Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углеводороды нефти чувствительность

    Спектрофотометрическое определение в ультрафиолетовой области заключается в экстракции нефтепродуктов из воды четыреххлористым углеродом и последующем фотометрировании в ультрафиолетовой области. В работах ряда авторов показано, что чувствительность метода сильно изменяется для различных нефтепродуктов. Это связано с тем, что парафиновые и нафтеновые углеводороды, являющиеся основной частью нефтепродуктов, прозрачны для ультрафиолетового излучения. В данной области характерное поглощение имеют только ароматические и сопряженные диеновые углеводороды. Поскольку нефти различных месторождений имеют различный состав, а следовательно, и спектральные характеристики, то необходима индивидуальная градуировка спектрофотометров для стоков, отличающихся по составу нефтепродуктов. [c.170]


    Для определения суммы углеводородов нефти в гидросфере широко применяют газовую хроматографию, чувствительность метода составляет 0,1 мг/л, он используется также для идентификации источника загрязнения. Это позволяет контролировать преднамеренные нефтепромысловые сбросы загрязняющих веществ и выявлять виновных. Газовую хроматографию применяют для анализа содержания нефти и нефтепродуктов в сочетании с другими методами. [c.141]

    Имеется серийный прибор с высокой чувствительностью и быстродействием, сравнивающий частоту двух покрытых кварцевых кристаллов [53, 89, 208]. Влага поочередно поглощается и десорбируется на каждом кристалле, что обусловливает различие в массе и, следовательно, изменение частоты колебаний. В этом приборе два кристалла с покрытием в сочетании с системой пере-ключения потока образуют единое устройство для измерения динамики уменьшения концентрации паров воды. Каждый кристалл поочередно обдувается анализируемым газом и затем сухим эталонным газом. Прибор позволяет определять влажность в интервале 0—25 ООО млн 1 в атмосферных газах, углеводородах нефти — метане, этилене и бензоле, во фторуглеводородах, спиртах и в коррозионных газах — диоксиде и триоксиде серы, сероводороде, аммиаке и меркаптанах. [c.586]

    Таким образом, поверхностное натяжение является чувствительным показателем к изменению химического состава твердых углеводородов нефти и поэтому может быть использовано при получении продуктов, которые должны обладать определенными адгезионными свойствами. [c.42]

    При люминесцентном анализе твердых углеводородов нефти использовано интенсивное свечение полициклических ароматических углеводородов с конденсированными кольцами. Особенно следует отметить применение люминесцентного анализа для определения в составе твердых углеводородов канцерогенных ароматических соединений, в частности бензпиренов. Метод разработан на основе квазилинейчатых эмиссионных спектров и чувствительность его составляет 10 г/см . [c.48]

    Сероводород - высокотоксичный яд. При концентрации свыше 1000 мг/м отравление наступает молниеносно, при концентрации 140-150 мг/м и действии в течение нескольких часов наблюдается раздражение слизистых. После перенесенного острого отравления часто отмечаются такие заболевания, как пневмония, отек легких, менингит и энцефалит. Привыкания к сероводороду не наступает. Наоборот, наблюдается повышение чувствительности, и после перенесенных легких отравлений повторные становятся возможными при меньших концентрациях его в воздухе. Сероводород при добыче и переработке нефти действует не изолированно, а в сочетании с различными углеводородами, и при одновременном комбинированном воздействии веществ может изменяться сам характер его токсического влияния. Иногда суммарный эффект [c.101]


    Использование активного ила в виде гидролизата с последующей утилизацией на стадии выращивания дрожжей или совместный гидролиз активного ила с растительным сырьем — перспективный метод утилизации. Этот способ можно использовать в технологии производства кормовых дрожжей, культивируемых как на углеводородах нефти, так и на гидролизных субстратах. Для внедрения этого способа утилизации активного ила не требуются большие капитальные и эксплуатационные затраты. При таком способе возможна подача суспензии активного ила непосредственно с очистных сооружений без предварительного сгущения в гидролизный аппарат. Следует отметить, что гидролиз активного ила — один из менее чувствительных к составу ила способов его утилизации.  [c.103]

