Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термическая деструкция с образованием ПСС

    Выделение газов при нагревании углей без доступа воздуха связано с образованием и свойствами летучих продуктов термической деструкции. Образование смолы и газа при термической деструкции является результатом протекания большого числа процессов, зависящих как от состава исходных углей, так и от условий, при которых находятся первичные продукты. [c.238]


    Первичное действие щелочи на одноатомные фенолы можно рассматривать как окисляющее боковых цепей. Следующим этапом следует термическая деструкция образованных фенолкарбоновых кислот. [c.60]

    Батцер [1] описал получение полиэфиров в расплаве при различных температурах. Им также было исследовано влияние на молекулярный вес полиэфиров продолжительности реакдии при температуре 200°. Реакция проводилась в токе азота. Полученные результаты представлены на рис. 56, из которого видно, что поликонденсация при 200° сопровождается по истечении определенного времени термической деструкцией образованного полимера. Таким образом, проведение ноликонденсации при высокой температуре имеет как положительную, так и отрицательную стороны. Положительную в том, что более высокие температуры вызывают более сильное смещение равновесия в сторону образования полимерной молекулы, и отрицательную — в деструкции образующегося полимера. Вообще же, к выбору температурного режима поликонденсации надо подходить, несомненно, с учетом индивидуальных особенностей исходных компонентов. [c.133]

    Термическая деструкция полисилоксанов связана главным образом с отщеплением боковых органических радикалов, причем основная полимерная силоксановая цепь не разрушается. К. А. Андрианов доказал, что окисление органического радикала влечет эа собой образование кислородных мостиков между молекулами полимеров, которые затрудняют доступ кислорода к другим органическим радикалам, что замедляет дальнейшее окисление полимера. [c.150]

    Температура в камере сгорания газового двигателя поднимается выше, чем в бензиновых или дизельных двигателях, поэтому повышается возможность образования окисей азота и нагара. Масла, применяемые для газовых двигателей, должны иметь повышенную стойкость к термической деструкции и улучшенные моющие свойства. Кроме того, такие масла должны иметь меньшую сульфатную зольность (до 0,5%), чем обычные. Для этих целей применяются масла API SF, API D, API /SE и др. Некоторые производители автомобилей выдвигают свои требования, например MAN М 3271, DAF МАТ 70310, МВ 226.9. [c.111]

    При рассмотрении механизма термической деструкции пер-фторированных полимеров типа политетрафторэтилена или пер-фторкаучуков типа СКФ-460 можно заметить, что в результате термического воздействия происходит разрыв углеродных связей полимерной цепи с образованием свободных радикалов. Эти свободные радикалы при высоких температурах не рекомбинируются, а в них также происходит разрыв С—С-связи с выделением довольно стабильной частицы дифторкарбена СРг [c.513]


    Как известно, термическая деструкция полисилоксанов начинается при 250—300°С и интенсивно протекает при 350°С. При термической деструкции полисилоксанов происходит в основном разрыв связей 81—О с образованием низкомолекулярных циклических продуктов [ 192], вызывающих снижение вязкости и увеличение летучести полисилоксанов. Этому способствует спиралевидное строение полисилоксанов (3—б атомов кремния в витке спирали), создающее благоприятные условия для образования циклов. [c.160]

    Превращение в пластическое состояние углей во время их нагревания без доступа воздуха, являющееся начальным процессом образования кокса, интерпретируют как своего рода сольволиз углей при высокой температуре, причем дисперсионная среда представлена смолами и подобными ей битуминозными продуктами, образовавшимися в процессе термической деструкции. [c.24]

    Трудно уловить первичные продукты термической деструкции потому, что они не стабильны при температуре образования. Следовательно, если желательно их получить, следует как можно быстрее изолировать их от действия тепла. В лабораторных условиях этого можно достигнуть, нагревая пробу при пониженном давлении и удаляя летучие продукты с помощью вакуум-насоса по мере их образования. Уменьшение давления ускоряет их переход в паровую фазу и уменьшает время пребывания в горячей зоне. С другой стороны, из рассмотрения химической кинетики следует, что эти термически нестойкие продукты будут сохранены тем лучше, чем быстрее будет нагреваться уголь и чем выше температура, при которой выделяются летучие продукты. Все эти, на первый взгляд, парадоксальные явления хорошо подтверждаются экспериментальным путем. [c.79]

