Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексы энергетические переходы

    Неорганические соединения, у которых возможен переход возбужденных электронов на основной уровень только с определенных энергетических уровней, обладают флуоресценцией. Этим требованиям удовлетворяют соединения редкоземельных элементов и урана (1П, IV, VI). Флуоресценция свойственна, в основном, органическим соединениям. Поэтому в анализе неорганических веществ используют флуорогенные органические аналитические реагенты, образующие флуоресцирующие комплексы с нонами металлов. Чем сильнее поглощает органическое соединение в ультрафиолетовой области спектра, тем интенсивней его флуоресценция. Этому условию удовлетворяют алифатические, насыщенные циклические соединения, соединения с системой сопряженных двойных связей, и в меньшей степени ароматические соединения с гетероатомами. Введение электро-нодонорных заместителей в молекулу органического соединения [c.95]


    Общий механизм каталитического действия координационных комплексов сводится к облегчению электронных переходов в общей системе электронов и ядер внутри комплекса по сравнению с переходами между отдельными молекулами. С этих позиций естественно считать, что стадия образования координационных комплексов может ускорять как реакции окисления—восстановления, так и реакции перераспределения валентных связей (ин-тра- и интермолекулярные), поскольку между различными молекулами, входящими в координационную сферу комплекса в качестве лигандов, взаимодействие облегчается 5, 61. В случае гетерогенного катализа через координационные комплексы можно рассматривать активный центр как металл (его ион) с незаполненной сферой лигандов и применять к нему уже известные общие и частные принципы связи между строением комплексообразующего иона или ненасыщенного комплекса с его каталитической активностью. Существенную роль в определении активности катализатора в координационном катализе играют стабильность первоначально образующегося комплекса в реакциях, протекающих по механизму замещения лигандов. В этом случае, как следует из общей теории катализа и принципа энергетического соответствия Баландина, должна наблюдаться экстремальная зависимость между активностью катализатора и стабильностью комплекса. [c.59]

    Большой интерес представляет исследование поглощения света, так как в этом случае наиболее ярко проявляется корпускулярный характер излучения. Важно отметить, что какая-либо частица вещества (например, атом, молекула или сложный комплекс) может вступать во взаимодействие только с такими фотонами, энергия которых соответствует определенным энергетическим переходам, характерным для самой частицы. Поэтому спектры поглощения являются важнейшими энергетическими характеристиками вещества. [c.9]

    Активированные комплексы имеют очень короткое время существования, порядка сек. Концентрации их обычно невелики, п комплекс находится в равновесии с обычными молекулами. Скорость реакции определяется быстротой прохождения активированного комплекса через вершину энергетического барьера. Энергетический профиль реакции представлен на рис. 26. Благодаря накоплению энергии и сближению молекул активированный комплекс переходит энергетический барьер, давая конечные продукты. Расчеты показывают, что этот комплекс стоек при атомных смещениях во всех направлениях, кроме од- [c.129]


    В этом комплексе синхронный переход Н и от одной молекулы к другой идет легко, если около атомов X и V имеются свободные электронные пары и он сильно затруднен, если этих пар нет. Изображенный здесь четверной комплекс нужно рассматривать как простейший иллюстративный пример. Об истинном его строении сейчас неизвестно ничего достоверного и возможно, что энергетически более выгодны комплексы другого строения и с участием более двух молекул. Это не изменяет сущности рассматриваемых представлений о роли свободных электронных пар в водородном обмене. [c.288]

    Степень ассоциации иодидов пиридиния можно установить по спектрам переноса заряда. Можно ожидать, что в средах с высокими диэлектрическими проницаемостями соли диссоциируют на свободные ионы в результате уменьшения интенсивности полосы переноса заряда. Такой эффект действительно наблюдал Косовер [23]. График значений 2 растворителей относительно кажущихся молярных коэффициентов экстинкции, рассчитанных из максимумов поглощения при концентрации соли 2 М, оказывается практически линейным. Однако линейное соотношение не выполняется для таких растворителей, как диметилформамид, диметилсульфоксид, ацетон, ацетонитрил и смесь 90% пиридина и 10% воды. В этих средах коэффициенты экстинкции оказались ниже ожидаемых. По-видимому, эти соединения комплексуются с иодид-ионами и поэтому могут повышать диссоциацию ионных пар на свободные ионы. Неизвестно, образуются ли в этих системах разделенные ионные пары и в какой степени это могло бы влиять на энергетические переходы. Если разделенные пары не поглощают в области переноса заряда, то следует, вероятно, ожидать уменьшения кажущегося молярного коэффициента экстинкции по мере увеличения доли разделенных ионных пар, причем такое уменьшение не должно зависеть от концентрации. [c.109]