    При исследовании загрязнения нефтью и нефтепродуктами источников питьевого водоснабжения аналитическая задача зачастую сводится к идентификации источника загрязнения и суммарного определения углеводородов с чувствительностью на уровне ПДК независимо от фазового состояния системы и вида нефтепродукта. Санитарные нормы различных стран допускают концентрации для отдельных нефтей и нефтепродуктов в интервале 0,3—0,01 мг/л. [c.227]

    А. П. Долгов доказал, что все эти как будто различные заболевания на самом деле являются проявлением разных стадий одной и той же болезни, причиной которой служит хроническая интоксикация углеводородами нефти и каменного угля. При отсутствии повышенной чувствительности к ультрафиолетовым лучам имеется извращенная реакция повышенного пигментного образования. Это является результатом нарушения процессов усвоения и переработки лучистой энергии. Дисфункция желез внутренней секреции служит предрасполагающим к этому фактором. Имеет место воздействие углеводородов и на вегетативно-эндокринную систему, вызывающее у предрасположенных лиц нарушение пигментного обмена. [c.122]

    При исследованиях нефтей по единой унифицированной программе широко применяется методика анализа индивидуального состава фракций прямогонного бензина н. к,— 60, 60—95 и 95— 122 °С [64, Идентификация компонентов на хроматограммах проводилась с помощью графических зависимостей логарифмов удерживаемых объемов от безразмерного критерия 2, представляющего собой отношение температуры кипения компонента к температуре опыта. Средняя относительная ошибка определения содержания индивидуальных углеводородов составляет 3—5%, чувствительность анализа 0,1—0,2 %. [c.117]

    В связи с проблемой охраны окружающей среды от загрязнений полициклическими ароматическими углеводородами необходимо их определять экспрессно с большой чувствительностью и, в первую очередь, 3,4-бензпирен, который является индикатором канцерогенных веществ в объектах окружающей среды [537, 543—545]. Наибольшее распространение имеют методы определения полициклических ароматических углеводородов, основанные на применении эффекта Шпольского [502]. Наиболее плодотворное применение спектры Шпольского нашли при разработке методов определения ПАУ в почвах, растениях, атмосферных осадках, горных породах и нефтях, а также при исследовании канцерогенных ароматических соединений в онкологии. [c.255]

    Кроме того из комплексообразующих компонентов долинской нефти путем многократной хроматографии на силикагеле получены две алкано-циклоалкановые фракции (ди б, рис. 12),с пл 45 °С и iпл 84 °С, молекулярную массу 320 и 609. Во фракциях проявлены углеводороды от Сю до Сз7 и от С9 до Сл. Дробное выделение углеводородов позволило очень глубоко проявить углеводородный состав нормальных алканов. Содержание высокомолекулярных углеводородов было достаточным для идентификации их в пределах чувствительности метода. [c.52]

    Таким образом, анализ ФС выявил высокую чувствительность метода ЯМР к молекулярному составу нефтей, бензиновых, дизельных фракций, масел термодиффузионного разделения и базовых масел на всех этапах технологической линии получения Разработаны основы классификации нефтей и нефтепродуктов Установлена взаимосвязь температурно-вязкостных свойств с содержанием ароматических колец, соотношением углеводородов нафтенового и изопарафинового рядов Разработаны основы комплексного использования спектроскопии ЯМР, масс-спектрометрии для анализа сложных, многокомпонентных смесей с высокими температурами кипения на уровне фрагментного, структурно-фуппового и компонентного состава [c.289]

    Возрастающее значение получения бытового газа и синтез-газа из природного газа, нефти и нефтяных фракций путем термического и каталитического расщепления делает необходимым исследование реакций, протекающих при этих процессах. В настоящей работе описаны опыты по изучению активности различных катализаторов, отложения углерода на их поверхности и чувствительности катализаторов к сере при взаимодействии углеводородов с водяным паром. [c.462]


