Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гаммета для ароматических м и заместителей

    Наибольшее количество соответствующих экспериментальных данных, а следовательно, и попыток количественного выделения резонансной составляющей, имеется для замещенных производных бензола. Как уже было сказано в гл. I, простейшим выходом является отказ от раздельного учета резонансной составляющей с вводом в соответствующих случаях новых постоянных а и для ароматических заместителей. Нельзя не признать, что вплоть до самого последнего времени этот путь избирается большинством авторов, и применение уравнения Гаммета с постоянными о [255, 357—390 или [11, 18, 21—25, 255, 365, 368, 192- 378, 379, 383, 391—449] вместо о° или о является на практике [c.192]


    Природа влияния той или иной группы атомов количественно (с ошибкой 15%) может быть охарактеризована так называемой константой Гаммета [57, 58]. Гаммет [57], изучая вопросы реакционной способности ароматических соединений, пришел к выводу, что между логарифмом константы скорости той или иной реакции ароматического соединения и константой, характеризующей природу того или иного заместителя, находящегося в пара- или мета-положении к реакционному центру, имеется определенная зависимость, выражаемая уравнением где р-коэффициент, характеризующий данную реакцию, проводимую в данных условиях а — константа Гаммета данного заместителя. [c.135]

    Шаг 1. Выбор коррелирующего параметра о в ароматическом ядре (уравнение Гаммета) или р — константа заместителя в алифатических соединениях (уравнение Тафта). [c.67]

    Характеристики спектров ЯМР находят применение не только в структурно-аналитических, но и в других целях. Найдено много корреляционных соотношений спектральных параметров в рядах соединений с другими физико-химическими характеристиками. Как уже указывалась, например, зависимость химического сдвига от электроотрицательности заместителей в ближайшем окружении данного атома. В физической органической химии находят применение корреляции б с индексами реакционной способности, постоянными Гаммета и Тафта заместителей в ароматических соединениях и т. п. [c.38]

    Выше отмечалась возможность корреляции селективности растворителей по отношению к углеводородным системам с о-константами заместителей. Подобные корреляции с константами Гаммета установлены для производных бензола, нафталина, ароматических гетероциклических соединений пиридинового, хинолинового, фуранового рядов. Селективность узких с рий алифатических растворителей, например типа СНз—х коррелируется с индукционными константами заместителей [c.39]

    Гаммет предложил уравнение lg(k/ko)=pa, где а = =-- g K Ko), связывающее константу скорости реакции к с константой равновесия К в зависимости от заместителя (для ароматических соединений). Уравнение Гаммета положило начало корреляционным соотношениям в химической кинетике (принцип линейного соотношения свободных энергий). [c.372]

    Для эталонной реакционной серии — диссоциации ароматических карбоновых КИСЛОТ Гаммет положил значение р = 1. Как видно ИЗ табл. 13, в различных реакционных сериях р варьирует в широких пределах как по знаку, так и по, абсолютной величине. По физическому смыслу константа р характеризует относительную (в сравнении с эталонной серией) чувствительность данного равновесия или реакционного превраш,ения к структурным изменениям в реагирующих соединениях. Изменения констант реакции при переходе от одной реакционной серии к другой обусловливаются рядом факторов типом реакционного превращения, т. е. механизмом реакции степенью передачи электронных эффектов заместителей на реакционный центр условиями протекания реакции. [c.171]


    Нуклеофильное замещение в ароматическом ряду удовлетворительно коррелируется обычными константами Гаммета в тех случаях, когда между заместителем и реакционным центром не возникает достаточио сильного прямого, полярного сопряжения. Однако такое сопряжение может быть весьма существенным. Так, для п-нитрофенолов степень ионизации не может быть вычислена, исходя из при- [c.199]

    Если степень ионизации субстрата ииже почти максимальной, может иметь место специфической основной катализ, г Имеется в виду влияние на скорость реакции, не вызывающее изменения механизма стерические факторы, возникающие при замещении у и Ср, не рассматриваются. Прогнозирование скорости основывается на эффектах заместителя так же, как и на константах Гаммета при замещении ври а-положениях в ароматическом ядре. [c.19]

