Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорость реакций в растворах влияние температуры

    Зависимость скорости реакции от температуры. Влияние температуры на скорость реакции взаимодействия тиосульфата натрия с серной кислотой. Приготовьте шесть одинаковых стаканов. В три стакана налейте по 15 мл 0,1 н. раствора тиосульфата натрия, а в другие три стакана — по 15 мл 0,1 и. раствора серной кислоты. Нагрейте на водяной бане одну пару стаканов с растворами тиосульфата натрия и серной кислоты до температуры на 10 °С выше, а другую пару стаканов на 20°С выше комнатной в течение 15— 20 мин, контролируя температуру воды термометром. Пока растворы нагреваются, слейте оставшиеся растворы тиосульфата натрия и серной кислоты при комнатной температуре. Отметьте время появления серы в стаканах. То же проделайте и с подогретыми растворами. Полученные данные запишите в таблицу  [c.73]


    Процесс хлорирования осуществляют периодически или непрерывно, причем в обоих случаях очень важен способ отвода большого количества тепла. Раньше считалось, что хлорирование бензола следует проводить при возможно низкой температуре, и тепло отводили за счет охлаждения реакционной смеси водой, что лимитировало производительность аппарата. Затем нашли, что температура не оказывает существенного влияния на состав продуктов, и процесс стали проводить при 70—100 °С, отводя тепло более эффективным способом — за счет испарения избыточного бензола при помощи обратного конденсатора. Такой же метод применяют для хлорирования более высококипя-щих веществ, когда процесс ведут в растворе легкокипящего растворителя (например, в растворе 1,2-дихлорэтана). В этих случаях оформление реакционного узла аналогично изображенному на рис. 36, в, причем для подавления побочных реакций более глубокого хлорирования целесообразно секционировать колонну тарелками. Хлорирование некоторых высококипящих веществ (фенол, нафталин) проводят, однако, и в жидкой массе или в расплаве веществ без применения растворителя. Тогда тепло отводят при помощи внутренних или выносных холодильников, используя для периодического и непрерывных процессов реакционные узлы, подобные изображенным на рис. 37, а и б. При введении нескольких атомов хлора и происходящих при этом снижении скорости реакции и повышении температуры плавления смеси постепенно увеличивают температуру реакции до 150—180 "С. [c.131]

    При изучении химической реакции на первое место при современном состоянии науки и технологии выступают вопросы принципиальной возможности прохождения процесса (Д ОсО, ЭДС>0 /С<1 и т. п.). Доказав принципиальную, термодинамическую возможность прохождения процесса, переходят к вопросам его кинетической осуществимости — реакция может проходить или крайне медленно, или неприемлемо быстро. Для решения проблемы изучают влияние на скорость реакции концентраций реагирующих веществ (кинетическое уравнение реакции, ее порядок), температуры (энергия активации), подбирают катализаторы или ингибиторы, варьируют pH и ионную силу раствора, изменяют размеры, форму, материал реактора и т. п. [c.307]

    Как уже отмечалось, на скорость реакции большое влияние оказывает температура. Вследствие этого при использовании каталитических методов взаимодействующие растворы необходимо термостатировать в сосудах-смесителях. На рис. 11.4 показан сосуд-смеситель с тремя отростками. В один отросток помещают раствор компонента X, во втор ой — реагента К, в третий — раствор катализатора Ъ. Сосуд-смеситель помещают в термостат и выдерживают до установления теплового равновесия (при температуре, близкой к комнатной, анализируемые растворы принимают температуру термостата через 10—15 мин). Сосуд-смеситель вынимают из термостата, переворачивают и перемешивают [c.193]


    Ускорение медленно идущих реакций может быть достигнуто различными способами и прежде всего повышением температуры раствора. Влияние температуры на скорость реакций огромно. [c.366]

    Полученные результаты сдаются преподавателю, который дает контрольную задачу, например, изучение скорости реакции при другой температуре и расчет энергии активации, исследование влияния концентрации НС1 на скорость реакции, определение степени инверсии или концентрации кислоты в данном растворе и т. д. [c.150]