    Газожидкостную хроматографию используют в промышленности для анализа смесей углеводородов (получаемых при переработке нефти), аминов, жирных кислот, хлорорганических и других пестицидов. Газожидкостная хроматография отличается высокой чувствительностью и позволяет определять следы некоторых компонентов в сме- [c.440]

    Этот метод позволяет осуществлять в газовой фазе разделение заряженных частиц по их массам (см. разд. У-Б). Он отличается необычайно высокой чувствительностью, специфичностью и скоростью (длительность анализа 0,01 с), что и составляет его преимущества. Масс-спектрометрия идеально подходит для компьютеризации. В знаменитом космическом аппарате Викинг , исследовавшем Марс, масс-спектрометрия была использована как основной метод анализа состава верхних слоев атмосферы и обнаружения органических веществ в почве планеты, отстоящей от Земли на 30 млн. миль. Такая необычайно высокая чувствительность позволяет использовать масс-спектрометр для обнюхивания почвы с целью обнаружения углеводородов, что может стать быстрым методом обнаружения нефти. Специальная комбинация ускорителя с масс-спектрометром [c.196]

    Для установления точности и чувствительности определения содержания нормальных парафиновых углеводородов были исследованы их искусственные смеси с насыщенной депарафинированной фракцией марковской нефти 350—400 °С. К предварительно проанализированной насыщенной фракции добавляли смесь нормальных парафиновых углеводородов С13—С. о, Сд, в количестве 8,4 20,5 и 70,2%. Результаты исследования масс-спектров указанных искусственных смесей приведены в табл. 4, из которой следует, что средняя точность [c.411]

    Имеющиеся экономические характеристики процессов получения водорода, так же, как и прогнозные оценки стоимости основных видов горючего, конечно, носят приближенный характер. Однако из всего многообразия оценок можно выделить характерные тенденции, что и сделал в своей обзорной работе Чао [576]. На рис. 11.5 приведены зависимости стоимости производства водорода от стоимости основных видов горючего (уголь, нефть, природный газ, атомная энергия) с 1970 до 2020 г. Этот график составлен на основе ряда литературных источников и передает основную тенденцию, в соответствии с которой водород, получаемый с использованием атомной энергии, после 1990 г. станет более дешевым горючим, чем нефть и газ. А из всех методов получения водорода наиболее экономичным будет термохимический метод разложения воды. Далее указывается, что при капитальных вложениях в ядерные реакторы 60 долл/кВт (терм.) капитальные вложения в установку по производству водорода термохимическим методом составят 80 долл/кВт (терм.) против 40 долл/кВт для установок обычного парового риформинга углеводородов, очень чувствительных к ценам на исходное сырье [883, 884]. Если ВТГР и промышленная установка термохимического разложения воды будут строиться только для нужд аммиачного производства, то для получения 1,5 млн. т/год аммиака потребуется реактор мощностью 800 тыс. кВт(эл.). [c.585]

    Метод с успехом также может быть применен для исследования пустынь и ледовых полей. В первом случае пески будут адсорбировать большинство флуоресцирующих соединений, которые мигрируют из нефтяных залежей, и позволят улетучиться наиболее легким углеводородам. Во втором случае нефть, проникая через ледяной покров, будет разделяться на фракции пробы воды можно идентифицировать по чрезвычайно низким концентрациям при помощи чувствительного флуориметра, подобного показанному на рис. 82. [c.257]

    Сейчас присутствие в нефтях некоторых разветвленных лкайоЁ реликтового типа, называемых также биологическими метками, или биологическими индикаторами, используется для таксонометрических оценок состава и строения исходных нефтематеринских веществ различных геологических периодов. Данные о содержании эт11х углеводородов могут служить не только для определения источников нефтеобразования, но могут использоваться также для изучения процессов миграции углеводородов в земной коре. Поэтому точное определение концентрации этих углеводородов в нефтях сможет в какой-то мере помочь решению главной проблемы нефтяной геологии — определению закономерностей образования и размещения нефтяных месторождений. И наконец, концентрационное распределение изомерных алканов может быть использовано в целях химической классификации нефтей, так как из всех групп углеводородов нефти именно углеводороды ряда метана в наибольшей степени изменяют свой состав при переходе от одних нефтей к другим. Это связано с тем, что концентрационное распределение этих углеводородов весьма чувствительно к составу исходного нефтематеринского вещества и к химическим процессам его преобразования. [c.238]

