения относительной массы молекул тел, которые могут существовать в газообразном состоянии, и относительного числа этих молекул в соединениях так как отношение масс молекул равно тогда отношению плотностей различных газов при одинаковых температурах и давлении, относительное число молекул в каком-либо соединении получается сразу из отношения объемов газов, которые вошли в его состав. Например, если числа 1,10359 и 0,07321 выражают плотности двух газов, кислорода и водорода, принимая плотность атмосферного воздуха за единицу, и если отношение между этими двумя числами совпадает, следовательно, с отношением, существующим между массами двух равных объемов этих двух газов, то то же самое отношение выразит, согласно предложенной гипотезе, отношение масс их молекул. Таким образом, масса молекулы кислорода будет примерно в 15 раз больше массы молекулы водорода, или, более точно, первая будет относиться ко второй как 15,074 1. Точно так же масса молекулы азота будет относиться к массе молекулы водорода как 0,96913 к 0,07321, т. е. как 13 1 или, более точно, 13,238 1. С другой стороны, известно, что отношение объемов водорода к кислороду при образовании воды равно 2 1, отсюда следует, что вода происходит при соединении одной молекулы кислорода с двумя молекулами водорода. Таким же путем вз объемных отношений, найденных Гей-Люссаком для аммиака, окиси азота, селитряного газа и азотной кислоты, следует, что аммиак образуется в результате соединения молекулы азота с тремя молекулами водорода, окись азота [NjO] — из одной молекулы кислорода и двух азота, селитряный газ [КО] — из одной молекулы азота и одной кислорода и азотная кислота INOg] — из одной молекулы азота и двух молекул кислорода . [c.182]


Смотреть страницы где упоминается термин Молекула азота, масса кислорода, масса: [c.205]    [c.183]    [c.68]    [c.78]    [c.411]    [c.78]    [c.413]    [c.33]    [c.229]    [c.144]    [c.313]    [c.330]    [c.130]    [c.129]   
История химии (1975) -- [ c.182 ]

История химии (1966) -- [ c.182 ]




ПОИСК





Смотрите так же термины и статьи:

Азот кислород

Молекула азота

Молекула масса

молекулами кислорода



© 2024 chem21.info Реклама на сайте