Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеризация кинетика реакций

    В литературе появилось огромное количество публикаций об алкилирующих каталитических системах на основе цеолитов. Разноречивы мнения в оценке активных центров и механизма реакции алкилирования бензола пропиленом на цеолитсодержащих катализаторах, а также недостаточное изучение кинетики реакции в определенной мере сдерживают реализацию процесса в промышленности. Кроме того, при алкилировании бензола пропиленом на цеолитах и цеолитсодержащих катализаторах протекают побочные реакции образование полиалкилбензолов, крекинг изопропилбензола с образованием этилбензола и толуола, изомеризация изопропилбензола в н-пропилбензол и полимеризация пропилена. Наличие этих примесей ухудшает количество товарного изопропилбензола, ингибирует процесс его окисления. Переалкилирование полиалкилбензолов протекает при более высоких температурах и давлениях, чем алкилирование. Перспективными представляются цеолитсодержащие катализаторы с редкоземельными элементами СаНУ, на которых переалкилирование протекает в условиях реакции алкилирования. Побочные реакции снижают селективность цеолитсодержащих катализаторов, вызывает их дез- [c.252]


    Основными данными при решении задач технологического проектирования и оптимизации являются физико-химические и теплофизические данные. Они обычно представляются в трех формах — в виде таблиц, диаграмм и уравнений. Наиболее распространенным способом все-таки является аналитическое представление, допускающее непосредственный расчет соответствующих параметров при заданных входных условиях. В химической технологии, особенно для целей проектирования, к наиболее распространенным данным обычно относятся давление пара, теплота испарения, удельная теплоемкость, плотность, теплопроводность, вязкость, теплота реакций, данные по пожаробезопасности, поверхностное натяжение, фазовое равновесие (жидкость—пар, жидкость—жидкость, жидкость—жидкость—пар, жидкость—твердое вещество, твердое вещество—пар, растворимость), кинетика реакций химического превращения, полимеризации, растворимости и т. д. [c.177]

    Таким образом, для характеристики этих трех основных реакций — полимеризации, полиприсоединения и поликонденсации — необходимо исходить одновременно из формального механизма и из кинетики реакции. Все методы получения высокомолекулярных веществ из низкомолекулярных укладываются в три названные полиреакции они будут ниже вкратце рассмотрены. [c.931]

    Типичной системой, требующей предварительного анализа сходимости, является система уравнений, описывающих сополимеризацию трех мономеров — А, В ж С. Уравнения кинетики реакции полимеризации [c.55]

    Есть также данные о кинетике полимеризации систем, содержащих изобутилен и пропилен [49]. В последнем случае для объяснения довольно сложной кинетики реакции [102] была принята особая природа активного центра как комплекса пары ионов. [c.158]

    Изложены основы теории расчета и проектирования технологического оборудования для проведения полимеризации. Рассмотрены основные стадии технологического процесса полимеризации, кинетика реакций и ее влияние на молекулярные характеристики полимера. Описаны процессы смешения, теплопередачи, удаления летучих. [c.264]

    Существует два метода синтеза макромолекул полимеризация и поликонденсация. Одна из наиболее важных областей в учении о полимеризации— кинетика реакций полимеризации—подробно исследовалась в течение последних 10—15 лет (глава II). Тесно связаны с этим вопросом проблемы энергетики и термодинамики таких процессов (глава III). Все это позволило удовлетворительно объяснить влияние строения мономера и условий полимеризации (как гомогенной, так и гетерогенной) на ход полимеризации (и сополимеризации), а также роль катализаторов, ингибиторов и замедлителей в этих реакциях. В настоящее время вполне изучены отдельные стадии, составляющие суммарный полимеризационный процесс, связь между этими стадиями в процессе полимеризации (или сополимеризации), а также структура полимеров. [c.14]