    Образованные при указанных процессах летучие сернистые соединения частично реагируют с органическими веществами, полученными при термической деструкции углей, а также с минеральными компонентами (СаО, FeO и др.), в результате чего часть этих летучих сернистых соединений остается связанной с твердым нелетучим остатком (коксом). [c.111]

    Высокий выход экстрактов, во много раз превышающий уменьшение массы исходных углей после экстракции, объясняется образованием ненасыщенных продуктов при термической деструкции углей, которые реагируют с химически активным фенолом и образуют новые соединения, переходящие в раствор [3, с. 196]. [c.160]

    При обработке сапропелитов, липтобиолитов и горючих сланцев теми или другими растворителями при повышенной температуре выход растворимых продуктов часто значительно повышается. Это объясняется образованием пиробитумов в результате термической деструкции органической массы твердых топлив [4, с. 208]. [c.161]

    Деструктивной гидрогенизацией называется весь комплекс реакций деструкции (расщепления) молекул органического вещества и присоединения водорода по местам образованных свободных связей, сопровождающихся изменением углеродного скелета. Процесс протекает при повышенной температуре, т.е. в условиях термической деструкции органической массы до начала ее взаимодействия с водородом. Деструктивная гидрогенизация углей представляет собой сочетание процессов термической деструкции и взаимодействия образованных продуктов распада с водородом. [c.177]

    В начальной стадии нагревания углей термическая деструкция проявляется в образовании воды и кислородсодержащих газов за счет распада боковых кислородсодержащих функциональных групп. При более высоких температурах наряду с деструкцией [c.225]

    Удаление внешней влаги, называемое сушкой, протекает даже и при комнатной температуре. С повышением температуры этот процесс становится еще интенсивнее и практически заканчивается при 105—110°С. В температурном интервале 100—200 "С из угля выделяются окклюдированные газы и начинаются процессы собственно термической деструкции в наиболее термически нестойких твердых топливах — торфах и некоторых молодых бурых углях. Основным продуктом этого процесса является вода, которая называется пирогенетической водой или водой разложения. Довольно трудно установить, когда заканчивается выделение гигроскопической влаги и начинается образование пирогенетической воды. В большинстве случаев это невозможно и поэтому нельзя с уверенностью определить начало термической деструкции. [c.243]

    В основе процесса газификации ТПЭ лежат реакции преимущественно углерода с газами. Процесс газификации ТПЭ состоит из основных трех стадий термической деструкции органической массы с образованием летучих и кокса, горения кокса и его взаимодействия с газифицирующими агентами, в роли которых выступают кислород, воздух, водяной пар, диоксид углерода и их смеси. Минеральные составляющие ТПЭ в высокотемпературном процессе переходят в шлак. [c.85]


    Сейчас уже ясно, что нет простого ответа на вопрос, какими должны быть условия литья для конкретного полимера и конкретной пресс-формы, чтобы получить изделие с заданными свойствами. Рис. 14.3 иллюстрирует попытку получения такого ответа эмпирически, путем экспериментального определения области переработки на диаграмме температура расплава — давление впрыска. Если технологические параметры лежат внутри этой области, то данный полимер может быть переработан литьем под давлением с помощью данной пресс-формы. Область ограничена четырьмя кривыми. Ниже нижней кривой полимер еще не течет. Выше верхней кривой полимер подвергается термической деструкции. Левее кривой недолив форма заполняется не до конца. Правее кривой облой полимер затекает в зазоры между составными частями металлической формы, что приводит к образованию тонких пленок, прикрепленных к литьевому изделию по линиям разъема формы. Другой практический прием оценки перерабатываемости литьем под давлением, особенно для сравнения одного полимера с другим, состоит в использовании стандартной спиральной пресс-формы. При заданных условиях формования [7] определяют глубину (длину) заполнения спирали. [c.523]

