Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия изменение под действием катализаторов

    Каким образом катализатор может влиять на химическую реакцию Если принять, что катализатор в заметной степени при реакции не расходуется, то термодинамически можно показать, что его роль в реакции не заключается в изменении точки равновесия, а сводится к ускорению достижения равновесия. Однако в большинстве химических систем имеются метастабильные состояния, обладающие свободной энергией, промежуточной между свободной энергией реагирующих веществ и состоянием равновесия. Мы можем приписать специфичность катализатора его свойству увеличивать скорость достижения одного из таких промежуточных состояний, а не общему ускорению в направлении достижения состояния с наименьшей энергией. Так как катализатор влияет на скорость реакции и не влияет на состояние равновесия, невозможно дать общее кинетическое описание поведения катализаторов. Болес полно проанализировать поведение катализатора можно, только зная конкретный механизм, по которому протекает данная реакция. Однако целесообразно провести классификацию катализаторов по строению и связанному с ним действию катализаторов на тип реакций, протекающих по данному механизму. Для твердых тел обычно принимают следующую классификацию  [c.531]


    Как это видно из формул (1.1) и (1.2), ускорение химической реакции в принципе может быть достигнуто путем либо снижения величины Е, либо увеличения AS. Каталитическое ускорение реакций идет, видимо, большей частью по пути снижения Е. Снижение энергии активации под действием катализатора в общем случае является следствием образования иных промежуточных соединений и активированных комплексов и соответственно изменения формы поверхности потенциальной энергии, благодаря чему открывается новый путь реакции, проходящий через перевалы меньшей высоты. [c.11]

    Особенности кинетики реакций на неоднородной поверхности не исчерпываются, однако, простым изменением формы изотермы адсорбции. Поверхность, неоднородная по теплоте адсорбции, должна быть неоднородна и кинетически. Будем считать, следуя Рогинскому [14], что в ходе процесса зависимость скорости реакции от концентраций реагентов остается неизменной на всех участках и температурная зависимость скорости реакции по-прежнему описывается уравнением Аррениуса. При этом величина предэкспонента постоянна на всех участках, а значение энергии активации распределено по некоторому закону. Все эти допущения являются дискуссионными, но в первом приближении они достаточны, так как главным эффектом действия катализатора обычно бывает именно изменение энергии активации реакции. [c.86]

    Сущность ускоряющего действия катализаторов состоит в понижении энергии активации Е химической реакции в результате изменения реакционного пути с участием катализатора или вследствие осуществления реакции по цепному механизму при инициирующем действии катализатора [1]. Однако в некоторых типах каталитических реакций одновременно с понижением Е происхо- дит уменьшение предэкспоненциального члена йо в уравнении Аррениуса [c.21]

    Действие катализатора сводится к понижению энергии активации и изменению стерического фактора. Так как энергия активации входит в уравнение, определяющее скорость реакции (17.56), в виде показателя степени, то небольшое изменение энергии активации приводит к значительному увеличению скорости реакции (па несколько порядков). [c.292]

    Теория каталитических реакций исходит из некоторых общих положений а) катализ как метод изменения скорости реакции применим только тогда, когда энергия Гиббса взаимодействия при данных условиях отрицательна (Д(7<0) б) в присутствии катализатора изменяется механизм химической реакции, она протекает через новые стадии, каждая из которых характеризуется невысокой энергией активации. Таким образом действие катализатора сводится к тому, что он значительно снижает энергию активации катализируемой реакции в) при катализе не изменяется тепловой эффект реакции г) если катализируемая реакция обратима, катализатор не влияет на равновесие, не меняет константы равновесия и равновесных концентраций компонентов системы. Он в равной степени ускоряет и прямую, и обратную реакции, тем самым сокращая время достижения равновесия д) катализаторы обычно действуют избирательно, селективно. Катализатор, активно ускоряющий одно взаимодействие, безразличен к другому. Избирательность действия зависит не только от природы катализатора, но и от условий его применения. [c.138]