    Вначале метод газо-жидкостной хроматографии для изучения углеводородного состава нефтей и конденсатов применялся с использованием набивных аналитических колонок. В анализах нефтей, проведенных с помощью этого метода, состав анализируемых фракций упрощался, или дополнительно использовались более чувствительные приборы, как масс-спектрометры, или применялись оптические методы для более уверенной идентификации компонентов. Б. Бредфорд с сотрудниками [155] определил 16 ароматических и насыщенных углеводородов в образце бензина, [c.75]

    В нафтеновые фрагменты в основном входят СН- и СНа-груцпы. Количество четвертичных С-атомов составляет 10—20% [45]. Резонансные сигналы ядер нафтеновых фрагментов занимают спектральный диапазон 20—70 м. д. с максимумом спектральной плотности 30 м. д. спектральная плотность при 8 < 22 м. д. и б 55 м. д. мала. Величины химических сдвигов С-ядер нафтеновых фрагментов в отличие от МПФ сложным образом зависят от геометрии молекул и расположения заместителей — для расчета величин б цикланов приходится учитывать около 10 структурных параметров молекул. Любое изменение строения молекулы, например замена аксиального заместителя на экваториальный, изменение типа сочленения циклов, появление нового заместителя и т. д., приводит к сдвигу большинства сигналов в спектре на 1—15 м. д. [51, 52]. Такая высокая чувствительность положения резонансных сигналов к элементам структуры соединения, а также разнообразие нафтеновых фрагментов в тяжелых углеводородах нефтей (с учетом различий в расположении заместителей) приводят к тому, что нафтеновые фрагменты проявляются в спектре в виде единого нафтенового горба без выраженных локальных минимумов или максимумов спектральной плотности. [c.153]

    Для предельных углеводородов нефти с достаточно узкими пределами молекулярного веса наилучшгю коэффициенты чувствительности, служаш ие для перехода от высоты ника к процентному содержанию, указаны в работе Шисслера и сотрудников [10]. Эти чувствительности, приведенные в табл. 1, получены на основе градуировки по узким нефтяным фракциям. [c.178]

    В самой ранней работе по применению метода анализа по молекулярным пикам для анализа тяжелых ароматических углеводородов нефти О Нил и сотрудники [6] приняли одинаковую чувствительность для всех молекулярных пиков, независимо от их молекулярного веса и типа. Этот общий метод теперь усовершенствован Кингом, Мак-Свини, Кантом и Пристли [18], которые привели обширный ряд чувствительностей ароматических углеводородов по молекулярным пикам. [c.185]

    Определение микро- и ультрамикроколичеств отдельных углеводородов в ничтожном количестве газов или в газах низкой концентрации, находящее применение в разных областях науки (геохимия, разведка нефти и газа, биология, радиология, медицина), осуществляется методом масс-спектрометрии [1—4], методом хроматографического анализа с применением детекторов на принципе Лаубмайера [5] или интврферомет-ричес ких детекторов [6—7] и методом измерения светопоглощения в инфракрасной области спектра [8—10]. Был разработан метод определения углеводородов путем измерения количества углекислоты, образующейся при окислении углеводородов [11]. Чувствительность метода увеличивают путем конденсации углеводородов из анализируемой газовой пробы при низких температурах [12]. Чувствительность указанных методов не превыщает 10 мл. В последнее время разработан метод определения углеводородов при помощи изменения электропроводности газов, при очень низких давлениях. Для углеводородов Сз и С4 чувствительность этого метода достигает величины 2,5-10" мл, но количество анализируемого газа составляет только 1 мл, что ограничивает возможности метода при анализе газов с ничтожной концентрацией углеводородов < 10 % (объемных) [13, 14]. [c.323]