    II. 1. С преимущественным образованием каких продуктов протекает термическая деструкция полиоксиметилена  [c.205]

    Интересная закономерность связывает характер продуктов деструкции с теплотой полимеризации данных соединений при термической деструкции полимеров, содержащих четвертичные атомы углерода в цепи и имеющих низкое значение теплот полимеризации, образуется в основном мономер если же полимер содержит в цепях вторичные и третичные атомы углерода и имеет высокое значение теплот полимеризации, то при термической деструкции мономер почти не образуется, а процесс заканчивается образованием устойчивых макромолекул пониженной молекулярной массы (табл. 15.1). [c.231]

    Макромолекулы указанных двух типов при термической деструкции должны вести себя различно энергии активации образования свободных радикалов также должны иметь разное значение. [c.287]

    Нанесение полиэтиленовых покрытий неизбежно связано с окислением полимера и его термической деструкцией. Эти факторы существенно снижают эффективность покрытий, сокращают срок их службы. Явный признак окисления полимера и его термодеструкции — образование на поверхности покрытия сетки трещин, часто это микротрещины, пос- [c.136]

    Первое предельное состояние заключается в нарушении сплошности защитного покрытия оно проявляется в образовании трещин, сколов, пор и других дефектов, через которые осуществляется непосредственный контакт агрессивной среды с защищаемой поверхностью. Нарушение сплошности, как правило, имеет местный или локальный характер, так как бывает вызвано различного рода механическими напряжениями, возникающими в системе металл — покрытие. Однако возникают ситуации, когда нарушение сплошности (разрушение) наступает практически по всей поверхности, например при химической или термической деструкции материала покрытия в случае интенсивного абразивного или эрозионного износа. Нарушение сплошности покрытия является наиболее опасным видом отказа, при котором дальнейшая эксплуатация конструкции невозможна требуется ремонт в случае местных повреждений или замена покрытий в случае повреждения большой части поверхности. Первое предельное состояние распространяется на все типы полимерных покрытий и все виды оборудования с покрытиями. [c.45]

    Комплексный метод, сочетающий ТГА и ИКС, уже используется рядом потребителей [13] для выяснения механизмов термического разложения различных полимеров. Например, при исследовании термической деструкции полиглицидилазида [14] методом ТГА первую стадию потери массы, связанную с экзотермической деструкцией боковых азидных групп, объясняют высвобождением энергии на каждой стадии деструкции. Параллельный анализ методом ИК-спектроскопии показал, что на этой стадии основная цепь полимера не подвергается термической деструкции образование меж- и внутримолекулярных связей сопровождается деструкцией боковых цепей. [c.397]

    Нагревание полиамидов до 230—250°С или проведение поликонденсации при высоких температурах приводит к их декарбокси-лированию. Это доказывается расхождением значений молекулярной массы, найденных по вязкости и по карбоксильным группам [8]. По данным масс-спектрометрического анализа при пиролизе в вакууме при 400 °С смешанных полиамидов на основе гексамети-ленадипамида в газовую фазу выделяются только вода, углеродистые соединения (СО, СОз, циклопентанон и низшие углеводороды), в то время как аммиак не отщепляется, и весь азот остается в твердом остатке [16—19]. Было высказано предположение, что при термической деструкции образование циклопентанона объясняется распадом амидной связи в концевом звене  [c.16]

    При рассмотрении структуры отдельных частиц асфальтенов следует учитывать их происхождение (нативные, подвергнутые термической деструкции), а также возраст нефти. Асфальтены, выделенные из остатков вакуумной перегонки, характеризуются меньшим содержанием водорода и более высоким содержанием гетероатомов, чем нативные. Нативные асфальтены, вьщеленные из молодых нефтей, характеризуются линейной надмолекулярной структурой, в которой связи между структурными блоками осуществляются метиленовыми цепочками [19]. Асфальтены более старых нефтей, прошедшие стадию глубокого катагенеза, имеют пачечную макроструктуру [25]. По этой модели (рис. 1.6) асфальтены ббразуют трехмерную структуру из ряда монослоев полициклических конденсированных аренов. Монослой (рис. 1.7) имеет М 800-3500, а образованная этими частицами слоистая структура М 5 500—5 900. Ассоциаты, образованные слоистыми частицами, могут иметь М 37 ООО-100 ООО. В настоящее время пйлучило всеобщее признание объяснение высоких значений молекулярной массы асфальтенов склонностью их к ассоциации с образованием коллоидных частиц различных размеров [23, 25]. [c.24]