    До настоящего времени соотношения термодинамических и кинетических закономерностей в катализе и проблема реакционной способности далеки от своего решения. Лишь для ценных реакций установлено соотношение между структурой молекул и радикалов и их реакционной способностью (H.H. Семенов). Определение понятия реакщюнная способность недостаточно точно сформулировано. Прежде всего необходимо учитывать два аспекта этого понятия с какой скоростью и в каком наиравлении будет взаимодействовать рассматриваемое вещество в заданных условиях. СамО по себе вещество ие может иметь какую-либо реакционную способность. Это понятие применимо только к системе реагирующих веществ, имеет смысл ири учете свойств, по крайней мере, двух компонентов реакционной системы. В связи с этим закономерна постановка вопроса, будет ли в присутствии катализатора в первую очередь протекать та реакция, у которой изменение свободной энергии наибольшее, существует ли связь между изменением свободной энергии реакции и избирательностью действия катализаторов  [c.28]

    Электрохимические методы позволяют улавливать влияние объемных свойств катализатора на его поверхностные свойства, т. е. делать определенные выводы о соотношении объемных и поверхностных свойств в катализе. Любая добавка к катализатору, если она изменяет его объемные свойства, вызовет соответствующее изменение потенциала катализатора в ходе реакции. На данном этапе развития метода изменение потенциала катализатора позволяет судить не только о качественном характере влияния вводимых добавок, но устанавливать и количественные характеристики. Действие вводимых добавок прежде всего проявляется в изменении энергии связи реагирующих веществ с катализатором, что определяет изменение его потенциала. [c.184]

    Для обратимой реакции катализатор не смещает равновесие и не влияет на константу равновесия, а лишь ускоряет процесс достижения равновесного состояния. Вблизи этого состояния катализатор в равной мере влияет на скорости прямой и обратной реакций. Действие катализатора сводится к снижению энергии активации за счет образования промежуточных нестойких ассоциатов, которые в дальнейшем распадаются на продукты реакции с выделением катализатора в химически неизменном виде. На рис. 113 представлено изменение энергии системы без катализатора К(А + Ч-В=ё>АВ) и с его участием (А + К= АК, АК + В ЛВ + К). Уровень [c.233]

    Ускоряющее действие катализаторов состоит в понижении энергии активации химической реакции в результате изменения реакционного пути с участием катализатора или вследствие осуществления реакции по цепному механизму при инициирующем действии катализатора (инициатора) (см. гл. V). [c.215]

    Как видно из табл. 13, не только применение различных катализаторов позволяет получать различные продукты реакции. К тому же может привести и изменение условий реакции (температуры, давления) при проведении ее с одним и тем же катализатором. Ускоряющее реакцию действие катализатора может быть вызвано снижением энергии активации. В среднем можно принять энергию активации некаталитических реакций равной 30—45 ккал, гетерогенно-каталитических 16—30 ккал и ферментативных 8—12 ккал. [c.163]

    Как это видно из формул (1.1) и (1.2), ускорение химической реакции в принципе может быть достигнуто путем либо снижения энергии активации, либо увеличения вероятности взаимодействия горячих молекул, т. е. энтропии активного комплекса. Каталитическое ускорение реакций идет, как правило, по первому из названных механизмов. Снижение энергии активации под действием катализатора в общем случае является следствием образования иных промежуточных соединений и активных комплексов и соответственно изменения формы поверхности потенциальной энергии, благодаря чему открывается новый путь реакции,-проходящий через перевалы меньшей высоты. Пока нет явных доказательств того, что каталитическое действие приводит к изменению энтропийного фактора, хотя существование так называемого компенсационного эффекта (см. п. 7) указывает на возможность подобного механизма. [c.9]

    Процесс физической адсорбции не отличается специфичностью, он мало чувствителен к природе адсорбента и адсорбата. Вещества с равными температурами конденсации адсорбируются более или менее одинаково на поверхности самых различных твердых тел. Все это говорит о том, что катализ не может быть связан с физической адсорбцией. Действительно, физическая адсорбция реагентов может вызвать лишь сравнительно небольшой рост скорости реакции (по сравнению со скоростью реакции в газовой фазе), являющийся просто следствием увеличения концентраций реагирующих веществ и не сопровождающийся заметным изменением энергии активации. В то же время для катализа характерно именно существенное уменьшение энергии активации, благодаря чему становится заметной и значительной скорость реакции, практически не идущей в отсутствие катализатора. Очевидно, что действие катализаторов в жидкофазных реакциях никак не может быть объяснено влиянием физической адсорбции. К тому же, как показывают опытные данные, физическая адсорбция при температурах большинства каталитических реакций пренебрежимо мала. [c.12]