    Таким образом, в этих реакциях ароматический субстрат является акцептором электронов, и чем выше его способность захватывать последние, тем легче должны проходить реакции. Закономерности, характерные для электрофильных реакций, в нуклеофильных меняются на обратные электроноакцепторные заместители облегчают, а электронодонорные — затрудняют их течение константа реакции р в уравнении Гаммета имеет положительный знак электронодефицитные гетероароматические соединения вступают в реакции с нуклеофильными реагентами легче, чем электроноизбыточные и т. д. [c.146]

    Почему влияние заместителей при реакциях ароматического нуклеофиль-, ного замещения обычно лучше описывается константами а , чем а-Гаммета, [c.155]

    Зависимость константы скорости щелочного гидролиза от строения кислотной части ароматических пероксиэфиров описывается уравнением Гаммета % ку /ку ) = рст , где X — заместитель в бензольном цикле и р = +2.28 (см. гл. 6). [c.15]

    Для корреляции структуры со скоростью реакции и данными по равновесию для мета- и шра-замешенных производных бензола было предложено уравнение Гаммета. Оно позволяет измерять электронное влияние заместителя на реакционный центр в ароматических системах. Уравнение, связывающее эффект заместителя ст со скоростью реакции [c.163]

    Из величин окислительно-восстановительных потенциалов были вычислены константы равновесия и применено к ним уравнение Гаммета. Таким образом, сравнивается влияние заместителей на константы диссоциации замещенных бензойных кислот с влиянием тех же заместителей на окисление железа в производных ферроцена. Если брать значения а , то линейной зависимости пе получается, еслп же использовать значения Ор, то наблюдается линейная зависимость, но не вполне удовлетворительная (коэффициент корреляции 0,942), что указывает на заметное различие в суммарном полярном влиянии заместителей в ферроценовом и бензольном рядах. Применение идеи Тафта о раздельном изучении взаимодействия по связям реакционный центр—ароматическое кольцо и заместитель—ароматическое кольцо дало возможность выяснить это различие. [c.21]

    Как и можно было ожидать исходя из описанных выше эффектов заместителей, арильные заместители, которые могут передавать электроны к аллильной системе индуктивно или мезомерно, облегчают изомеризацию а-арил-7-метилаллиловых спиртов [109—111]. Зависимость логарифма константы скорости от констант заместителей Брауна [112] почти линейная, с наклоном — 3,4. При использовании обычных сг констант Гаммета ароматических заместителей [ИЗ] разброс точек на графике значительно больше. [c.428]

    Может также возникнуть вопрос почему один из данной серии субстратов реагирует по механизму общего основного катализа, а другой — по нуклеофильному Изменение механизмаг легко проследить на реакции катализируемого имидазолом гидролиза сложных эфиров различного строения. Сложные эфиры с активированной ацильной группировкой, а также содержащие плохие уходящие группы в присутствии имидазола реагируют по механизму общего основного катализа. С другой стороны, сложные эфиры с хорошей уходящей группой реагируют в тех же условиях по механизму нуклеофильного катализа. Сходным образом замещенные фенила-цетаты с сильными электроноакцепторными заместителями гидролизуются под действием ацетат-ионов по механизму нуклеофильного катализа, но при наличии любых других заместителей механизм катализируемого ацетат-ионом гидролиза меняется на общий основной. Переход от общего основного к нуклеофильному катализу в промотируемых имидазолом реакциях был исследован путем анализа взаимосвязи между реакционной способностью и строением на примере катализируемого имидазолом и гидроксид-ионом гидролиза ряда сложных эфиров. Соответствующие константы скорости в логарифмических координатах показаны на рис. 7.4. Константы скорости в случае гидроксид-иона отвечают одному и тому же механизму для всех сложных эфиров и поэтому могут быть использованы для построения эмпирической шкалы, отражающей структурные изменения. Электронные эффекты, которые можно учитывать в рамках уравнений Гаммета (ароматические а константы) и Тафта (алифатические ст константы), пока приниматься во внимание не будут. Таким образом, при сопоставлении констант скорости катализируемых имидазолом реакций с константами скорости реакций, катализируемых гидроксид-ионом, автоматически будут выявляться те структурные факторы, которые влияют на реакционную способность. Заметим, что в ходе такого анализа необходимо принимать во внимание помимо смены механизма катализа [c.177]