    При температуре выше 200 °С начинается термическая деструкция, а при 300 С — деполимеризация с образованием мономера и других низкомолекулярных веществ, папример ди- и трифенилбен-зола. [c.20]

    Гидрогенизация в зоне термической деструкции. Когда увеличивают температуру выше 350° С, механизм реакций постепенно изменяется на первичное воздействие накладываются другие, более быстрые и энергично действующие условия, характерные для процесса термической деструкции. Имеется в виду обычно разрыв связи углерод—углерод с образованием свободных радикалов, удалением освобождаемых при этом групп атомов, наиболее богатых водородом в форме летучих веществ, и реконденсация в более стабильные формы радикалов, менее летучих и более богатых ароматическим углеродом. Водород под давлением, вероятно, вмешивается в этот механизм, насыщая свободные валентности одной части образованных радикалов и препятствуя тем самым их конденсации. Вероятно также, что он препятствует термической дегидрогенизации ненасыщенных циклов, что приводит к расширению ароматических групп и к образованию кокса (см. рис. 19). [c.39]

    Промышленная гидрогенизация угля. В зоне, представляющей технологический интерес (400—500° С), происходит противоборство между реакциями термической деструкции, которые стремятся к образованию полукокса, и реакциями гидрирования, которые, напротив, дают жидкие или растворимые продукты. Последние ускоряют течение реакций, так как а) способствуют контакту между водородом и углем, диспергируясь в растворенном масле б) увеличивают давление водорода и при введении катализаторов, которые влияют, вероятно, особенно под действием средних фракций, служат затем для переноса водорода к сольволизированному углю. [c.39]

    Таким образом, метапласт разрушается одновременно со своим образованием. Принимая кинетические характеристики, наиболее вероятные для реакций образования и разложения, можно рассчитать его концентрацию в зависимости от времени или температуры и построить кривые, вид которых хорошо совпадает с видом кривых изменения пластичности. Вначале концентрация метапласта возрастает, затем исходное количество угля уменьшается вследствие термической деструкции, скорость образования метапласта становится меньшей, в то время как скорость деструкции увеличивается в зависимости от роста концентрации. Вскоре устанавливается равновесие, соответствующее максимуму пластичности, после которого концентрация постепенно уменьшается и почти исчезает при приближении к затвердеванию. Путем быстрого ожижения угля и обработки растворителями можно эффективно извлекать в различные промежутки времени один сорт пека, выход которого по кривой хорошо соответствует этим предположениям. [c.93]

    Результаты нескольких экспериментов позволяют утверждать тем не менее, что на первых стадиях размягчения угля термическая деструкция еще не проявляется заметно и стадии аналогичны плавлению термопластического вещества. Но это долгое время оставалось не ясным, поскольку считалось, что термическая деструкция углей и образование метапласта возникают почти сразу же после начала размягчения. [c.93]

    Мы изложили теорию превращения в пластическое состояние с образованием метапласта, который вызывает определенный вид сольволиза больших конденсированных молекул. Так как этот метапласт постепенно превращается в процессе термической деструкции в полукокс и газообразные продукты, то естественно, что пластическое состояние прекращается. [c.111]

    Для удобства определения источников образования тех или иных нерегулярных изопреноидных алканов нами приведены хроматограммы продуктов термической деструкции сквалана (рис. 22, в) и ликопана (рис. 22, б), на которых хорошо видны пики образующихся углеводородов. Кстати, этот метод удобен для получения эталонов, пригодных для ГЖХ-исследования нефтяных смесей. [c.69]

