Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика истинная

    Константа /г, входящая в уравнепия кинетики, называется кажущейся константой скорости процесса. Как видно из выражения (ХП, 86), она является произведением истинной константы скорости химической реакции к на адсорбционный коэффициент К. [c.319]

    Изучение скоростей реакций позволяет выяснить истинный механизм протекания сложных химических превращений. Это в свою очередь создает перспективы для нахождения путей управления химическим процессом, т. е. его скоростью и направлением. Выяснение кинетики реакций позволяет осуществить математическое моделирование реакций, происходящ 1х в химических аппаратах, и с помощью электронно-вычислительной техники задачи оптимизации и автоматизации химико-технологических процессов. [c.192]


    Селективность при параллельных реакциях. Совсем иной характер носит влияние диффузионного торможения на процесс, включающий параллельные реакции. В этом случае и в диффузионных областях истинная химическая кинетика реакций на новерХ ности может остаться единственным фактором, определяющим селективность [c.144]

    Так же просто находятся уравнения кинетики гетерогенных химических реакций, если реагируют два вещества. Если два реагирующие вещества адсорбируются на одинаковых адсорбционных центрах и истинный порядок реакции — второй, то общее уравнение кинетики можно записать следующим образом  [c.322]

    Термины истинная и кажущаяся энергии активации в кинетике гомогенных реакций применяются редко, но являются обычными в гетерогенной кинетике. Истинная относится к постоянной концентрации вещества на поверхности, т. е. постоянной концентрации реакционной пары вещество - - твердое тело, кажущаяся — при постоянной объемной концентрации. [c.99]

    Реакции, показывающие кинетику истинно дробного порядка (т. е. не кинетику смешанного" поряда, рас смотренную в предыдущем разделе), часто включают [c.64]

    Как видно, порядок такой реакции получается дробным, равным 1/ (где п>1). Такой дробный порядок является кажущимся. Истинный порядок реакции, протекающей на поверхности катализатора, является первым. Кажущийся порядок получаем потому, что в кинетическое уравнение, согласно принятому нами методу расчета, вводим величины, характеризующие изменение концентрации вещества не непосредственно на поверхности, а в объеме. В наше выражение входит не поверхностная концентрация, которая характеризуется величиной 9, а величина, характеризующая содержание реагирующего вещества в объеме — его парциальное давление р. Поверхностная концентрация, которая пропорциональна величине 0, входит в уравнение кинетики (ХП,81) в первой степени и, следовательно, истинный порядок реакции — первый. Примером реакции с дробным кажущимся порядком является реакция распада аммиака на мышьяке. [c.319]

    Если реагирует только одно вещество и реакция на поверхности следует уравнению первого порядка (истинный порядок), то уравнение кинетики химического процесса запишется следующим образом  [c.321]

    У1-2-2. Очень медленные реакции. Если реакция достаточно медленна, то вся жидкость становится и остается насыщенной непрореагировавшим газом (концентрация которого соответствует его парциальному давлению над жидкостью), и реакция растворенного в жидкости газа является истинно гомогенной. В таких условиях концентрация газа в жидкости отвечает его растворимости (с учетом влияния на нее других веществ, растворенных в жидкости, в соот ветствии с изложенным в главе I), и скорость дальнейшего погло щения газа равна скорости гомогенной реакции в жидкой фазе Скорость реакции г, отнесенная к единице объема жидкости, опре деляется скоростью поглощения газа, деленной на объем жидкости Этот метод, детально рассмотренный Диксоном применялся для исследования кинетики ряда реакций. [c.166]


    Некоторые химические процессы представляют собой простые одностадийные реакции, в которых участвуют одна, две или редко три молекулы. Гораздо большее число процессов является комбинациями нескольких таких простых реакций. Одна из целей химической кинетики заключается в том, чтобы установить, каков истинный молекулярный механизм сложного процесса. Почему эмпирические уравнения скорости реакций образования HI, НВг и НС1 настолько отличаются друг от друга, если сами эти [c.363]