    В соответствии с инструкцией МОРПОЛА 73/78 суммарное определение углеводородов нефти в судовых сточных водах должно осуществляться методом газовой хроматографии с ИК-фотометрическим окончанием в случае необходимости. На основании данного нормативного документа разработана методика 150 9377-2. Однако она не может быть применена в исходном варианте и нуждается в совершенствовании, так как часть указанного в ней приборного обеспечения поставляется ограниченно или вообще отсутствует на российском рынке. Поэтому на основании методики 180 была разработана новая методика определения нефтепродуктов в сточных водах, в которой вместо капиллярной колонки использовалась насадочная колонка длиной 3 м и внутренним диаметром 3 мм, наполненная хроматоном с иммобилизованной на нем подвижной фазой ОУ-1. При этом требования по чувствительности определения соблюдены, причем, использование надежной, селективной колонки позволило упростить операции по пробоподготовке, а также исключить необходимость использования предколонки. [c.133]

    Исследуемые фракции 60—95° и 95—122° были выделены из скважины Л 19 норийской нефти путем дробной перегонки. Указанные фракции сперва промывались 75%-ной серной кислотой, затем водой, 10%-ным раствором соды, опять водой и после сушки над хлористым кальцием были перегнаны в присутствии металлического натрня в тех же те.мператур-ных интервалах. С целью удаления ароматических углеводородов, фракции были обработаны серной кислотой (уд. вес — 1,865), взятой в количестве 10% к объему бензина. Полнота деароматизации проверялась чувствительным реактивом на ароматические углеводороды (серная кислота-г формалин). Дсароматизированные фракции после соответствующей промывки п сушки над хлористым кальцием были перегнаны в присутствии металлического натрия. [c.71]

    В качестве аналитического метода молекулярная масс-спектрометрия внерр Ые нашла применение в нефтеперерабатывающей промышлен Юсти. Сначала масс-спектрометр использовали для количественного определения компонентов смесей газообразных и легкокипящих углеводородов. Успешный анализ этих смесей стимулировал создание приборов, обладающих разрешающей способностью, достаточной для исследования веществ высокого молекулярного веса с низкой упругостью пара. Естественно, что при этом возникал вопрос о повышении чувствительности прибора. В 50-х годах эти проблемы были успешно решены, и в настоящее время практически вся нефть может быть изучена с помощью этого многостороннего мощного аналитического прибора. Масс-спектрометр сыграл очень важную роль в комплексном исследовании узких нефтяных фракций, проводимом с целью установления оптимальных технологических режимов. [c.4]

    Углеводороды из пролитой нефти или других источников являются распространенными загрязняющими веществами. Из водных систем они легко могут быть экстрагированы тетрахлоридом углерода, предварительно тщательно очищенным. Зная молярные коэффициенты поглощения в соответствующих областях спектра насыщенных (2900, 2800 и 1360 см- ) и ненасыщенных (3100 см- ) углеводородов, можно, используя соответствующие калибровочные зависимости, оценить их содержание в экстрактах, а затем рассчитать и концентрацию в окружающей среде. Чувствительность метода может достигать ж10- %-Интенсивность полосы с частотой 966 см , относящейся к несимметричным колебаниям связи С—И группы —СН=СН- с т/эанс-расположением заместителей, является критерием оценки пригодности искусственных жиров для употребления в кулинарии, так как обнаружена корреляция содержания веществ, включающих гранс-фрагменты, в продуктах питания и распространенности ряда серьезных заболеваний. Быстрая оценка содержания ненасыщенных транс-кислот может быть осуществлена путем сравнения поглощения в областях 966 и 934 см (характеристично для всех соединений смеси). Полученное отношение величин подставляют в уравнение для образцов известного состава. Причем, несмотря на отсутствие операции взвешивания образца или определения его объема, такая методика отличается высокой точностью. Используя характеристические полосы поглощения на 780 и 800 см , попадающие в область прозрачности материала фильтра и угольной пыли, и соответствующие калибровочные графики, можно определять содержание кварца (менее 10 мкг) в угольной пыли, осевшей на контрольных фильтрах за определенное время. Аналогичные результаты могут быть получены при определении асбеста в воздухе. [c.767]