    По.пное изучение кинетики реакций полимеризации невозможно в пределах настоящей книги. Полезно, однако, исследовать простую модель ироцесса полимеризации, чтобы уяснить, какого рода уравнения встречаются в этой области. Некоторые полимеры образуются путем постепенного присоединения молекул мономеров, которые, будучи активированы катализатором, присоединяют к себе новые молекулы, увеличивая длину полимерной цепи. Обозначим через мономер, а через — активированный мономер. Стадия инициирования записывается тогда в виде  [c.110]

    Процесс протекает под влиянием оснований, из которых для синтеза эластомеров наиболее удобным оказался комплексный катализатор, состоящий из третичного амина и окиси олефина, поскольку он позволяет осуществлять регулирование скорости процесса в достаточно широком интервале. Исследование кинетики реакции [79] показало, что процесс представляет собой своеобразный вариант анионной полимеризации, скорость которой описывается уравнением первого порядка. [c.446]

    Смесители обычно используются для проведения химических реакций различного вида, включая полимеризацию. Основная особенность проектирования бака и мешалки заключается в необходимости обеспечить возможность управления кинетикой реакции, а не теплопередачей. Тем не менее обычно необходимо отводить или подводить теплоту (иногда и то и другое в различные моменты процесса) с заданной интенсивностью. Большое число конструкций и практических ситуаций создает определенные трудности при разработке универсальных расчетных соот- [c.8]

    Гл. XI дополнена новым параграфом ( 3), в котором рассматривается процесс полимеризации с размыканием цикла. Существенно переработана гл. X, в которой рассматривается кинетика реаКцИЙ в открытых системах. Уточнено определение понятия открытая система . Указано отличие открытых систем от реакций, протекающих в условиях ламинарного потока. Введены понятия ложный старт и перелет на кинетических кривых накопления веществ в открытых системах. Рассмотрена зависимость скорости процесса от скорости подачи реагентов в систему. [c.6]

    Систематическое изучение закономерностей катионной полимеризации проводилось, начиная с 20—30 гг. текущего столетия. Кинетика катионной полимеризации существенно отличается от кинетики радикальной полимеризации, Скорость реакции зависит от диэлектрической постоянной среды, небольших добавок воды, кислот и других протонсодержащих веществ и очень часто харак- [c.135]

    При цепной полимеризации длина образующихся макромолекул обычно очень велика молекулярная масса их часто достигает нескольких сотен тысяч и даже миллионов. Молекулярная масса, или конечная степень полимеризации полимера, образующегося в результате цепной полимеризации, нарастает не постепенно по мере протекания реакции, а достигается почти мгновенно. Средняя молекулярная масса, степень и характер полидисперсности образующейся смеси полимергомологов зависят от кинетики реакции полимеризации, оказывающей поэтому решающее влияние на свойства конечных продуктов. [c.62]

    При полимеризации часто используют окислительно-восстанови-тельное инициирование. В этом случае в систему вместе с инициатором вводят восстановитель — промотор. В результате окислительно-восстановительной реакции образуются свободные радикалы, инициирующие полимеризацию. Особенностью окислительно-восстановительного инициирования является очень низкая энергия активации 50,1 — 83,6 кДж/моль (12—20 ккал/моль) вместо 146 кДж/моль (35 ккал/моль) при термическом распаде инициатора. Это позволяет проводить полимеризацию при более низких температурах, при которых уменьшается возможность протекания побочных процессов, приводящих к изменению кинетики реакции и свойств получаемого полимера. [c.70]

    Процессы полимеризации в присутствии наполнителя как гетерогенной матрицы достаточно хорошо изучены [1,2]. Данные о его влиянии на закономерности поликонденсационных процессов в литературе до конца 80-х годов XX в. практически отсутствовали. В последние годы на примере акцепторно-каталитической полиэтерификации было показано, что такие наполнители, как графит, дисульфид молибдена и другие, проявляют в данной реакции гетерогенный матричный эффект, т.е. влияют на кинетику реакции, молекулярную массу и микроструктуру полимеров, свойства получаемых многокомпонентных систем [3-23]. [c.304]