    При к С р влияние явлений переноса незначительно. Реакция протекает в кинетической области. Наблюдаемая кинетика совпадает с истинной, скорость реакции не зависит от гидродинамического режима, наблюдаемая энергия активации будет наибольшей. [c.10]

    Следовательно, при переходе от лабораторных исследований, начало которым было положено Фростом [16— 19], к крупнотоннажному производству необходимо изучение процесса на пилотных установках при искусственном наложении отдельных осложнений или их комплекса. Углубленное изучение характера протекания реакций при наложении на них гидродинамических, массообменных и теплотехнических осложнений в нефтепереработке носит название исследования прикладной макрокинетики [14]. В лабораториях обычно исследуют истинную кинетику или микрокинетику. Существуют другие названия макрокинетики химико-технологическая кинетика [20], промышленная кинетика [21, 22], динамика промышленных процессов [4], кинетика каталитических реакций с массо- и теплопередачей [23, 24], инженерная химия [22] и просто макрокинетика [25]. [c.139]

    Область химической кинетики. В данной области концентрации реагента внутри гранул и в основном газовом потоке одинаковы, поэтому уравнение (XIV,33) выражает одновременно наблюдаемую и истинную избирательности процесса. [c.436]

    Область химической кинетики. Если скорость реакции на поверхности определяет общую скорость процесса, то Сд внутри частиц катализатора не снижается. Таким образом, истинные скорости совпадают с наблюдаемыми  [c.438]

    Таким образом, при неизвестном а, с одной стороны, единственно надежную оценку истинного отношения констант к можно получить из экспериментов в условиях, когда диффузия в порах несущественна. С другой стороны, находя отношение значений к при сильном и ничтожном влиянии диффузии в порах, определяют величины а. Это, в свою очередь, позволяет уточнить геометрию пористой структуры катализатора. Указанный сдвиг значения а от величины а = может также повлиять на анализ кинетики в области внутренней диффузии, что приводит к уравнениям (XIV,11) и (XIV,31) и к наклону, равному —1, на рис. Х1У-8. [c.440]

    Образование в нефтяной системе надмолекулярных структур придает ей принципиально иные свойства, отличные от свойств истинных растворов. Так, система приобретает определенные структурно-механические прочностные свойства, неустойчивость и способность к расслоению, что весьма существенно влияет а кинетику многих процессов и качество получаемых нефтепродуктов. [c.13]

    Когда скорость реакции намного превосходит скорость подвода реагентов, макроскопическая кинетика определяется процессами транспорта и не отражает истинной скорости реакции на поверхности, ее зависимости от температуры, концентрации и других параметров. [c.73]

    Область условий, при которых можно не учитывать диффузионные факторы, называется кинетической областью, или областью истинной кинетики. [c.41]

    В формуле (108) Ь — вероятность превращения активированной частицы, — истинная энергия активации реакции Г — гамма-функция и п — число кинетически-активных степеней свободы реагирующ их молекул, не совпадающее с полным числом колебательных степеней свободы (нормальных колебаний), но меньшее, чем последнее. Введение этого понятия [23] в химическую кинетику означало, вместе с тем, что физически в отношении обмена энергии в молекуле могут суще- [c.173]

    Учет аппаратной функции. Е сли время затухания люминесценции и время возбуждающей вспышки сравнимы между собой, наблюдаемая кинетика испускания отличается от характеристической функции f(t) —истинного закона затухания (при возбуждении бесконечно коротким импульсом света). Наблюдаемую интенсивность испускания f(f) в момент времени можно представить в виде интеграла dF (t) = Е (х) f t—x)dx—элементов интенсивности испускания частиц, возбужденных в момент х (где Е х) —интенсивность возбуждающего импульса света), тогда [c.108]