    При получ. аром, углеводородов в кач-ве сырья использ, узкие фракции 62—85 °С — для произ-ва бензола, 85— 105 °С — толуола, 105—140 °С — ксилолов. Широкие фракции обычно примен. для получ. высокооктановых базовых компонентов авто- и авиабензинов (85—180 "С) или для совм. цроиз-ва аром, углеводородов и компонентов бензинов (62—180 °С). Октановое число последних достигает 91—98 по моторному и 102—105 по исследоват. методу. Поскольку катализаторы К. р. очень чувствительны к каталнтич. ядам (напр., содержание S, N и НгО в нефт, фракциях не должно превышать соотв. 1, 1 и5мас, ч, на миллион), сырье предварительно подвергают гидроочистке. Необходимый для этого Н2 поступает с установок К. р., побочным продуктом к-рого он является. [c.249]

    Интенсивность сигнала ЭПР V (IV) в нефти при разбавлении бензолом изменяется пропорционально концентрации ванадия, а амплитуда его одинакова как для нефтей, так и асфальтенов. В ряде случаев метод ЭПР более предпочтителен из-за своей экспрессности, достаточной чувствительности, точности (также простоты и пробоподготовки образцов для анализа) и возможности непрерывного количественного определения ванадия в технологическом потоке. Предел обнаружения V (IV) в присутствии V (V) достигает 4 х Ю " г-ат/л. Посредством ЭПР сделана попытка контролировать процесс неф-теперегонки на предмет содержания ванадия в потоке углеводородов. [c.89]

    Чувствительность детектора может быть примерно одинаковой ко всем комионентам пробы (рефрактометр и кондуктометр), а может быть совершенно разной даже для близких соединений. В первом случае говорят о песелективпом детектировапии. Это значит, что измеряется физическое свойство, присущее и пробе и растворителю (показатель преломления, электронроводность), их разность. Во втором случае - селективное детектирование. Это значит, что измеряется физическое свойство, присущее только молекулам пробы, иапример, способность флуоресцировать или поглощать свет. Селективное детектирование, с одной стороны, позволяет повысить чувствительность определения или исключить те вещества, которые определять не нужно (предельные углеводороды прп определении ароматики), с другой стороны, допускает возможность не обнаружить нужных нам комиоиеитов (тех же предельных в нефти). Поэтому ири исследовании общего состава объекта лучше использовать [c.19]

    Для определения тиофена в тяжелых фракциях нефти и сырых нефтях может быть использована специальным образом модифицированная ГХ-система с узлом предварительного фракционирования, подсоединенным к стандартному устройству ввода с делением потока [10]. На рис. 8-8 приведена схема крана-переключателя, используемого в этом анализе. Проба вводится через устройство ввода узла предварительного фракционирования в короткую предколонку с НФ OV-101. На этой иредколонке происходит разделение компонентов в соответствии с их температурами кипения. Во избежание попадания тяжелых фракций нефти (Сао) в капиллярную колонку кран-переключатель устроен таким образом, чтобы обеспечить продувку и сброс тяжелых фракций. Легкие фракции нефти попадают в аналитическую колонку, где происходит дальнейшее разделение и идентификация смеси. На рис. 8-9 приведена типичная хроматограмма сырья, поступающего на гидроочистку. Анализируемая фракция содержит 1,5 масс.% серы. Использование высокоэффективных капиллярных колонок сводит к минимуму совместное элюирование углеводородов, содержащихся в большом количестве, и серусодержащих соединений. В результате такого совместного элюирования может наблюдаться гашение сигнала ПФД. По сравнению с ПИД ПФД обладает превосходной чувствительностью к серусодержащим соединениям и селективен к ним (рис. 8-10). Вследствие нелинейности сигнала ПФД к сере количественное определение серы проводится с помощью многоуровневой градуировки. Градуировочные кривые для некоторых тиофенов представлены на рис. 8-11. [c.112]