    В [Д. 1.2] рассматриваются классификации типов изменений активности катализаторов и Дезактивации некоторых конкретных промышленных катализаторов. Классификация типов дезактивации катализаторов рассмотрена в работе [Д. 1.2]. Процессы дезактивации близки к тем, которые рассматриваются в книге Р. Хьюза. При этом отравление рассматривается как в результате локального действия примесей на однородной поверхности вследствие уменьшения числа активных центров без изменения формы кинетического уравнения реакции (на неоднородной поверхности меняется также форма кинетического уравнения и энергия активации реакции), так и при коллективном действии примесей, когда изменение скорости реакции и энергии активации происходит при мало изменяющемся числе активных центров, приходящихся на единицу поверхности катализатора. [c.249]

    Изменение энергии активации вдоль реакционного пути, протекающего без катализатора и с его участием (соответственно кривые I W II), показано на рис. 1. Точки I и 2 на кривой II отвечают продуктам промежуточного взаимодействия. Мы видим по вертикально расположенным стрелкам, что энергия активации всех отдельных стадий реакционного пути заметно ниже, чем энергия активации некатализируемой реакции. Именно благодаря участию катализатора Ei"таком механизме реакции концентрация активных комплексов не превышает равновесного значения по отношению к концентрации реагирующих веществ. Активность, характер действия катализатора зависят от природы промежуточных взаимодействий, определяющих свойства активных комплексов всех стадий. Кривая II свидетельствует о формировании только одного промежуточного продукта. Число стадий и, соответственно, промежуточных продуктов [c.13]

    Ускоряющее действие катализаторов специфично и. принципиально отличается от действия других параметров, влияющих на скорость процессов — температуры, давления, исходной концентрации реагентов, степени перемешивания и др. Повышение температуры, например, это универсальное средство интенсификации, увеличивающее как константу скорости химической реакции, так и коэффициент массопередачи. Но повышение температуры ограничено термостойкостью материалов и смещением равновесия, ведущим к снижению движущей силы экзотермических обратимых процессов. Применение катализаторов — прием ускорения химических реакций, не имеющий ограничений и наиболее эффективный в присутствии катализаторов возможно ускорение химических реакций в миллионы раз. Вследствие изменения механизма реакции в присутствии катализаторов понижается энергия активации. [c.143]

    Для исследован ия кинетики гидрирования на поверхности катализатора, т. е. для изучения реакции в кинетической области , следует исключить влияние диффузии, что достигается в первую очередь введением интенсивного перемешивания, изменением температуры, количества катализатора и других факторов. Катализатор не изменяет свободной энергии реакции, зависящей от начального и конечного состояния системы, не изменяет и положения химического равновесия, но он снижает энергию активации исходных веществ, необходимую им для начала взаимодействия. Катализированные и некатализированные процессы подчиняются одним и тем же законам и протекают лишь по термодинамически возможным направлениям, независимо от присутствия или отсутствия катализатора, отличаясь только скоростью достижения равновесия. Если реакция протекает столь медленно, что ее можно заметить лишь в присутствии катализатора, то с практической точки зрения катализатор можно рассматривать как инициатор новой реакции. Очень большое значение имеет избирательность действия катализатора. Если возможно несколько направлений реакций, катализатор может направить течение процесса по определенному, избранному пути, т. е. обеспечить образование нужного продукта из большого числа возможных. [c.94]

    Она совпадает с последовательностью увеличения энергии связи кислорода на поверхности окисла. Эта простая корреляция пе может претендовать на универсальность, так как энергия активного комплекса лимитирующей стадии реакции окисления зависит не только от энергии связи кислорода с катализатором. Существенное значение могут иметь и энергии связей с катализатором других участников реакции. Для более точного предвидения каталитического действия необходимо изучить закономерностп изменения н других связей активного комплекса. [c.465]