    Именно эти изопреноиды обычно образуются (в соотношении соответственно 32 36 17 15) при термической деструкции высокомолекулярных циклодимеров фитадиена. В то же время образование этим путем пристана и фитана, как и следовало ожидать, почти не наблюдается. (Получение изопреноидных алканов при крекинге высших нефтяных углеводородов будет рассмотрено в главе 6.) [c.208]

    При экстрагировании углей бензолом в автоклаве при 250— 270 °С и давлении около 5,4 МПа извлекаются так называемые битумы В, выход которых значительно выше выхода битумов А. Повышение выхода битумов можно объяснить прежде всего процессами термической деструкции. Под действием температуры сапропелитовые и липтобиолитовые компоненты углей превращаются в более простые продукты, уже способные растворяться в бензоле. Очень возможно при подобном нагревании углей в автоклаве образование растворимых веществ и из гуминовых составных частей угля. Поэтому многие углехимики считают, что веществами, входящими в неизменном состоянии в состав твердых горючих ископаемых, могут быть только битумы А. Мягкие условия извлечения (температура около 80 °С) не могут влиять на химическое изменение их природы. Битумы В, экстрагируемые при высоких температурах (до 300°С), являются главным образом продуктами термической деструкции наименее устойчивых органических соединений, о чем свидетельствует значительно больший выход битумов В по сравнению с битумом А. [c.151]

    Адамантан обладает устойчивой структурой с минимально напряженными связями. Его термическая деструкция начинается при 660 °С и завершается на 94 % при 675 °С образованием алкенов и аренов [67]. В присутствии алюмосиликатного нли алюмохромо-вого катализатора адамантан превращается в продукты разложения при 550—570°С. В среде водорода в контакте с катализаторами на кизельгуре происходит гидрогеиолиз адамантана на никелевом катализаторе при 300—500 °С, на иридиевом или платиновом при 500—550 °С образуются газообразные вещества, бензол, нафталин и др. [c.216]

    Все органические полимерные соединения при высокой температуре сгорают или обугливаются. При 250—450 обычно наблюдается термическая деструкция полимеров, которая может быть связана с отщеплением заместителей и атомов водорода от двух соседних атомов углерода в макромолекулах и возникновением в них двойных связей. Поэтому такой процесс деструкции часто сопровождается соединением отдельных макромолекул—с ш и в а н и е м полимерных цепе1"1. Другой вид термической деструкции обусловливается разрушением связи между атомами в основной цепи макромолекулы и образованием более низкомолекулярных полимеров (д е п о л и м е р и 3 а-ция). Во многих случаях оба процесса протекают одновременно. [c.15]

    В основе обессеривающего эффекта окислительной обработки сернистого остаточного сырья заложены реакции селективного окисления сернистых соединений,например гидроперекисью кумола (ШК) в присутствии катализатора,что приводит к образованию в продукте окисления окисленных сульфидных и тиофансодержащих производных, термическая деструкция которых в условиях коксования приводит к их расщеплению. [c.27]

    Следует отметить, что учет иммобилизационной способности асфальтеновых агрегатов позволяет дополнить теоретические представления по экспериментальным дан-нымдругих авторов. Так, например, в работах [148,149] в процессе пиролиза асфальтенов в токе гелия при непрерывном подъеме температуры со скоростью 25°С/мин определялось количество выделяемых жидких углеводородов. Показано, что выделение последних характеризуется экстремальной зависимостью. Начало выделения углеводородов происходит при 300-350° С, затем до 410-430°С скорость их выделения повышается, после чего снижается до полного прекращения при 550-600°С. Предлагаемый авторами вариант теоретического обоснования повышения выхода углеводородов заключается в предположении отрыва периферических алифатических и циклоалифатических фрагментов молекул и гетероатомных функциональных групп, вплоть до образования голоядерных ароматических молекуле 3-4 конденсированными ароматическими кольцами. Не подвергая сомнению возможность протекания реакций термической деструкции при повышении температуры, следует заметить, однако, что предложенный вариант механизма термических превращений не позволяет обосновать экстремальный характер зависимости выхода углеводородов. Более полное обоснование механизма термических превращений асфальтенов в данном случае можно связать с конформационными превращениями асфальтеновых агрегатов в процессе их нагрева, выделением при этом жидких углеводородов, иммобилизованных в межчастичном пространстве, при несомненном расщеплении длинных боковых радикалов и их отрыве от основного ядра агре гативной комбинации. Указанные процессы в конечном итоге приводят к уплотнению агрегативных комбинаций с образованием карбеновых и карбоидных структур. [c.134]