    Люминесценция, или холодное , свечение под действием внешнего облучения — неотъемлемое свойство всех нефтей и природных продуктов их преобразования. Характерной чертой люминесценции является то, что способностью люминесцировать обладают не чистые вещества, а растворы. Нефть — это природный раствор способных к люминесценции веществ — смол в не-люминесцирующих в основном соединениях — углеводородах. Люминесцирующие вещества имеют свои определенные спектры, отражающиеся в цвете люминесценции, их концентрация выражается в интенсивности свечения. На люминесцентных свойствах соединений нефти основан ряд методов исследования люминесцентные спектроскопия и микроскопия, люминесцентно-битуми-нологический анализ и др. Эти методы благодаря очень высокой чувствительности, экспрессности и простоте аналитических приемов широко используются в нефтяной геологии и геохимии. [c.19]

    Использованию атомно-эмиссионной спектрометрии для нахождения металлов в нефти посвящен ряд обзоров [141—145]. Примеси определяли либо в сухом остатке, полученном в результате озоления нефти или нефтепродуктов [153—163], либо непосредственно в жидких образцах [146—152]. Сообщается о прямом нанесении пробы каплями на торец электрода, испарении углеводородов с поверхности и анализе сухого остатка [146]. Данный метод применили и для обнаружения примесей меди, свинца, мышьяка в бензинах с чувствительностью (1—2)Х Х10 9, 5-10 , 1-10 % соответственно [147]. Анализируемую пробу накапывали в кратер нижнего графитового электрода типа рюмки . Буфер (угольный порошок+2% ЫаС1) помещали в кратер верхнего электрода, заточенного на усеченный конус с площадкой диаметром 2 мм. [c.49]

    Впервые [24] изучено распределение ванадия во фракциях НТК нефтей месторождений Западной Сибири. Установлено увеличение содержания ванадия во фракциях ИТК с повышением температуры их выкипания. Изучено содержание ванадия в ароматических и. метанонафтеновых углеводородах южно-черем-шанской нефти. Для определения содержания ванадия рекомендуется использовать сцинтилляционный детектор, так как его эффективность выше полупроводниковых детекторов. В качестве упаковочного материала в НАА чаще всего применяют полиэтиленовые пакеты или ампулы. Для измерения наведенной активности радионуклида ванадия-52 на уровне 10 —10 % рекомендуется производить переупаковку образцов после облучения, так как полиэтилен содержит в своем составе элементы, которые будут мешать его идентификации. В [319—320] продолжены исследования по изучению распределения ванадия во фракциях ИТК нефтей месторождений Западной Сибири. Установлено содержание ванадия в двадцатиградусных фракциях самотлор-ской нефти, предварительно подвергнутой облучению гамма-квантами. Доза облучения изменялась в интервале 10 —10 рад. Показано, что с ростом величины дозы облучения наблюдается увеличение содержания ванадия в них. Это указывает на чувствительность к гамма-квантам определенной части соединений нефти, связанных с ванадием [321]. Максимум содержания ванадия при ИТК-разгонке нефтей приходится на остаточные фракции, что может быть объяснено концентрированием его смолисто-асфальтеновыми веществами нефти. [c.87]

    Ультрахроматография используется для количественного определения содержания углеводородов сходной химической структуры, а также для качественного анализа кислородных и смолистых соединений, содержащихся в нефтях и нефтепродуктах. Большим преимуществом этого анализа является высокая чувствительность, позволяющая определять ничтожные примеси отдельных групп углеводородов, что представляет значительные трудности при применении других методов контроля хроматографического разделения. [c.52]