    ОКД-5 и ОКД-20 на кинетику процесса проявляется при их введении в количестве 0,5 и 1 м,ч, при более высоких концентрациях степень полимеризации играет незначительную роль. Это может быть связано с большей функциональностью ОКД-20 с одной стороны, и ростом влияния стерических факторов на кинетику реакций с другой Определено содержание ОКД при котором достигается степень конверсии 90-94%, Исследование изменения количества концевых групп ПКА в результате его взаимодей- ствия с ОКД показало, что в основном в реакции участвуют карбоксильные группы (степень их конверсии составляет более 50%, а аминогрупп -всего 1-3%), [c.75]


    Радиационная полимеризация. Кинетика, а в ряде случаев и природа одного из важнейших в практическом отношении процессов химической технологии — полимеризации органических мономеров — существенно изменяются под действием излучения. Как правило, полимеризация заключается в переходе кратных связей мономеров в одинарные связи полимеров. Очевидно, что подобные процессы характеризуются большей или меньшей энергией активации. Обычно для осуществления цепной реакции полимеризации реакционную среду -подвергают действию видимого УФ-света либо вводят различные катализаторы, благодаря чему в сфере полимеризации образуется некоторое количество свободных радикалов. [c.209]

    В соответствии с кинетикой реакций радикальной полимеризации этилена основными технологическими параметрами синтеза ПЭВД, определяющими структуру и массу макромолекулы, являются температура и давление полимеризации. Важную роль играют также конверсия мономера и время пребывания реакционной смеси в реакторе. С повышением температуры скорость роста цепи увеличивается меньше, чем скорость реакций передачи цепи и распада инициатора, что приводит соответственно к увеличению степени разветвленности (того и другого типа) и уменьшению молекулярной массы. Повышение давления преимущественно увеличивает скорость роста цепи и замедляет распад инициатора. Это вызывает увеличение молекулярной массы и уменьшение степени разветвленности. В то время, как на КЦР влияют только температура и давление, ДЦР сильно зависит от концентрации и времени пребывания полимера в реакторе, а именно, увеличивается с ростом этих параметров. Повышение ДЦР, в свою очередь, приводит к увеличению фракций полимера большой молекулярной массы, т.е. к росту ширины ММР и образованию высокомолекулярного хвоста ММР. [c.136]

    Широкие потенциальные возможности метода реализованы в химических исследованиях мониторинг биопродуктов, анализ изомерных смесей в реакциях синтеза, определение степени полимеризации и модификации продуктов в полимерном синтезе, оценка чистоты материалов и продуктов их термического распада [13, 14]. Кинетику реакций можно изучать с использованием смесительной камеры в методе остановленной струи и ЯМР-детектирования. [c.262]

    Полярографический метод может быть использован и для изучения кинетики реакций образования полимеров, в том числе реакции полимеризации. При этом контроль протекания процесса можно осуществлять, в первую очередь, по изменению концентрации мономеров, определяемому полярографически. Поэтому при низкой степени превращения мономера в полимер относительная погрешность в определении концентрации моно- [c.182]

    Представления о свободных радикалах получили исключительно широкое распространение в химии, химической технологии, химической кинетике, биологии, физике. Без участия свободных радикалов немыслимы такие процессы, как полимеризация, цепные реакции горения и медленного окисления, свободнорадикальное галогенирование, фотохимические и радиационнохимические реакции. Важную роль играют свободные радикалы в ферментативных процессах и гетерогенном катализе. [c.5]

    Монография посвящена современным методам расчета и количественного описания кинетики реакций с участием макромолекул (поликонденсации, радикальной полимеризации и химических превращений). [c.334]

    Даны а) вывод уравнения кинетики реакции полимеризации, протекающей в потоке б) экспериментальное подтверждение выведенного уравнения. [c.276]