    По данным С. Мадорского [9-76], с ростом температуры пнролиза происходит непрерывное увеличение объема выделяющихся летучих и расщепление продуктов деструкции на фрагменты. Скорость деструкции при этом резко увеличивается, что при температурах выше 280 С приводит к недопустимым ошибкам при ее измерении. На рис. 9-33 показаны скорости термической деструкции ПАН при 250-290 С. При температурах 280 и 290 С скорость выделения летучих настолько велика, что не удается установить ни начального, ни максимального ее значения. При нагревании ПАН до 200 С наблюдается изменение в окраске от желтоватой до сине-черной. Результаты ИК-спектроскопии объясняют эти превращения выше 120 С постепенным замыканием в циклы соседних нитрильных групп с образованием колец. [c.571]

    Термическая деструкция низкомолекулярных полимеров формальдегида при 160—300 °С, одновременно протекает ряд побочных реакций с образованием метанола, муравьиной и уксусной кислот, метилаля, ухудшающих качество ВГФА. [c.201]

    В общем случае термическая деструкция характеризуется двумя типами реакций деструкцией исходного полимера и промежуточных продуктов и синтезом (поликонденсационные процессы), приводящим к образованию новых типов углерод-угле-родных связей. В промежуточных продуктах и карбонизованном препарате присутствуют насыщенные и частично дегидратированные циклы, ароматические структуры, линейные формы углерода, т. е. атомы углерода в различных состояниях гибридизации (л р, 5р , 5р ), а также гетероатомы (Н, О и др.). Если скорость реакции деструкции превышает скорость реакции синтеза, то выход углерода понижается, и наоборот, более интенсивное протекание поликонденсационных процессов благоприятно сказывается на выходе углерода. Начало образования тур-бостратных пакетов обнаруживается при температуре 900°С. [c.54]

    Термическая деструкция. Принципиально процесс термического расщепления полимеров ничем не должен отличаться от процесса крекинга углеводородов, цепной механизм которого установлен с полной достоверностью. Устойчивость полимеров к нагреванию, скорость термического распада и характер образующихся продуктов зависят от химического строения полимера. Однако первой стадией процесса всегда является образование свободных радикалов, а рост реакционной цепи сопровождается разрывом связей и снижением молекулярной массы. Обрыв реакционргой цепи может происходить путем рекомбинации или диспропорционирования свободных радикалов и приводить к появлению двойных связей на концах макромолекул, изменению фракционного состава и образованию разветвленных и пространственных структур. [c.284]

    Применение высоких температур ограничено возможностью вызвать термическую деструкцию продуктов реакции вакуумировапие системы также имеет свои пределы. Введение катализаторов или растворителей вызывает необходимость последующей отмывки полимера, что сопряжено со значительным усложнением технологической схемы и большими потерями готового продукта. Реакция полиэтерификации проходит легко до образования полиэфира молекулярного веса 5000—6000. Дальнейший процесс требует использования тщательно очищенных реактивов, точного соблюдения их дозировок, применения высокого вакуума и т. п. [c.729]

    Изучена динамика образования твердых фаз пластической массы жирного угля группы 1Ж26 с изменением температуры, приведены данные об их составе и химическом строении. Исследованы особенности термической деструкции твердых фаз в процессе коксования. [c.155]


Смотреть страницы где упоминается термин Термическая деструкция с образованием ПСС: [c.161]    [c.126]    [c.134]    [c.69]    [c.8]    [c.47]   
Химия полисопряженных систем (1972) -- [ c.140 ]




ПОИСК





Смотрите так же термины и статьи:

Термическая деструкция



© 2025 chem21.info Реклама на сайте