    КАТАЛИЗ (греч. katalysls — разрушение) — изменение скорости химической реакции в присутствии катализатора, сохраняющего свой состав в процессе реакции. К. может быть положительным (когда скорость реакции увеличивается) и отрицательным (когда скорость уменьшается или реакция совсем прекращается). Явление К. используется для ускорения химической реакции и направления ее в сторону образования желаемых продуктов без затраты энергии. Действие катализатора на химическую реакцию заключается в промежуточном взаимодействии его с реагирующими веществами. Например, каталитическое разложение пероксида водорода воль-фрамат-ионами проходит через образование промежуточных соединений по схеме  [c.122]

    Вопрос о природе (строении) актиЕлых центров находится в стадии изучения и является предметом научных дискуссий. Вследствие этого единой теории действия, а поэтому и подбора катализаторов не существует. Можно лишь говорить об общих соображениях. Таковыми являются 1) катализатор должен быть способен к химическому взаимодействию хотя бы с одним реагентом 2) изменение энергии Гиббса взаимодействия катализатора с реагентами должно быть менее отрицательным, чем его изменение в катализируемой реакции. Однако в последние годы достигнуты большие успехи в представлениях о механизме катализа, позволившие выдвинуть некоторые общие принцигй, выбора катализаторов для различных типов реакций. Так, во многих случаях определяющим фактором в подборе катализаторов является положение элементов в периодической системе Д. И. Менделеева. На рис. 45 представлены результаты изучения каталитической активности металлов V и VI периодов в реакции разложения аммиака. Налицо периодичность изменения каталитических свойств с максимумами активности у железа и его ан алогов — рутения и осмия. [c.137]

    Говоря об ускоряющем действии катализатора, часто имекзт в виду лиuJЬ понижение аррениусовской энергии активации Еа (например, табл. 10.2). Однако часто не менее важную роль, а иногда решающую, играет изменение энтропии активации т. е. изменение (уменьшение) катализатором предэкспоненциаль-ного множителя ко в уравнении Аррениуса (10.7). В табл. 10.4 видно, что в приведенном примере основным фактором, изменяющим скорость, служит не а, а энтропийный член [c.223]

    Ускоряющее действие катализаторов обусловлено тем, что в его присутствии уменьшается энергия активации. Это может быть связано либо с изменением потенциальной энергии переходного состояния и исходных веществ, либо, как правило, появлением нового пути реакции с меньшей энергией активации, чем в отсутствие катализатора. Например, энергия активации распада диэтилового эфира (С2Н5ОС2Н5), происходящего без катализатора, составляет 53,0 ккал/моль (222,6 кДж моль), а в присутствии паров иода (катализатор) эта величина уменьшается до 34,3 ккал/моль (114 кДж/ /моль). [c.275]

    На рис. 95 показано изменение энергии реагируюшей системы без катализатора и при участии катализатора для данной реакции. Если Е — энергия активации некаталитической реакции, Яьат — энергия активации каталитической реакции (по лимитирующему этапу) е и в2 — энергии активаций промежуточных стадий (а) и (б), то при кат< катализ положительный. Для каталитических реакций, в которых йо не изменяется по сравнению с некаталнти-ческими, ускоряющее действие катализатора измеряется его активностью Л, которая определяется соотношением констант скорости реакции с катализатором Акат и без катализатора к  [c.216]

    Подобно другим катализаторам, ферменты, с термодинамической точки зрения, ускоряют химические реакции за счет снижения энергии активации . Энергией активации называется энергия, необходимая для перевода всех молекул моля вещества в активированное состояние при данной температуре. Другими словами, это энергия, необходимая для запуска химической реакции, без которой реакция не начинается несмотря на ее термодинамическую вероятность. Фермент снижает энергию активации путем увеличения числа активированных молекул, которые становятся реакционноспособными на более низком энергетическом уровне (рис. 4.11). На рисунке видно, что ферментативная реакция имеет более низкую энергию активации. Следует отметить, что как катализируемая ферментом, так и не катализируемая им реакция независимо от ее пути имеет одинаковую величину стандартного изменения свободной энергии (ДО). Действуя на скорость реакции, ферменты не изменяют равновесия между прямой и обратной реакциями, как и не влияют на величину свободной энергии реакции они лищь ускоряют наступление равновесия химической реакции. [c.133]