    Технологические процессы синтеза, переработки и использования полимеров практически никогда не реализуются как равновесные. В связи с этим комплекс потребительских свойств полимерных материалов обусловлен тем уровнем структурообразования, который достигается формируемой системой к моменту принудительного прекращения конкретного процесса. Вот почему достаточна строгое описание таких процессов может быть осуществлено при совместном анализе как роли гибкости макромолекул, так и динамики структурообразования в полимерных системах. Иными словами, анализ кинетики процессов в полимерных системах наряду с термодинамическими характеристиками их весьма важен для обоснованного научного прогноза. Это тем более существенно, что как в живой природе, так и во многих вариантах химических технологий осуществляются взаимные переходы гомофазных и гетерофазных полимерных систем, причем истинное равновесное состояние практически никогда не реализуется. [c.9]


    Кинетика процесса гидрокрекинга. Реакции расщепления и изомеризации, протекающие в процессах гидрокрекинга, являются типичными реакциями первого порядка. Распад углеводородов тормозится образованием продуктов расщепления и изменением условий адсорбции [271,272, 273]. Г идрирование и деструктивное гидрирование — реакции второго порядка под высоким давлением водорода равновесные выходы сдвигаются в сторону образования насыщенных соединений и гидрирование может протекать практически до конца. Для поддержания необходимого парциального давления водорода требуется его значительный избыток в связи с этим бимолекулярные стадии гидрогенизации будут описываться уравнениями для псевдомономолекулярных реакций. Таким образом, больщинство реакций, протекающих при гидрокрекинге, должно иметь первый порядок, являющийся для расщепления и изомеризации истинным, а для гидрирования — кажущимся [274]. [c.245]

    Автор обосновывает простое общее правило кристаллизацию надо вести в присутствии плохого растворителя. Такой растворитель незначительно влияет на равновесную температуру плавления, но существенно понижает температуру стекловаиия, увеличивая разность этих температур и тем самым создавая более благоприятные кинетические условия для кристаллизаций. По аналогии с термодинамической частью в этой главе также показаны черты сходства кинетики истинной кристаллизации трехмерных систем с переходами в линейно-кристаллических системах в обоих случаях при увеличении степени переохлаждения скорость кристаллизации проходит через максимум. [c.7]

    Изучение кинетики электроосаждения металлов связано также с затруднениями, возникающими в связи с неустойчивостью во времени потенциала катода. Изменение потенциала и электродной поляризации вызывается не только изменением активной иоверхности и истинной плотности тока, по и другими причинами. Особенно заметно изменение потенциала со временем при выделении металлов на чужеродных электродах, когда электролиз приводит к образованию новой металлической фазы, наиример ири осажденпи кадмия, меди, серебра, ртути и ряда других металлов на платиновом катоде. Впервые это явление было обнаружено еще в 1910 г. Лебланом, Изменение величины нерена-иряжения со временем наблюдается при выделении металла и на одноименном катоде. На рис. 22.3 яриведена типичная кривая поляризация — время, полученная при выделении серебра на серебряном катоде. [c.455]

    Реальные кинетические закономерности гетерогенного каталитического процесса определяются как истинной кинетикой реакции на активной поверхности, так и условиями массо— и тесглопереноса. Их изучение и составляет предмет макрокинетики, ил и так называемой диффузионной кинетики химических процес — сев. [c.96]

    Учитывая отмечшные выше гидродинамические факторы, влияющие на эффективность внешнего массопереноса в двухфазном потоке, следует также обращать внимание на сопротивление массопереносу внутри пор катализатора. Этот фактор заметно возрастает с утяжелением сырья и может быть определяющим при оценке эффективности процесса. Скорости транспорта водорода или, например, серусодержащих молекул в порах, заполненных жидкостью, могут быть сравнительно ниже, чем истинная (поверхностная) скорость реакции. Эти явления могут быть оценены яа основе принципов диффузионной кинетики, т. е. исходя нэ [c.93]

    Пвсле того как определены тип катализатора и способ его приготовления, необходимо решить, как следует проверять его каталитические свойства. Известны два разных подхода. Первый состоит в том, что создают лабораторный реактор, который максимально напоминает предполагаемый промышленный реактор. Однако в таком реакторе практически невозможно определить истинную скорость и получить другие кинетические данные. Обычно предпочтительно начинать с испытаний в лабораторном микрореакторе, предназначенном не для моделирования заводского реактора, а для исследования кинетики реакции и ее механизма. Это дает возможность лучше понять реакцию и одновременно испытать различные катализаторы. [c.11]