    ДЛЯ октаэдрического комплекса V , как видно из рис. 7-9, предсказывает три энергетических перехода, разрешенных по спину  [c.286]

    При большом значении Л в октаэдрическом комплексе два электрона оказываются на сильно разрыхляющих молекулярных орбиталях. Поэтому энергетически выгодней становятся потеря этих электронов и переход Pd (II) и Pt (II) в степень окисления -(-4 либо перерождение октаэдрического комплекса в плоскоквадратный. Распределение электронов по молекулярным орбиталям, возникающим при расщеплении d-орбиталей Pd и Pt, в октаэдрическом и плоскоквадратном комплексах показано на рис. 239. Как видно -13 рисунка, распределение восьми электронов на орбиталях плоскоквадратного комплекса оказывается энергетически выгоднее, чем [c.610]

    Как известно, семена эволюционно древних и эволюционно молодых растений существенно различаются по составу белкового комплекса. У первых преобладают труднорастворимые белки глютелины, у вторых-четко растворимые альбумины. Вместе с эволюцией белковой основы организмов идет и эволюция алкалоидов, терпенов, глюкозидов и т.д. В процессе совершенствования ферментных систем, приводящего к снижению энергетического уровня реакций, становятся возможными переход [c.189]

    Как было указано ранее, спектр поглощения в видимой и ультрафиолетовой областях обусловлен переходами электронов с одних энергетических уровней иа другие. Вещество поглощает те кванты света, энергия которых равна энергии соответствующих электронных переходов. Спектр поглощения (а следовательно, и окраска) большинства комплексов -элементов обусловлен электронными переходами с низшей -орбитали на -орбиталь с более высокой энергией. Так, например, комплекс [Т1(Н20)б] + имеет максимум поглощения при волновом числе V = 20 300 см . Это обусловливает фиолетовую окраску данного комплекса. Ион Т1 + имеет только один -электрон в октаэдрическом комплексе этот электрон может переходить с /гв-орбитали и е -орбиталь. Энергия квантов, отвечающая =20 300 см (238 кДж/моль), равна в соответствии с изложенным выше энергии перехода электрона с орбитали I2g на орбиталь eg, т. е. величине А. [c.124]

    Окраска комплексов. Соединения -элементов обычно окрашены. Это объясняется переходом электронов с более низкого на более высокий свободный энергетический уровень, который осуществляется за счет поглощения видимого света. Например, водный раствор Ti (III) имеет фиолетовую окраску. Цвет объясняется спектром поглощения комплекса [Ti(ОНз)в] + (рис. [c.129]

    Для выяснения механизма реакций Х-перехода наиболее существенны два свойства активированного комплекса его положение на пути реакции, в частности, расположен ли он в районах А, В или С (см. рис. 15.1), и высота энергетического барьера. Расчет поверхности потенциальной энергии позволяет естественно связать оба эти свойства активированного комплекса. Однако в качестве предварительного шага полезно раздельное рассмотрение этих свойств [c.148]