    Поддержание активности катализатора. Основное действие катализаторов, ускоряющих химическое взаимодействие, направ-тсно на снижение энергии активации Е (20.6) химического превращения. Взаимодействие катализатора с реакционной средой не ограничивается ускорением основной реакции. Влияние среды па катализатор состоит в изменениях катализатора, уменьшающих его активность. При этом различают старение катализатора и отравленпе катализатора. [c.233]

    Повышение температуры ускоряет реакции вследствие активации реагирующих молекул, путем повышения запаса их энергии, за счет подводимого извне тепла. Сущность ускоряющего действия катализаторов заключается в понижении энергии активации химической реакции или же в протекании реакции по ценному механизму т участием каталйзаторов (см. гл. V). Понижение энергии активаций происходит в результате изменения реакционного пути. Каталитическая реакция протекает с участием катализатора иным путем, через ряд стадий, которые требуют меньшей энергии активации, чем общая реакция без катализатора. Общее уменьшение энергии активации может быть весьма значительным. Когда введение катализатора вызывает цепную реакцию, ускорение достигается благодаря появлению богатых энергией частиц в процессе самой реакции. Например, каталитическое действие воды на окисление окиси углерода происходит путем развития реакционных цепей с участием гидроксилов и атомов водорода. [c.167]

    При стадш1ных схемах с переходами электронов моя но ожидать корреляции окислительно-восстановительных каталитических свойств твердых тел с работой выхода электронов (ф). Из-за большой чувствительности последней величины к ряду факторов и трудности ее измерения во время каталитического процесса проверить правильность этого вывода в общем вгще трудно. В ряде случаев можно считать доказанным наличие четкого соответствия между изменением активности катализаторов при простых реакциях или селективностью действия при сложных реакциях, с одной стороны, и изменением работы выхода при введении нелетучих или труднолетучих добавок — с другой [38]. Как было отмечено ранее [39], такой корреляции следует ожидать при различиях в заряженности исходных веществ и переходного комплекса реакции так как работа заряжения входит в свободную энергию образования комплекса. Таким образом удается объяснить влияние ряда нновалентных добавок на скорость окисления СО на МпОз и N 0 и влияние добавок щелочных и щелочноземельных металлов на активность железа в синтезе аммиака. При действии любого фактора, вызывающего заряжение поверхности, такой электростатический механизм способен приводить как к росту, так и к падению активности, и при этом не только у полупроводниковых, но и у металлических контактов, в зависимости от знака заряда переходного комплекса. [c.29]

    Вёзекен предложил различать следующие типы катализа 1) вещество образуется посредством активации с помощью катализатора за счет внешнего источника энергии 2) комбинация катализатора с молекулами, которые он активирует, создает благоприятную ориентацию, которая делает возможной перемену характерных траекторий электронов 3) катализатор индуцирует превращение закрытых связей в открытые, так что оказывается возможной более высокая скорость реакции, это составляет функцию катализатора при искажающем или разрушающем действии 4) изменения отдельных связей могут указывать на места, где были активированы молекулы. Например, если ангидрид уксусной кислоты образует с серной кислотой ацетилсерную кислоту, то вероятно разрушение ангидрида серной кислотой происходит у связи СНд—Скогда кислота применяется как катализатор ацетилирования. Разрушение ангидрида может привести к разрушению связи ОН спирта или фенола, которая также [c.48]

    Энергетические изменения в каталитической реакции, при которой образуются промежуточные продукты, были отнесены к их образованию in statu nas endi [132, 134]. Из указанного выше уравнения следует, что когда катализатор образует промежуточные химические соединения, то понижается энергия активации, но довольно мало изменяется энтропия. Искажающее действие катализатора выражаетсяв небольшом изменении энергии активации и объясняется разницей в величине энтропии. [c.50]