    Скорость реакции зависит от мно] их причин. На нее влияют природа и концентрация реагентов, давление (для реакций с участием газов), температура, катализатор, примеси и их концентрации, степень измельчения (в реакциях с участием твердых веществ), среда (для реакций в растворах), форма сосуда (в цепных реакциях ), интенсивность света (в фотохимических реакциях), потенциал электродов (в электрохимических реакциях), мощность дозы излучения (в радиационнохимических процессах). Таким образом, лишь некоторые из факторов, действующих на скорость реакции, одновременно оказывают влияние на химическое равновесие. В связи с этим надо отметить огромную трудность учета действия различных факторов на скорость реакции и, тем более, количественной их оценки. [c.102]

    Вант-Гоффом было разработано математическое выражение кинетических закономерностей- Н. А. Меншуткин (1887) провел систематическое исследование кинетики химических реакций в растворах, выявив значение растворителя. С Аррениус (1889) исследовал влияние температуры на скорость химических реакций. [c.17]

    Энергию активации вычисляют по результатам измерения влияния температуры на константу скорости реакции. Если экспериментальные данные представить в координатах lnfe = /(l/T), тангенс угла наклона полученной прямой линии окажется равным—Такой график показан на рис. 1-2 для мономолекулярной реакции разложения пировиноградной кислоты в водном растворе скорость этой реакции описывается уравнением [c.33]

    Влияние температуры на процессы автокаталитического восстановления металлов имеет такой же характер, что и для большинства химических реакций, т. е. выражено экспоненциальной зависимостью. Однако получить прямую зависимость и = (7) очень трудно, так как она осложняется высокой чувствительностью стабильности раствора и скоростей побочных реакций к изменению температуры. [c.91]

    Для одного из растворов, при концентрации которого реакция протекает не слишком быстро, изучите влияние температуры на скорость. Определите время прохождения реакции при повышении температуры на 5—10° в интервале от комнатной до 50—60° С. Данные представьте графически. Найдите форму зависимости, дающей на графике прямую. [c.309]

    Опыт 2. Влияние температуры на скорость реакции. Налейте в три пробирки по 5 мл раствора тиосульфата натрия, а в другие три — по 5 мл раствора серной кислоты. Сгруппируйте пробирки в три пары (кислота —тиосульфат).  [c.81]

    Механизмы метаболических процессов очень напоминают механизмы реакций, проводимых в лабораторных условиях, с тем отличием, что если в лаборатории часто работают прн повышенных температурах и давлении, с безводными (часто ядовитыми) растворителями, с сильными кислотами и основаниями и с нетипичными для природы реагентами, то метаболические процессы протекают при весьма умеренных условиях в разбавленных водных растворах в интервале температур от 20 до 40 °С при pH от 6 до 8 и с участием чрезвычайно эффективных катализаторов — ферментов. Можно сказать, что каждая ступень метаболического процесса катализируется специфическим ферментом. Ферменты представляют собой вещества белковой природы их каталитическое действие оказывает влияние не на положение равновесия реакции, а на ее скорость, которая очень сильно увеличивается — часто на несколько порядков по сравнению со скоростью реакции, проводимой в лабораторных условиях. В состав некоторых ферментов входят коферменты, имеющие небелковый характер. Подвергающийся превращению субстрат сначала связывается с активным центром фермента, поблизости от которого расположен кофер-мент. При этом реагирующая группа субстрата и кофермент так сориентированы в пространстве, что реакция между ними протекает практически мгновенно. Затем прореагировавший субстрат отделяется от активного центра фермента, а измененный кофермент регенерируется под действием другого субстрата. Если в ферменте нет кофермента, то два субстрата непосредственно взаимодействуют в активном центре. [c.180]

    На скорость химической реакции влияют многие факторы концентрация реагирующих веществ, их природа, температура, природа растворителя (если реакция протекает в растворе), присутствие катализаторов, в случае газовых реакций оказывает влияние на скорость и давление. [c.112]