    Правомерность использования химических сдвигов С в качестве источника информации об электронной природе ароматических и квазиароматических систем подтверждается также наличием корреляции этих сдвигов с константами а Гаммета. Особенно успешными оказались расчеты химических сдвигов атомов углерода в пара-положении монозамещеиных бензолов [3]. Для л ета-углеродных атомов корреляция с константами о несколько хуже [15, 16]. Отмечалась также корреляция химических сдвигов для 2- и 3-замещенных пиридинов с константами а [17, 18]. Зависимость химического сдвига пара-углеродного атома в монозамещеиных бензолах относительно констант о и была использована для оценки ранее неизвестных параметров Гаммета для заместителей типа —РХ [19]. [c.106]

    Из этих результатов следует, что было бы совершенно неправильно придавать слишком большое значение смещениям частот валентных колебаний по тройным связям исходя только из химических факторов без предварительного рассмотрения факторов, учитывающих силовые постоянные. Тем не менее имеется достаточно доказательств того, что эффекты заместителей действительно приводят к изменению распределения электронной плотности на связи, и важно найти метод, с помощью которого можно оценить эти изменения. Это довольно сложно сделать, но в случае некоторых соединений НзССЫ, у которых величины ЙСХ остаются практически неизменными, были получены полезные соотношения между значениями уСЫ (или, что более показательно, между интенсивностью полос уСЫ) и такими параметрами, как константы Гаммета. а ароматических заместителей. [c.79]

    В табл. 4.5 приведены результаты синтеза, который осуществляли кипячением в хлороформе нитрозоариламина (0,02 моль) и алифатического амина (0,06 моль). Амино- или алкиламиногруппа замещалась намного легче, чем ариламиногруппа (соединение 5). Последнее может быть объяснено стерическими затруднениями, создаваемыми фенилами-ногруппой в молекуле л-нитрозодифениламина, и большей легкостью удаления образующихся алифатических аминов или аммиака из реакционной массы по сравнению с ароматическими аминами. Было установлено, что в этих условиях ароматические амины в реакщда переаминирова-ния не вступают. Успешное протекание переаминирования связано прежде всего с электроноакцепторными свойствами нитрозогруппы. Определенное представление о влиянии заместителя на ароматическое кольцо может быть получено из сопоставления значений о Гаммета различных заместителей. Действительно, Оп(ЫО) и aм(NO) оказались значительными. Так, из значений констант диссоциации нитрозофенолов было найдено ад(НО)= 1,60 [134], а из значений констант диссоциации нитрозобензойной кислоты — aп(NO) = 0,91 и aм(NO) = 0,62 [135, 1976]. Таким образом, ffп(N0)>aп(N02 ). [c.69]

    Успешное применение уравнения Гаммета к оценке эффектов мета- и пара-заместителей вызвало естественные попытки применить его также и к орго-заместителям [62]. Влияние группы в орто-положении на скорость реакции или константу равновесия называют орто-эффектом [63]. Несмотря на многочисленные попытки разработать количественную оценку ортоэффектов, до настоящего времени не удалось создать приемлемого набора соответствующих величии. Однако подход Гаммета можно с успехом использовать для орто-замещенных соединений о-ХСеН4 , в которых группа V отделена от ароматического кольца например, для соединений 0-ХС6Н4ОСН2СООН наблюдается хорошая корреляция с константами ионизации [64]. [c.373]

    Не все электрофилы обладают одинаковой силой. Ион нит-рония атакует не только бензол, но также и ароматические субстраты, содержащие сильные дезактивирующие заместители. Диазониевые ионы, наоборот, вступают в реакции только с соединениями, имеющими в кольце сильные активирующие группы. Предпринимались попытки найти корреляцию между влиянием заместителей и силой атакующего электрофила. Наиболее очевидный путь к этому включает использование уравнения Гаммета (гл. 1, разд. 9.3)  [c.328]

    Корреляционное уравнение Гаммета g(kjka) — ра связывает константы скоростей бимолекулярных реакций соответсг-венно для незамещенного ко и замещенного к ароматических субстратов с константой реакция /) и константой заместителя J (<т<0 для донорных и сг>0 для акцепторных заместителей). При помощи метода граничных орбиталей определите знак р для реакций нуклеофильной и элект юфильной атак ароматических субстратов. [c.69]