    Кризисное состояние российской экономики, связанное с переходом к рыночным отношениям, негативно отразилось на состоянии нефтяного сектора топливно-энергетического комплекса страны. Глубокий спад производства, серьезный финансовый кризис, неплатежеспособность характерны для всех входящих в него отраслей, включая и нефтепереработку. На предприятиях нефтеперерабатывающего комплекса Башкортостана объемы переработки нефти значительно сократились, глубина переработки углеводородного сырья остается на относительно низком уровне, не отвечает современным требованиям оснащенность вторичными процессами переработки нефти. Все это отрицательно сказывается на качестве получаемых товарных нефтепродуктов, что привело к серьезному ухудшению экономических показателей деятельности нефтеперерабатывающих предприятий. Из-за низкого уровня использования производственных мощностей возросла себестоимость получаемых нефтепродуктов, особенно в той ее части, которая представлена постоянными расходами. Возросшая себестоимость нефтепродуктов обусловила повышение цен на них, поскольку в практике ценообразования продолжают использоваться методы, основанные на полной себестоимости продукции. Рост цен на нефтепродукты сказался на ограничении спроса, а снизившийся спрос уменьшил возможности производства. [c.131]

    Трансмиссионный множитель х учитывает вероятность перехода активного комплекса в направлении слева направо вдоль вершины энергетического барьера (в сторону образования продуктов реакции). [c.111]

    Схема энергетических уровней комплексного иона металла изображена на рис. 1.14. При образовании комплекса электроны неподеленных пар лигандов заполняют наиболее низкие уровни <21 , / и и е . Происходит смещение электронной плотности от лигандов к центральному иону и связь приобретает ковалентный характер. Электроны металла переходят на уровни и вполне соответствующие аналогичным уровням в теории кристаллического поля. Поэтому все заключения этой теории, касающиеся влияния энергии расщепления А на свойства комплексных соединений, остаются в силе. [c.47]

    Во многих ароматических соединениях с делокализованными электронами, как и в комплексах переходных металлов с -орбиталями, энергетические уровни располагаются достаточно близко друг к другу, что позволяет этим соединениям поглощать видимый свет. Поэтому соединения двух этих классов часто обладают яркой окраской. При поглощении фотона света один электрон со связывающей л-орбитали (см. рис. 13-26) переводится на низшую разрыхлящую молекулярную л -орбиталь. Такое поглощение световой энергии называется я -> я -переходом. У бензола и нафталина энергетические уровни располагаются слишком далеко друг от друга, чтобы поглощение происходило в видимой области спектра, и поэтому данные соединения бесцветны. Но если к нафталину присоединены две нитрогруппы, то в конечном продукте, 1,3-динитронафталине, расстояние между энергетическими уровнями становится меньше [c.305]

    Изменение расстояний между атомами, происходящее в ходе химической реакции, сопровождается изменением потенциальной энергии системы реагирующих частиц. Расчет энергии, а затем и построение энергетической диаграммы осуществляется с использованием законов квантовой механики. В теории активного комплекса рассматривается лишь так называемое адиабатическое протекание реакции (не путать с понятием адиабатического процесса ), когда ядра атомов движутся гораздо медленнее электронов и это движение не сопровождается электронными переходами. Несмотря на то что учитывается лишь движение ядер, квантово-механический расчет энергии реагирующих частиц математически очень сложен и даже приближенно может быть осуществлен лишь для относительно простых молекул. Для построения энергетических диаграмм могут быть использованы спектроскопические и другие экспериментальные данные. [c.287]

Рис. 11.56. Энергетические переходы в комплексах металлов а — переход на атомные уровни невозможен б — переход с тршшетного уровня и наблюдаемое линейчатое испускание (комплексы некоторых редкоземельных элементов) Рис. 11.56. <a href="/info/50641">Энергетические переходы</a> в <a href="/info/18876">комплексах металлов</a> а — переход на <a href="/info/463287">атомные уровни</a> невозможен б — переход с тршшетного уровня и наблюдаемое <a href="/info/71080">линейчатое испускание</a> (<a href="/info/1537529">комплексы некоторых</a> редкоземельных элементов)
    В ряде случаев, особенно при образовании не очень стабильных комплексов, энергетические затраты на изменение конформационного набора преобладают и определяют направление процесса. Так, анионит АН-25, полученный сополимеризацией 2,5-метилвинилпиридина и ДВП, утрачивает способность к комплексообразованию с ионами переходных металлов в водной среде, несмотря на присутствие в его фазе координационноактивных групп. Конформациоиными эффектами объясняется и изменение стеиени закомплексованности ионов металлов низкоосновными анионитами при переходе от водных растворов к органическим. [c.256]