    Гидролиз [131, 140, 141, 143, 158] в промышленном масштабе применяется для получения глицерина и жирных кислог, идущ,их на производство мыла. В первом этапе процесса идет химическая реакция между глицеридом и водой, во втором—экстрагирование образующихся молекул глицерина из масляной фазы в водную [134, 138]. Химическая реакция сначала идет медленно, благодаря слабой растворимости воды и масла, и носит гетерогенный характер. По мере накопления в масляной фазе продуктов реакции (кислот и глицерина) растворимость в воде увеличивается, растет скорость реакции, приобретающей гомогенный характер. Образующиеся молекулы глицерина сейчас же растворяются в водной фазе, что благоприятно влияет на скорость реакции в масляной фазе. Таким образом, количество воды, введенной в процесс, имеет большое влияние на его ход. Для ускорения реакции пользуются катализаторами, например окисью цинка или алкиларилсульфоновой кислотой. Процесс проводится под атмосферным давлением при 100 С в присутствии кислого катализатора или при —230 С и соответственно под повышенным давлением (не менее 30 ат, т. е. —3-10 н/м ) без катализатора. Верхним пределом является температура 290—340 С (в зависимости от рода масла), при которой достигается полная взаимная растворимость воды и масел. Выгоднее проводить процесс противотоком, так как это обеспечивает самую высокую степень гидролиза. [c.409]

    Влияние давления. Зависимость скорости реакции от давления изучалась ири температурах 130, 140, 150 и 165° в интервале давлений 150—260 ат и графически представлена на рис. V. 35. Наблюдается прямая пропорциональность скорости реакции от давления ири всех изученных температурах. Пересечения прямых с осью абсцисс дают отрезки, численные значения которых соответствуют минимальному давлению (для эквимолекулярной смеси окиси углерода с водородом), ниже которого при данной температуре реакция практически протекать не может. По-видимому, отрезки, отсекаемые прямыми на оси абсцисс, отвечают общим давлениям, обеспечивающим парциальное давление окиси углерода, необходимое для удержания в растворе какого-то минимального количества карбонильного комплекса. [c.341]

    О влиянии температуры на коррозию при постоянной концентрации дает представление градиент скорости, который для Ст5 составляет 0,5 г/(м ч ° ). При погружении образцов в неподвижный раствор кислоты наблюдается тенденция к замедлению скорости коррозии стали, обусловленная накоплением на поверхности продуктов реакции, адсорбционных пленок и изменением состава самого раствора. [c.238]

    В первой статье по межфазному катализу Старкс [7] показал, что в октаноне-2 легко происходит обмен под действием 5%-ного раствора ЫаОО в тяжелой воде. Также сообщалось [52], что бисульфат тетрабутиламмония катализирует обмен дейтерий — водород в некоторых тиазолах. Систематическое изучение реакции показало, что на ее скорость оказывают влияние температура и концентрация катализатора положение равновесия зависит от характера заместителя в гетероцикле. Однако в общем случае скорости реакции большие и процент обмена высокий. В одной из работ, посвященных реакциям изотопного обмена солей сульфония в межфазных условиях, установлено, что на скорость реакции оказывают влияние как природа растворителя и мицеллярные эффекты, так и стабильность образующихся карбанионов [53]. [c.169]

    Построив зависимость логарифма начальной скорости реакции от обратной температуры по углу наклона прямой определяется энергия активации прямой реакции, которая оказалась равной 19,4 Ккал/М. Среднее значение из трех се])ий опытов равно 20,4 Ккал/М. Далее было исследовано влияние концентрации кислоты на кинетику йодирования ацетона с помощью редоксистата рис. 1. На рис. 5 приведены кинетические данные для реакции йодирования ацетона при 40° С с различными добавками 1 п H l. С повышением концентрации кислоты начальная скорость реакции силысо возрастет, но в ходе реакции наблюдается своеобразное явление. Когда к раствору был прибавлен 1 мл. [c.134]

    Вначале следует сказать, что они открыли производящую большое впечатление обратную зависимость между удельной электропроводностью некоторых каталитических растворов и степенью полимеризации поли-изобутиленов, полученных при добавлении мономера к этим растворам К сожалению, не были исследованы ни какие-либо другие зависимые переменные, например степень превращения (не считая некоторых грубых оценок скорости реакции), ни влияние концентрации мономера (в одной статье она даже точно не указана). Тем не менее в высшей степени оригинальный подход дал наиболее ценные и надежные сведения, но объяснение их, приведенное авторами, содержит некоторые явно уязвимые места, как будет показано ниже. Результаты этой группы авторов во многих отношениях дополняют данные группы Esso, обсуждавшиеся в предыдущем разделе. Эти исследования действительно можно сравнивать и сочетать, благодаря идентичности катализатора и температуры и близкого подобия растворителей, применявшихся в обеих сериях исследований. [c.148]