    Отдельные константы скорости при полимеризации. Значительно более детальная картина простого процесса полимеризации получается при рассмотрении истинных значений констант скорости реакций развития цепи и обрыва ее. К сожалению, эти величины нельзя получить из измерений суммарной кинетики, так, хотя / в уравнении (9) можно часто-определить независимо, но кр и к1 не удается разделить. Вместо этого необходимо провести исследования при специальных условиях, при которых не существовало бы концентрации радикалов устойчивого состояния , например фотоиндуцируемая полимеризация под воздействием неустойчивого источника света. Этот метод, впервые предложенный Чэпменом, Брайерсом и Уолтерсом [31], но лишь недавно примененный к реакциям полимеризации [15, 27], оказался наиболее плодотворным. Его часто описывают как метод вращающегося сектора после обычных средств изменения интенсивности инициирующего реакцию света. Хотя принцип его прост и понятен из приведенных ниже объяснений, но практическое применение его может оказаться довольно сложным. Недавно Мельвиль и Барнетт опубликовали подробный обзор по этому методу [106]. [c.120]

    Уравнение, описывающее кинетику топохимических реакций, было выведено Б. В. Ерофеевым. Оно было получено на основании вероятности взаимодействия молекул данной системы и ие связано ни с какими предположениями об истинном мехагшзме реакции [c.429]

    Молекулярность простой одностадийной реакции-это число индивидуальных молекул, которые взаимодействуют в данной реакции. Чтобы указать молекулярность реакции, необходимо иметь сведения о ее механизме. Реакция, подобная протекающей между водородом и иодом, на самом деле может осуществляться в несколько отдельных стадий, каждая из которых имеет свою молекулярность. Представление о молекулярности полной реакции, осуществляемой в несколько стадий, лищено смысла. Большинство простых одностадийных реакций являются мономолеку-лярными (самопроизвольный распад) или бимолекулярными (столкновения). Подлинно тримолекулярные реакции очень редки, так как столкновения трех частиц мало вероятны. О тетрамолекулярных реакциях и реакциях более высокой молекулярности практически не приходится говорить. Реакции, которые по своей стехиометрии представляются тримоле-кулярными или еще более сложными, после тщательного изучения обычно оказываются последовательностями простых мономолекулярных и бимолекулярных стадий. Одна из интереснейших проблем химической кинетики как раз и заключается в установлении истинной последовательности реакций в каждом таком случае. [c.358]

    С повышением концентрации кислоты концентрация активной промежуточной формы, как правило, возрастает, и в пределе, при достаточно большой концентрации кислоты, становится равной единице, т. е. практически все вещестно А оказывается в форме А. В этой области концентраций серной кислоты эффективная константа скорости становится равной истинной константе скорости и, таким образом, последняя может быть определена непосредственно из данных по кинетике реакции. На рис. 66 приведена зависимость эффективной константы скорости превращения о-бензоилбензойной кислоты в антрахинон от концентрации серной кислоты. Видно, что эф(1> растет с ростом концентрации серной кислоты до некоторого предельного значения. Это предельное значение дает непосредственно величину истинной константы скорости кислотно-каталитического процесса. Таким способом истинная константа скорости может быть определена и в тех случаях, когда не существует методов определения концентрации активной промежуточной формы. Как правило, однако, при столь больших концентрациях кислоты [c.248]

    Диффузионное торможение процесса обычно сопровонедается и затруднениями с отводом тепла реакции, ведущими к появлению перепадов температуры внутри пористого зерна катализатора и между поверхностью частицы и ядром потока. Реальные кинетические закономерности каталитического процесса определяются как истинной кинетикой реакции на активной поверхности, так и условиями массо- и теплопереноса их изучение составляет предмет макрокинетики химических процессов. [c.98]