    Чрезвычайная легкость указанных превращений замещенных фенолов обусловлена как свойствами оксиароматической структуры, так и рассмотренными выше особенностями механизма электрофильного замещения. Во-первых, в фенолах в отличие от других ароматических соединений вследствие уменьшения энергии ароматического сопряжения (за счет компенсации энергии еноли-зации, затраченной при образовании гидроксильной группы, см. гл. 7) при взаимодействии с электрофильными реагентами наиболее легко происходит нарушение ароматической системы. Во-вторых, как уже отмечалось, при вхождении нового заместителя в орто- или пара-положение молекулы замещенного фенола образующийся промежуточный комплекс легко переходит в нейтральное соединение. Именно эти закономерности и создают благоприятные условия для атаки электрофильной частицей уже замещенного орто- или пара-положения фенола. Направление реакции в мета-положения (даже при наличии там атомов водорода) часто может быть энергетически менее выгодно, так как в этом случае гидроксильная группа не участвует в стабилизации промежуточного комплекса, и образование хинолидного соединения невозможно. Отдельные факторы, определяющие преимущественную атаку [c.59]

    Исходным моментом теоретических построений, используемым всеми авторами, является то обстоятельство, что собственно перенос элект]ронов совершается за такое короткое время ( 10- с), что изменением межъядерных расстояний можно пре-. небречь, т. е. координационная сфера частиц в растворах не успевает приспособиться к электронному переносу. Медленное приспособление, реорганизация координационных сфер участников обмена электронами, заканчивающаяся к временам 10 с, является основной причиной существования энергетического барьера (Франк — Кондоновский барьер). Адиабатический переход электронов от Red- к Ох-форме системы (и наоборот) становится возможным после изменения конфигурации взаимодействующих частиц таким образом, чтобы в переходном комплексе энергетические уровни для электронов оказались одинаковы. Исходя из теории активированного комплекса, Маркус записывал выражение для константы скорости бимолекулярной реакции элек-tpoHHoro обмена в виде [c.16]

    Кроме НИХ восемь пар электронов осуществляют л-связи. Уровни энергий этих орбиталей несколько выше, и я-связи менее прочны, чем а-связи. Остальные электроны занимают разрыхляющие орбитали и пропорционально количеству уменьшают прочность связи. Поскольку все электроны спарены, соединение не обладает магнитной активностью. К Р1С14] — диамагнитный комплекс. Положение электронов на молекулярных уровнях может изменяться под воздействием внешней энергии — световой, тепловой и т. п. Переходы электронов обусловливают появление спектров поглощения или испускания. Разница в энергиях уровней очень точно соответствует энергетическим переходам, которые обнаруживаются в спектрах комплексов. Такие переходы обозначаются как переходы между уровнями а<г->я<г, nd->n d и т. д. [c.154]

    Расщепление Д может быть определено также экспериментально по спектрам поглощения комплексных соединений. Спектр поглощения в видимой и ультрафиолетовой областях связан с переходами электронов с одних энергетических уровней на другие. Вещество поглощает те кванты света, энергия которых равна энергии соответствующих электронных переходов. Спектр поглощения (а следовательно, и окраска) большинства комплексов -элементов обусловлен электронными переходами с одной -орбитали на другую с более высокой энергией. Так, например, аква-комплекс [Т1(Н20)аР+ имеет максимум поглощения при волновом числе 20000 см что обусловливает фиалетовую окраску данного комплекса. Ион Т1 + имеет толь- [c.47]

    В общих чертах такая картина процесса сохраняется до настоящего времени. В современных воззрениях энергетические переходы возбуждаемой системы ограничены только определёнными правилами, которые налагает квантовомеханическое толкование атомных процессов. Более глубокой переработке подверглись воззрения школы Ле-нарда на природу центров люминесценции как сложных химических комплексов излучающего атома с молекулами основного кристалла. Такая концепция, естественно, не пригодна для соединений, люминесцентная способность которых является индивидуальным свойством самой молекулы (некоторые органические соединения, соли уранила и т. д.). Комплексы активатора с трегером действительно существуют в некоторых люминофорах из класса щёлочно-галоидных солей. Для большинства остальных люминес-цирующих соединений (сульфиды, силикаты и т. д.) понятие о центрах претерпело значительное изменение. Оно отнюдь не стало одиозным, но в свете современных представлений о строении твёрдого тела утратило свой подчёркнуто химический характер в пользу чисто физического истолкования существующих в кристалле связей. [c.18]