    Исследование проводилось на проточноциркуляционной установке, представленной на рис, 1. Количество азота и кислорода, необходимое для приготовления реакционной смеси заданного состава, измеряли реометрами 3 и регулировали маносгага-ми 1. Для осушки газов служили колонки 2, наполненные силикагелем. Дозировку метанола и водяного пара осуществляли испарением в сатураторе метанола 4 и воды 4а. При изучении влияния формальдегида на скорость реакции раствор формальдегида дозировали с помощью барометрической бюретки. Для предотвращения образования параформальдегида циркуляционный контур был помещен в воздушный термостат при температуре около ПО°С. Продукты реакции с помощью трехходового крана направляли на анализ или выпускали в атмосферу. Формальдегид улавливали водой и затем определяли сульфитным методом [5]. В работе использовали железомолибденовый катализатор с атомным отношением Мо Ре = 2,5. Удельная поверхность катализатора по БЭТ составила 6,45 м /г. Насыпной вес катализатора 1,03 г/см . Диаметр зерен 0,75 мм. Предварительно установлено, что на зернах катализатора выбранной величины процесс протекает в кинетической области, а время выхода установки на стационарный режим составляет 1,5—2 часа. [c.95]

    Д. Химический состав катализ. Известно, что некоторые вещества, присутствующие в системе в небольших количествах, могут оказывать значительное влияние на скорость реакции. В тех случаях, когда подобные вещества не расходуются, это явление называется катализом. Если вещество увеличивает скорость реакции, оно называется промотором (положительный катализ). Если же вещество уменьшает скорость реакции, оно называется ингибитором или замедлителем. Так, например, было найдено, что скорость разложения иона СЮ в водном растворе 2С10 2СГ -)- О2 очень сильно возрастает при небольших концентрациях водородных ионов [6]. Подобным образом было наглядно продемонстрировано, что небольшие количества НВг (газ) могут вызвать быстрое окисление углеводородов при таких температурах, при которых этот процесс является бесконечно медленным [7]. Одним из наиболее интересных примеров по каталитическому влиянию следов примесей является, вероятно, изомеризация нормального бутана в изобутан [c.16]

    С такими основаниями, как трет-бутоксид калия, реакции проводят большей частью в полярных апротонных растворителях, однако иногда используют и бензол, в котором такие основания растворяются довольно плохо. В том и другом случае прибавление краун-эфира не только изменяет растворимость, но, кроме того, оказывает сильное влияние на ассоциацию ионов. Это приводит, как уже указывалось выше, к радикальному изменению скоростей реакций, ориентации и стереохимии -элими-нирования [454, обзор 455]. Гладко и в мягких условиях проходит дегидрогалогенирование хлор- и бромалканов при нагревании их с твердым трег-бутоксидом калия и 1 мол. % 18-крауна-б в петролейном эфире при температуре более низкой, чем температура кипения образующегося алкена. В этих условиях бор-нилхлорид, например, за 6 ч при 120°С образует 92% борнена без примеси камфена и трициклена [1104]. В сходных условиях из 1,2- и 1,1-дигалогенидов можно получить 1-алкины. Геминаль-ные дихлориды (полученные из кетонов и P I5) с прекрасным выходом дают замещенные алкины. Изомеризация этих алки-нов в аллены или сдвиг тройной связи в другое положение протекает существенно медленнее, чем обычный процесс элиминирования. -Галогеналкены подвергаются смн-элиминированию под действием системы грет-ВиОК/краун, давая алкины с хорошим выходом [1105]. [c.240]

    Скорость реакции зависит от многих факторов. На нее влияют природа и концентрация реагентов, давление (для реакций с участием газов), температура, катализатор, примеси и их концентрации, степень измельчения (в реакциях с участием твердых веществ), среда (для реакций в растворах), форма сосуда (вцепных реакциях), интенсивность сЕ.ета (в фотохимических реакциях), потенциал электродов (в электрохимических реакциях), мощность дозы излучения (в радиационнохимических процессах). Лишь некоторые из факторов, действующие на скорость реакции, одновременно оказывают влияние на химическое равновесие. [c.214]