    Для определения кинетики необходимо использовать безгра-диентные или проточно-циркуляционные установки [39, 41, 121], позволяющие проводить реакцию в течение длительного времени, достаточного для того, чтобы образец катализатора достиг стационарных условий. Циркуляционный реактор похож на дифференциальный, но за счет внешней или внутренней циркуляции газа температурные и концентрационные градиенты по слою катализатора, обусловленные протеканием реакции, сводятся к минимуму. Как дифференциальный, так и циркуляционный реакторы применяют для того, чтобы добиться изотермического режима. Но на практике к нему приближается только циркуляционный реактор. Заметим, что для измерений истинной кинетики необходимо вместо таблеток использовать очень мелкие частицы катализатора с тем, чтобы свести к минимуму влияние массопереноса. [c.260]

    Процессы нефтепереработки и нефтехимии, намечаемые к крупнотоннажному осуществлению, должны изучаться предварительно на пилотных установках при искусственном наложении на основные реакции отдельных осложнений или их комплекса. Углубленное изучение характера протекания химико-технологических процессов нефтепереработки при наложении на них гидродинамических, массообменных и теплотехнических осложнений в нефтепереработке носит название исследований прикладной макрокинетики, в отличие от истинной неосложненной микрокинетики, исследуемой в лабораториях. Существуют и другие названия прикладной. макрокинетики химико-технологическая кинетика [20], кинетика промышленная [21, 22], динамика промышленных процессов [7], кинетика каталитических реакций с массопередачей и теплопередачей [23, 24], просто макрокинетика [25, 26] и, наконец, математическое описание [12, 27]. Основам теоретической [c.33]

    Создание единой для большого числа процессов и аппаратов математической модели, отражающей физическую сущность явления, невозможно без выявления истинных закономерностей осуществляемых физико-химических превращений. Вместо подгонки диффузионных моделей с эффективными, т. е. дающими похожий на конечный результат ответ, коэффициентами под единичные эксперименты, надо направить усилия на изучение определяющих этот комплексный ответ отдельных факторов, таких как структура слоя катализатора, глобальная и локальная гидродинамика смеси, тепло- и массоперенос, кинетика гетерогенных химических реакций. Основу этого изучения по каждому из указанных разделов должно составлять целенаправленное экспериментальное обследование во всем интересном для практических приложений диапазоне изменения определяющих параметров с последующей фиксацией физических закономерностей или критериев нодобпя исследуемого яв.пения. На первом этапе изучения отдельных влияющих па работу химических реакторов факторов, кроме изучения кинетики химических реакций, остается реальной идея физического, в том числе и масштабного, моделирования с применением вычислительной техники, при этом должно быть обеспечено соответствие теоретических моделей экспериментальным данным. На втором этапе описания работы химических реакторов общая математическая модель будет получена сложением отдельных составляющих процесса. Основным будет выбор частных видов общей модели, отвечающих конкретным практическим случаям, и их численный расчет с учетом всех влияющих факторов. [c.53]

    Это уравнение получено при достижении стационарного состояния катализатора после каждого изменения состава реакционной смеси. Если же исследовать зависимость скорости реакции от состава реакционной смеси при постоянном составе катализатора, т. е. при ф = onst, то = / Hgt где к — истинная константа скорости реакции. В этом случае скорость реакции должна измеряться при быстрых изменениях состава реакционной смеси с тем, чтобы изменения реакционной смеси не успевали повлиять на свойства катализатора. Приведенное уравнение отвечает истинной кинетике, обусловленной механизмом реакции, а именно взаимодействием бутилена с кислородом поверхности катализатора. Учитывая (1.2), из уравнений, определяющих W, приходим к выражению [c.14]