    Окраска комплексов. Соединения -элементов обычно окрашены. Это объясняется переходом электронов с более низкого на более высокий свободный энергетический уровень, который осуш,ествля- [c.517]

    Таким образом, точка, отвечающая наиболее вероятному состоянию системы (соответствующей наиболее устойчивой конфигурации), все время проходит по некоторой энергетической долине, переходя через перевал, соответствующий существованию активного комплекса. АВС, и по другой долине снова приходит к конечному состоянию. Профиль этого пути показан на рис. 1-4 и имеет вид пунктирной кривой (см. контурную диаграмму этого же рпсунка). Атом и молекула способны приближаться друг к другу против действия сил отталкивания, что обусловливает повыщение потенциальной энергии системы за счет затрат других видов энергии и в первую очередь кинетической. Наивысшая точка между долинами, лежащая выше долины, соответствующей соединению i45, отвечает энергтг активации реакции АВ+С- А+ВС. Все другие возможные варианты маршрута между долинами требуют более высокой энергии, чем описанный. [c.48]

    Полезно связать энергии наблюдаемы.х с1 — -переходов с энергетическими уровнями, используемыми при описании октаэдрических комплексов с помощью метода молекулярных орбиталей (МО). На рис. 10.15 показана диаграмма МО для комплекса (л-связывание не учитывается). Разность энергий и составляет ЮОд. По мере увеличения прочности ст-связи металл - лиганд Е понижается, а Е увеличивается на ту же самую величину, в то время как Од возрастает. Если электроны. vJeтaллa образуют п-связи со свободными р- или -орбиталями лиганда, энергия уровня в комплексе снижается, а Од увеличивается. Электрон-электронные отталкивания электронов и несвязывающих электронов металла повышают энергию совокупности и понижают Д. Изложенные выще соображения были использованы при интерпретации спектров ацетилацетонатов некоторых переходных металлов [15, 16]. [c.97]

    Диаграмма энергетических уровней тетраэдрического комплекса Со(П) подобна аналогичной диаграмме r(III). Все возможные комплексы должны быть высокоспиновыми (см. диаграммы Танабе — Сугано в приложении IV). Полоса поглощения при 15000 см приписана переходу А2 -> " ТДР), а тонкая структура — спин-орбитальному взаимодействию состояния Т. Из-за существования спин-орбитального взаимодействия возникают также некоторые спин-переходы квартет—дублет. Другая показанная полоса отнесена к переходу T F). Предполагается, что ожидаемый переход -> Т2 характеризуется полосой в интервале 3000—4500 см этот интервал не охватывается большинством спектрофотометров, работающих в видимой и УФ-обла-стях, и часто перекрывается колебательными переходами лигандов (т.е. ИК-нолосами). Синтезировано несколько пятикоординационных комплексов кобальта(П), их спектры опубликованы и интерпретированы [35а]. [c.106]

    В комплексах железа(П1) с небольшим тетрагональным искажением О км и = 0. Энергетические уровни и ожидаемый спектр показаны на рис. 13.18, Л. Наблюдаемые д-факторы очень близки к 2,00 из-за исключительно малой величины спин-орбитального взаимодействия. Поэтому можно легко наблюдать спектры ЭПР при комнатной температуре. Если Оу>И , то возникнет ситуация, изображенная на рис, 13,18, , и наблюдаются лишь переходы между + 1/2) и — 1/2), Если даже более высоко лежащие уровни и заселены, то AMs Ф 1 для возможных переходов и ни одна спектральная линия не наблюдается. Можно рассчитать д-факторы, используя в качестве базиса только 5/2, 1/2) и 15/2, — 1/2> и зеемановский гамильтониан Я = + НуЗу). Если [c.239]