    Сероводород является обычным спутником нефтей и попутных нефтяных газов. При перегонке сернистых нефтей также происходит выделение сероводорода (иногда в значительных количествах) в результате распада органических сернистых соединений при повышенной температуре [341—343] или в результате дегидрогенизации нефтяных углеводородов свободной серой [344]. Легкая окисляемость сероводорода кислородом воздуха делает его источником образования свободной серы в дистиллатах. Удаление серы сопряжено с дополнительными затратами средств для получения высококачественных моторных топлив и масел. Разработка надежного метода определения сероводорода имеет большое значение для нефтяной промышленности и связанной с ней промышленностью природного и синтетического газа. Большинство методов определения сероводорода предложено для анализа газов [345—355], причем удовлетворительные результаты получаются только в отсутствие низших меркаптанов. По-еидимому, аналитические методы определения НгЗ в газах могут быть использованы для определения его и в жидких нефтепродуктах. Представляется весьма целесообразной разработка более чувствительных методов определения сероводорода и меркаптанов при их совместном присутствии. Потенциометрические методы могли бы лечь в основу непрерывного автоматического контроля и управления некоторыми процессами при переработке нефти и природного газа. [c.39]

    В принципе сырьем для данного процесса может служить вся гамма топливных продуктов, получаемых при переработке нефти бензин, керосий, дизельное топливо, мазут и тяжелые нефтяные остатки. С технологической точки зрения легкие дистиллятные фракции (применяемые в качестве моторных топлив) в силу их пониженной серпистости, большего содержания водорода и меньшей коксуемости являются более предпочтительным сырьем для производства водяного газа, чем тяжелые нефтяные остатки. Присутствуюпще в последних молекулы тяжелых углеводородов и свободный углерод, в случае применения каталитических процессов газификации, оседают на катализаторе и дезактивируют его. Кроме того, большое содержание серы в остаточных нефтяных фракциях в связи с чувствительностью катализатора к сер-, нистым соединениям затрудняет нрименепие тяжелого сырья во многих процессах газификации жидких топлив. [c.199]

    Первые три знака обозначают рабочую температуру колонки, следующие четыре—являются шифром, указывающим какой-либо элемент общей характеристики колонки. Три знака оставлены для порядкового номера хроматографической колонки. В следующей графе таблицы отведено семь знаков для записи точки кипения. Вместо этой характеристики можно записать другие элементы хроматографических данных—предел чувствительности по калибровочной кривой, разрешающую способность или относительную ширину полосы. В следующей колонке таблицы пятью знаками представлен исправленный удерживаемый объем на 1 г твердой фазы > далее, также пятью знаками—коэффициенты распределения по Портеру, Дилу и Строссу Затем шесть знаков отведено для шифра соединений, описанных в проекте № 44 Американского института нефти. Этот шифр применим к большому ряду углеводородов и несколько меньшему ряду родственных соединений. Он удобен в работе, так как позволяет представить любые данные хроматографического анализа механически в виде таблиц, причем физические свойства соединений уже нанесены на перфорированных картах по проекту № 44. [c.88]

    Для получения сополимеров применяют и сополимеризацию в растворе. Сополимеры, содержащие длинноцепные алкилметакрилаты, уже давно добавляли к нефти и синтетическим смазочным материалам для снижения температуры застывания и улучшения характеристической вязкости 37-226 Хотя эти сополимеры можно получать в массе или в растворах углеводородов, сополимеризацию часто проводят непосредственно в нефтепродуктах. Чувствительность смесей различных нефтепродуктов к действию этих добавок может изменяться в широких пределах сообщалось, что эффективность действия добавок в различных несЬтепродуктах улучшается при ис-пользовании сополимеров вместо гомополимеров [c.468]


Смотреть страницы где упоминается термин Углеводороды нефти чувствительность: [c.8]    [c.24]    [c.170]    [c.116]    [c.356]    [c.62]    [c.358]    [c.62]   
Общие свойства и первичные методы переработки нефти и газа Издание 3 Часть 1 (1972) -- [ c.107 ]




ПОИСК







© 2025 chem21.info Реклама на сайте