    Сопоставление вышеприведенных работ по кинетике гидрогено-лиза глюкозы, сорбита и глицерина показывает различие (иногда существенное) в полученных результатах, которое, очевидно, объясняется (помимо отличий в методике кинетического эксперимента) использованием разных концентраций катализатора и крекирующего агента. Таким образом, полученные в каждой из работ константы скорости, значения энергии активации, предэкспоненци-альные множители имеют локальное значение, так как привязаны к фиксированным значениям остальных параметров. Дальнейшие исследования кинетики этого сложного процесса целесообразно направить на определение истинных порядков реакции каждой из стадий, исследование щелочного ретроальдольного расщепления глюкозы, взаимного влияния концентраций катализаторов гидрирования, расщепления и гомогенных сокатализаторов, влияния дезактивации катализатора в ходе процесса и других факторов. Когда математическая модель будет учитывать влияние всего десятка факторов, воздействующих на выход целевых продуктов при гидрогенолизе, ее можно будет применить для целей оптимизации и управления. [c.131]

    Наиболее точные данные о кинетике первичного распада сырья можно получить, исследуя крекинг при небольшой глубине превращения, так как эти данные легко могут быть экстраполированы к нулевой глубине превращепия и характеризовать таким образом истинный состав продуктов первичного распада. При увеличении глубины превращения усиливается роль вторичных реакций и кинетика процесса усложняется. [c.32]

    Данные табл. 84 и 85 могут быть предложены в качестве проекта унифицпрованпых величии по кинетике крекипга нормальных парафиновых углеводородов Разумеется, что эти данные могут претендовать лпшь на первое приближение к истинным величинам. В дальнейшем должна вестись постоянная и систематическая работа по уточнению данных но кинетике крекинга парафиновых углеводородов. По мере накопления нового экспериментального материала данные табл. 84 и 85 должны из года в год исправляться и пополняться. [c.102]

    Вид функции I(t) определяется экспериментально легко, но никакого удобного аналитического метода, который позволял бы находить функцию fit) по экспериментально измеряемым функциям F(t) и I t), не существует. На практике подбирают пробные функции f t), по которым, зиая I t), восстанавливают пробные функции F t) или применяя для этого численное интегрирование, или поль- уясь программой для ЭВМ. Если характеристической функцией гибели промежуточного продукта является экспонента, то для экспериментального определения кинетики затухания можно воспользоваться методом моментов (см. гл. IV). Если все три функции F t), f t) и I (t) аппроксимируются экспонентами, то для расчета истинной константы можно пользоваться следующим простым приближенным соотношением  [c.189]

    Определение механизма химической реакции. Установление механизма химического превращения— одна из наиболее сложных задач химической кинетики. Трудности возникают прежде всего потому, что одним и тем же кинетическим кривым, полученным экспериментально, может соответствовать множество различных механизмов реакции. Однако практически приходится рассматривать ограниченное число вероятных механизмов реакции. При этом с помощью АВМ можно сравнительно быстро просмотреть несколько механизмов и сразу отсеять те, которые ие согласуются с опытом, поскольку невозможность согласования расчетной кривои с эксиеримеитальной указывает на ошибочность данного механизма. Успешность такого метода определения истинного механизма процесса значительно возрастает с увеличением количества экспериментальных кинетических данных для исходных, промежуточных и конечных веществ, которые можно было бы сравнивать с расчст-кыми величинами. [c.348]

    Наблюдаемая скорость характерна для реакции истинно второго порядка, что указывает на стехиометрию 1 1. Из-за плохой растворимости кинетика насыщения не измерялась ни / кат, ни Кт не были установлены удалось оценить лишь константы скорости второго порядка. Пространственная структура образующегося в результате продуктивного связывания тетраэдрического соединения свидетельствует о том, что между субстратом и стероидными кольцами возможно эффективное гидрофобное связывание. Достоинством этой системы является малая конформационная нодвих<ность как субстрата, так и катализатора. [c.314]


Смотреть страницы где упоминается термин Кинетика истинная: [c.91]    [c.141]    [c.3]    [c.76]    [c.439]    [c.59]    [c.314]    [c.350]    [c.27]   
Защита подземных металлических сооружений от коррозии (1990) -- [ c.25 ]




ПОИСК







© 2025 chem21.info Реклама на сайте