    Элементы расчета абсорбционных и хемосорбциониых процессов и типы применяемых реакторов рассмотрены в ч. I, гл. VI. Основные технологические показатели абсорбционной очистки степень очистки (КПД) г) и коэффициент массопередачи А определяются растворимостью газа, гидродинамическим режимом в реакторе Т, Р,ю) и другими факторами, в частности равновесием и скоростью реакции при хемосорбции. При протекании реакции в жидкой фазе величина к выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение и еет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы нецикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбциониых процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны таким образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.234]

    Для повышения скорости реакции между углеродом и паром при Гюлее низких температурах (что имеет огромное экономическое значение) было проБедено большое число исследований. Не приводя данных литературы по этол-iy вопросу, следуе , однако, заметить, что благоприятное влияние оказывают соединения металлов I и II групп периодической системы (добавки щелочных и щелочноземельных металлов). Рекомендуется пропитывать уголь перед загрузкой в газогенератор водными растворами гидроокисей, карбонатов, хлоридов или сульфатов щелочных или щелочноземельных метал.пов, что снижает температуру процесса до 550—600°. [c.229]

    Влияние температуры на скорость реакции иодата калия с сульфитом натрия в серно-кислой среде. В три стакана вместимостью 100 мл отмерьте по 20 мл 0,4 %-го раствора иодата калия, а в другие три стакана — по 20 мл раствора сульфита натрия, добавив к последним по 1 мл 1 %-го раствора крахмала и по 5 мл 0,1 н. раствора серной кислоты. Нагрейте в водяной ванне одну пару растворов иодата калия и сульфита натрия до температуры на 10 °С, а другую— на 20 °С выше комнатной. Оставшиеся растворы слейте при комнатной температуре и отметьте время появления синего окрашивания. То же проделайте и с подогретыми растворами. В стаканах происходит реакция 2КЮз + ЗМа ЗОа = Ь -Ь бЫзаЗО + КзЗО + НзО. [c.73]

    Схема прибора для проведения реакции показана на рис. 43. Реакцию проводят в термостатируемом реакционном сосуде 1. Для улучшения процесса термостатирования, а также для более равномерного выделения пузырьков азота используют магнитную мешалку 4. Выделяющийся газ собирают в бюретку 7. По указанию преподавателя выполняют один из вариантов задания, например 1) исследование влияния концентрации на скорость разложения нитрита аммония в водном растворе в присутствии хлорида натрия 2) исследование влияния температуры на скорость процесса разложения нитрита аммония в присутствии хлорида натрия 3) исследование влияния электролитов (Na l, K l, a U, СН3СООН) на скорость процесса разложения нитрита аммония в 2М водном растворе при 70 °С. [c.170]

    Для установления механизма действия ПАОВ на электрохимические реакции и соответствия между экспериментом и существующими модельными рредставлениями нужно иметь количественные данные по адсорбции ПАОВ и по изменению скорости реакции в его присутствии. Необходимым условием получения таких данных является проведение кинетических и адсорбционных измерений в растворах одного и того же состава, поскольку природа и концентрация электролита фона могут существенным образом влиять на адсорбционные параметры ПАОВ. Кроме того, сопоставление скоростей реакций в присутствии и в отсутствие ПАОВ можно делать лишь при неизменной лимитирующей стадии электрохимической реакции. Хотя в настоящее время проведены многочисленные исследования влияния разнообразных органических веществ, природы электролита фона, температуры, соадсорбции ионов фона и других ПАОВ на скорость восстановления различных катионов и анионов, однако число исследований, которые были проведены с соблюдением вышеуказанных необходимых условий, невелико. [c.165]

    В 1867 г. после работ Н. И. Бекетова шведскими учеными К. Гульдбергом и П. Вааге был сформулирован закон действия масс. Впоследствии Я. Вант-Гоффом было разработано математическое выражение кинетических закономерностей, Н. А. Меншуткиным (1887) исследована кинетика химических реакцин в растворах и выяснена роль растворителя С. Аррениусом разработана теория электролитической диссоциации (1887) и исследовано влияние температуры на скорость химических реакций (1889). [c.7]