    Рассмотрим реакции электрофильной (по отношению к субстрату) атаки ароматического соединения 5. Наиболее принципиальным является взаимодействие ВЗМО (5) и НСМО (Л). При введении в ароматическое ядро заместителей с возрастающим значением а (т. е. при переходе от электронодонорных заместителей к электроноакцеп горным) энергия ВЗМО (5) снижается (рис. 89, а). В результате энергия активации реакции возрастает, а скорость реакции падает и р<0 (см. уравнение Гаммета). [c.246]

    Появление уравнения Гаммета вызвало огромное количество экспериментальных исследований, в ходе которых было показано, что а-константы, онределенные нз констант понизацнн бензойных кислот, не во всех случаях служат правильной мерой электронного влияния заместителей. Существенные отклонения наблюдаются во всех тех случаях, догда заместитель находится в пара-положении к реакционному центру и может оказывать на него влияние ио механизму прямого полярного сопряжения. К таким реакциям в первую очередь относятся изучаемые в настоящей книге реакции электрофильного и нуклеофильного ароматического замещения. Для этих случаев были разработаны новые константы заместителей, обозначаемые как а+ для электрофильных и для нуклеофильных реакций. В ряде случаев появилась потребность в константах заместителей, в которых учитывалось бы только их индуктивное влияние. Они определены из констант ионизации феиилуксусных кислот или из констант скоростей гидролиза их эфиров и обозначаются как а° (табл. 1). [c.49]

    Стадия, лимитирующая суммарную скорость реакции — образование промежуточного продукта, который получается внедрением неподеленной пары электронов атома азота аминогруппы в элек тронный пробел углерода карбоксильной груипы. Электронодонор ные заместители в ароматическом кольце амина увеличивают а электропоакцепторные уменьшают скорость ацилирования — кон станта реакции, р в уравнении Гаммета имеет отрицательный знак [c.244]

    Вместе с тем электрофильность бензолдиазоний-катиона сильно зависит от влияния заместителей в ароматическом кольце. Наблюдается хорошая корреляция скоростей реакции азосочетания с а-константами заместителей в уравнении Гаммета, причем константа реакции р имеет положительный знак. [c.253]

    Применение принципа линейности свободных энергий в форме уравнения Гаммета позволяет исследовать поведение молекул, содержащих произвольно выбранный реакционный центр X и фрагмент, не подвергающийся превращениям в ходе реакции, но отдельные структурные элементы которого оказывают влияние на скорость или равновесие реакции с участием X. Так, например, изменения природы заместителей в ароматическом ядре или в алифатической цепи могут лпнсйно коррс- лпровать с изменениями константы скорости илп равновесия реакции с участием данного реакционного центра, [c.166]

    Эти уравнения связывают огромное количество данных, относящихся к реакциям ароматических соедиаення. Численные значения Белнчип п и р определяются выбором стандартной реакции, в частности ионизации бензойных кислот. Этой реакиии условно приписывают константу реакции р = 1. Тогда константы заместителей, а, могут быть определены для серии заместителей путем измерения констант кислотной диссоциации замещенных бензойной кислоты. Определенные таким образом значения а используются для корреляции других серий реавдий таким образом можно определить значения р для других коррелируемых реакций. Связь между уравнениями (4,12) и (4.14) становится очевидной, еслн уравнение Гаммета выразить в терминах свободной энергии. [c.131]

    Корреляция Гаммета также позволяет несколько глубже понять реакционную способность я селективность. электрофилов в реакциях ароматического замещения. Б общем, стандартные о-константы Гаммета дают плохие корреляции для реакций электрофильного ароматического замещения. Значения а+, которые отражают большее значение прямых резонансных взаимодействий, дают лучшие корреляции они п были введены в действительности из-за плохих корреляций с ст, наблюдавшихся в реакциях электрофильного ароматического замещения [98 . Предложено, что положение переходного состояния на координате реакции можно оценить путем определения наклона (р) линии корреляции между скоростью замещения и константой заместителя сг -, причем, считают, что большое численное зиачеине р подтверждает наличие сильного [c.353]