    Результаты проведенной работы показали, что наблюдаемый парамагнетизм есть следствие возникновения комплексов с переносом заряда (электрона), причем за время электронного перехода ориентация ядерного спина не изменяется, Цроисходит резонансное поглощение энергии переменного электролшгнктного поля системой элементарных частиц, которое индуцирует перехода между энергетическими уровнями, обусловленными различной пространственной ориентацией магнитного момента электрона. [c.52]

    Более глубокое понимание проблемы реакционной способности достигается в приближении реагирующих молекул (ПРМ). В нем учитываются более или менее полно те возмущения, под действием которых исходная система переходит в активированное состояние. В принципе, для того чтобы учесть измeнetIиe энергии при переходе к конфигурации активированного комплекса, следует рассчитать энергетическую поверхность (2.3). Трудности такого расчета стимулируют развитие приближенных методов сравнительного изучения кинетики ряда однотипных реакций, когда переходное состояние представляется в виде модели (гипотетический активированный комплекс), отражающей некоторые особенности строения реагентов и их взаимодействия. Расчет энергии такой модели опирается на один из вариантов теории МО и представляет собой значительно более простую задачу в сравнении с отысканием оптимального пути реакции на энергетической поверхности. Найденная энергия гипотетического активированного комплекса позволяет судить о том, велика или мала энергия активации реакций, и сравнивать, таким образом, кинетические свойства частиц в ряду однотипных реакций.  [c.61]

    С точки зрения микроскопической теории коэффициент диффузии должен определяться пара.метрами молекул растворителя и растворенного вещества. Главную роль в диффузии играет движение вакансий — дырок . При близких размерах молекул растворителя и растворенного вещества остается в силе формула для коэффициента самодиффузии, представленная выше. При этом значение энергии активации практически не меняется, несмотря на то, что вместо части молекул растворителя теперь присутствуют молекулы растворенного вещества. Я- И. Френкель объясняет это тем [38], что при перемещении маленьких молекул растворенного вещества окружающие молекулы растворителя увлекаются согласно закономерностям макроскопической гидродинамики. Процессы диффузии и самодиффузии схожи, ири этом энергия активации относится ко всему комплексу частиц, участвующих в элементарном перемещении. Отсюда следует, что основным и определяющим вкладом в энергию активации является характер взаимодействия молекул растворителя друг с другом. Поэтому энергии активации близки. Кроме того, молекула примеси может переместиться в результате случайного возникновения рядом полости , в результате флуктуаци-онного раздвижсния молекул растворителя происходит пассивный, без энергетических затрат, переход в эту полость. Но энергия, затрачиваемая на образование этой полости, определяется взаимодействием молекул растворителя. [c.48]

    При большом значении А в октаэдрическом комплексе два электрона оказываются на сильно разрыхляющих молекулярных орбиталях. Поэтому энергетически выгодней становится потеря этих электронов и переход Р(1 (И) и Р1 (И) в степень окисления -+-4 либо перерождение октаэдрического комплекса в плоско-квадратный. Распределение электронов по молекулярным орбиталям, возникающим при расщеплении -орбиталей Рд и Р1, в октаэдрическом и плоскр-квадратном комплексах показано на рис. 256. Как видно из рисунка, распределение восьми электронов на орбиталях плоско-квадратного комплекса оказывается энергетически выгоднее, чем на молекулярных орбиталях октаэдрического комплекса. Сосредоточение восьми электронов на четырех молекулярных орбиталях определяет диамагнетизм комплексов плоско-квадратного строения. [c.648]


Смотреть страницы где упоминается термин Комплексы энергетические переходы: [c.296]    [c.147]    [c.27]    [c.296]    [c.286]    [c.187]    [c.296]    [c.270]    [c.340]    [c.241]    [c.376]    [c.561]    [c.593]    [c.178]    [c.115]    [c.276]    [c.129]    [c.561]   
Теоретическая неорганическая химия (1969) -- [ c.297 ]

Теоретическая неорганическая химия (1971) -- [ c.286 ]

Теоретическая неорганическая химия (1969) -- [ c.297 ]

Теоретическая неорганическая химия (1971) -- [ c.286 ]




ПОИСК





Смотрите так же термины и статьи:

Энергетические переходы



© 2025 chem21.info Реклама на сайте