    Химической концепции противоположна физическая концепция гомогенных газовых реакций, поддержанная Траммом [482], который считал, что действие катализатора состоит не в создании нового пути течения реакции взаимодействием с компонентами реакции, вступающими в промежуточные соединения с катализатором, а что каталитическое действие вероятнее всего выражается в изменении траектории движения валентных электронов, облегчая этим химические превращения. Источниками энергии активации являются кинетическая энергия сталкивающихся молекул, темная радиация в реакционном пространстве и теплота, выделяемая в процессе. Изучением спектральных линий, получаемых при соударении быстро движущихся атомов и молекул, было установлено, что лишь неупругие соударения имеют значение для активации [168]. Предполагают, что в случае неупругих соударений электронные орбиты сталкивающихся молекул изменяются, благодаря чему может выделяться энергия. Чтобы химическая реакция могла произойти, атомы внутри молекул должны подвергнуться определенным перегруппировкам во время соударений. Эти перегруппировки представляют собой изменения в состоянии атомов и молекул и связаны с изменениями энергии. С точки зрения некоторых исследователей элементарные изменения в состоянии атомов и молекул во время процессов активации и деактивации, как и во время элементарных химических реакций, наиболее важны в гомогенных системах [7, 266]. [c.186]

    Особой группой химических прои,ессов, осуществляемых под действием света, являются так называемые ф о т о к а т а л и т и -ческие.реакции, в которых свет поглощается не реагирующими веществами, а катализатором, ускоряющим фотохимическую реакцию. Такого типа реакции идут, как правило, между газообразными или жидкилш реагентами на поверхности твердого катализатора в результате сумлшрного воздействия катализатора и световой энергии. Под действием освещения происходит возбуждение электронов на поверхности катализатора, т. е. освобождение части электронов и повышение нх концентрации у поверхности, что способствует преодолению энергетического барьера реакции. Фотокатализаторами служат некоторые полупроводники (окислы цинка, кадмия, олова), способные к фотообразованию продуктов реакции без изменения своего состава и структуры после ее окончания. [c.280]

    С меньшей затратой энергии. Соединения, оказываюш,ие подобное действие, называют катализаторами, а само действие — катализом. Вообще любое вещество, присутствие которого в относительно небольших количествах изменяет скорость реакции (причем само вещество при этом не должно претерпевать никаких химических изменений), является катализатором. Большинство из них увеличивает скорость реакции и называется положительными катализаторами. Скорость некоторых реакций, которые протекают слишком быстро, может быть более или менее замедлена при помощи отрицательных катализаторов. [c.68]

    Действие катализатора основано на образовании между катализатором и хотя бы 0Д1ШМ из компонентов реакции промежуточного соединения или продукта, энергия активации образования которого существенно ниже энергии активацин некаталитической реакции. На рисунке 92 представлены соотношения между изменениями энергии реагирующих молекул в каталитической и [c.287]

    Энергии связи с катализатором в значительной степени зависят ОТ способа приготовления окиси хрома. Это нельзя объяснить чем либо иным, как только влиянием соседних атомов катализатора на активный центр. Особенно чувствительно Яосг, возможно, из-за влияния атомов кислорода окиси хрома. При этом активные центры должны представлять собой отдельные и небольшие части поверхности, а не сплошную гладкую поверхность, потому что в случае гладкой поверхности катализатора такие причины, как изменение его микрорельефа или возможные незамеченные микропримеси, не могут оказывать столь сильного действия на энергию связей. Таким образом, и эти кинетические опыты по дегидрогенизации и дегидратации подтверждают понимание природы активных центров, развиваемое в настоящем обзоре. [c.150]


Смотреть страницы где упоминается термин Энергия изменение под действием катализаторов: [c.29]    [c.142]    [c.101]    [c.95]    [c.142]    [c.72]    [c.78]    [c.242]    [c.108]    [c.149]    [c.149]   
Краткий курс физической химии Издание 3 (1963) -- [ c.483 ]




ПОИСК







© 2025 chem21.info Реклама на сайте