    Полученная зависимость относительной реакционной способности в ряду незамещенного и замещенных бензальдегидов в реакции с бутилгипобромитом (Уо /Уо ) от природы заместителя хорошо коррелирует со значениями о-констант заместителей и описывается уравнением Гаммета (lgVo =lgVo + ро) (рис. 1), с константой реакционной серии рвг = -1,4. Полученная величина рвг свидетельствует о том, что природа заместителя в ароматическом кольце оказывает значительное влияние на скорость реакции. [c.11]

    Полученные таким путем величины ст+ (табл. 2.7.15) используют как стандартную меру для оценки способностей заместителей стабилизовать карбениевые ионы, причем не только ионы бензильного типа, но также и ионы типа циклогексадиенил-катио-нов, образующиеся при электрофильном ароматическом замещении, как показано на примере (22) и (23). В табл. 2.7.15 приведены также константы заместителей Гаммета, а, полученные по данным ионизации мета- и пара-замещенных бензойных кислот. Эти величины не отражают способность заместителя к прямому сопряжению с возникающим карбениевым центром. Для корреляции скоростей сольволиза алифатических систем обычно используют константы Тафта — Ингольда ст прекрасным примером, подтверждающим линейность соотношений свободных энергий при [c.537]

    Заместители в ароматическом кольце субстрата относительно мало влияют на скорость процесса ио сравнению с их влиянием на аналогичные реакции электрофильного замещения некоторые парциальные факторы реакции замещения фенильными радикалами приведены при формулах (34) — (36). Более высокую реакционную способность орто- и пара-положений можно объяснить способностью заместителя X делокализовать иеспаренный электрон [в (37)]. Однако возможно также, что циклогексадиенильный радикал является плохой моделью переходного состояния для экзотермического присоединения реакционноспособных радикалов типа Ме- или РЬ-, когда в переходном состоянии можно ожидать слабого связывания. Данные по ориентации в различных субстратах коррелируют с рассчитанными энергиями локализации [ЗЗа]. Заместители в арильном радикале оказывают вторичный эффект как на реакционную способность по отношению к субстрату, так и на соотношение изомеров за счет полярных эффектов, например и-МОгСбН4- реагирует с нитробензолом медленнее, чем /г-СНзСбП4-. Были рассчитаны величины р Гаммета для реакций замещения большим количеством замещенных арильных и других радикалов [ЗЗа]. [c.583]

    Константы скорости хорошо коррелируют с константами заместителей а Гаммета (за исключением 2,6-днхлорбензоннтрилокснда, в случае которого явно преобладают стерические факторы). Величина р = 0,86 в уравнении Гаммета показывает, что влияние заместителей малб. Поэтому чисто качественные наблюдения, представленные в табл. 13, и не позволили распознать направление влияния. Так, напрнмер, введение в ароматическое ядро бензонитрилоксида столь разных по электронному влиянию заместителей, как С1 и N 2, с одной стороны, и Ме и МеО — с другой, приводило якобы к замедлению димеризации. [c.153]

    Реакционная способность карбонильной группы очень сильно зависит от характераг-элек ронных взаимодействий с группами, расположенными по обе стороны от карбонильного углерода, а также определяется создаваемым ими стерическим эффектом Поскольку нуклеофильная атака направлена на углерод, несущий положительный заряд, заместители, увеличивающие его, будут облегчать нуклеофильное присоединение, а уменьшающие его — затруднять Это положение подтверждается тем, что в реакциях присоединения к бензальдегиду реакционная константа р положительна и, таким образом, как вытекает из уравнения Гаммета, заместители в п-положении ароматического ядра — доноры электронов — тормозят реакцию присоединения, а акцепторы — ускоряют [22] [c.244]


Смотреть страницы где упоминается термин Гаммета для ароматических м и заместителей: [c.723]    [c.120]    [c.723]    [c.415]    [c.109]    [c.82]    [c.378]    [c.304]    [c.14]    [c.375]    [c.164]    [c.164]    [c.218]    [c.958]    [c.153]   
Теоретические основы органической химии (1973) -- [ c.995 , c.1003 ]




ПОИСК





Смотрите так же термины и статьи:

Гаммета



© 2025 chem21.info Реклама на сайте