    Влияние первого фактора удобно показать на примере гидрирования циклогексена или замещенных олефинов. Для подобных соединений энергия связи водорода с поверхностью катализатора настолько велика, что поверхность катализатора, покрытая водородом, не взаимодействует с непредельным соединением. Чтобы реализовать это, необходимо подобрать катализатор с достаточно однородной поверхностью [Р(1/СаСОз, сплав —Рс1 (1 3)]. На этих катализаторах циклогексен хорошо гидрируется в спиртовой или спиртовокислой среде уже при комнатной температуре. Однако при постепенном подщелачивании раствора скорость реакции уменьшается и реакция полностью прекращается уже в 0,01 н. растворе КОН в спирте. Подкисление раствора полностью восстанавливает активность катализатора. На тех же катализаторах гексин-1 в щелочной среде гидрируется только до гексена-1, и вновь в 0,01 и. КОН гидрирование гексена полностью прекращается. Наблюдаемый эффект обусловлен тем, что водород, легко снимаемый с катализатора олсфином в спиртовом растворе, становится нереакционноспособным при подщелачивании раствора вследствие упрочнения энергии связи водорода с поверхностью катализатора. [c.201]

    Магний—довольно электроотрицательный металл (5 g2+/Mg= = —2,1 В) —корродирует в свободном от кислорода нейтральном растворе хлористого натрия с выделением водорода. Железо в таких же условиях остается нетронутым. В то же время при многих коррозионных процессах в растворах, содержащих кислород, реакции с выделением водорода и восстановлением кислорода протекают одновременно. Относительную роль кислорода, гидратированного протона и молекулы воды в процессе коррозии установить сложно, поскольку она зависит от таких факторов, как природа металла, раствора, значения pH, концентрации растворенного кислорода, температуры, возможности образования комплексов и др. Скорость реакции с восстановлением водорода обычно контролируется активацией и в существенной степени зависит от природы электрода, хотя pH раствора, температура и пр. также оказывают определенное влияние. Поэтому в данном случае зависимость между перенапряжением и плотностью тока отвечает уравнению Тафеля (1.19), причем на значениях а и Ь сказываются природа металла и состав раствора. При высоких плотностях тока перенос зарядов становится существенным и линейное соотнощение между Т1 и logi нарушается. При восстановлении кислорода контроль активацией существен при низких плотностях тока, но при повышении плотности тока большее значение приобретает диффузия, и скорость коррозии тогда соответствует предельной плотности тока. Отметим, что в отличие от перенапряжения активации перенапряжение концентрации не зависит от природы электрода, хотя пленки и продукты коррозии, которые задерживают передачу электронов на катодных участках, будут заметно влиять на ее скорость. [c.29]

    Для исследования термического разложения ЭДТА и ее солей в условиях взаимодействия их растворов с перлитными сталями был использования стакан из углеродистой стали 20, размещенный в автоклаве. Исходная концентрация растворов в большей части опытов была равна 100 мг/кг, но одна серия опытов проведена при концентрации трилона Б 1000 мг/кг. Результаты опытов приведены на рис. 7-4, из которого видно, что при контакте раствора трилона Б со сталью 20 уже при комнатной температуре комплексон активно реагирует с металлом и скорость реакции усиливается по мере повышения температуры. Так, к концу опыта при температуре 100°С концентрация комплексона составляет около 35% от начальной, а при 200°С уменьшается до 20—25%. Отсутствие монотонности зависимостей на рис. 7-4 объясняется влиянием температуры на сложные подвижные равновесия между находящимися в растворе [c.75]


Смотреть страницы где упоминается термин Скорость реакций в растворах влияние температуры: [c.80]    [c.681]    [c.503]    [c.208]    [c.52]    [c.298]    [c.299]    [c.126]    [c.112]    [c.140]    [c.102]    [c.15]    [c.118]    [c.130]    [c.383]   
Физическая химия Том 1 Издание 4 (1935) -- [ c.432 , c.441 , c.442 ]




ПОИСК





Смотрите так же термины и статьи:

Влиянне температуры на скорость реакции

Реакции в растворах

Реакции влияние температуры

Реакция температуры

Скорость реакции влияние температуры

Скорость реакции от температуры

Скорость температуры



© 2025 chem21.info Реклама на сайте