    Вследствие того что инициаторы, выбираемые для полимеризации в эмульсии, обычно растворимы только в водной фазе, где концентрация мономера крайне мала (исключение представляют немногие мономеры, такие, как акрилонитрил и метилметакрилат, в заметной степени растворимые в воде), очевидно, что в отсутствие эмульгатора скорости реакции очень малы. В действительности в присутствии эмульгатора реакции протекают с высокими скоростями и, более того, в противоположность полимеризации в массе сопровождаются образованием полимера с высокой степенью полимеризации. Эти наблюдения показывают, что реакция обрыва затруднена и что присутствие эмульгатора делает возможным взаимодействие между радикалами и мономером. Эмульгатор выполняет свою главную роль на ранних стадиях реакции, но тем не менее он определяет кинетику реакции до ее завершения. [c.165]

    Кинетика реакции полимеризации бутадиена подробно исследована в работах С. С. Медведева и А. Д. Абкина. [c.21]

    Более совершенен дилатометрический метод измерения кинетики реакции, при котором в ходе процесса используется эффект уменьшения объема мономера. Средняя величина контракции нри полном завершении полимеризации для разных мономеров составляет около 25% исходного объема, поэтому даже незначительные превращения хорошо регистрируются. Для расчета контракции AF можно воспользоваться следующим уравнением, связывающим указанный эффект с плотностью мономера м и полимера йр  [c.223]

    Значение стерического фактора в кинетике реакции роста макрорадикалов проявилось весьма своеобразно, когда начали изучать реакцию полимеризации на границе кристаллического мономера и расплава (гл. VII). Оказалось, что реакция роста цепи идет в этих условиях с необычно высокими скоростями. [c.230]

    Кинетика реакции полимеризации стирола и а-метилстирола, катализируемой ЗпС1 , изучена Пеппером [120] он наблюдал увеличение скорости реакции и молекулярного веса полимера при увеличении диэлектрической постоянной растворителя. Детальное исследование хода реакции в дихлорэтилене показало первый порядок скорости относительно ЗпС1 и второй порядок относительно стирола. Такой результат указывает на то, что реакция инициируется комплексом стирола с катализатором, обрыв же цепи является мономолекулярной реакцией, а также, что присутствие влаги не необходимо для реакции. Возможно, однако, что нри проведении реакции в таких галоидированных растворителях растворитель является сокатализатором при инициировании, например [c.158]

    В химии высокомолекулярных веществ принята следующая классификация. Реакции присоединения в приведенном выше смысле являются реакциями полимеризации и полиприсоединения реакции замещения представляют собой реакции поликонденсацин. Одиако, если исходить не из этой формальной классификации, а из кинетики реакции, то существует принципиальное различие между полимеризацией, с одной стороны, и поликонденсацией или полиприсоединеиием, с другой. [c.930]

    Так как на гель-хроматограммах отражаются все изменения ММР, связанные с глубиной полимеризации, метод может быть использован для исследования кинетики реакций, протекающих по радикальному или ионному механизму. При этом либо устанавливают взаимосвязи между молекулярными характеристиками и свойствами полимера, либо определяют вид кинетической схемы полимеризации и вычисляют констарггы элементарных реакций. В этой связи применение нашли два основных метода исследования  [c.114]

    В этой книге рассмотрены получение и реакции перекисей, а также кратко — их анализ и применение. В главе, посвященной аутоокислению, содержатся да[И1ые, иллюстрирующие тесную свяаь этой реакции с химией перекисей. Обзор литературы содержит материалы, опубликованные до конца 1959 г., однако он не является исчерпывающим. Описание кинетики реакций перекисных соединений и подробное изложение применения перекисей в реакциях полимеризации, имеющиеся в других источниках, выходят за пределы задач, поставленных автором данной книги. [c.10]

    СбН4—СНг-С((Н4—СНз - +(п—1)НС1, однако кинетика реакции указывает на ее цепной механизм. Молекулярный вес на различных стадиях реакции (верхняя кривая) также указывает на реакцию полимеризации присоединением, а не на реакцию поликонденсации (нижняя кривая). [c.395]

    Согласно современной теории кинетики реакций, сложные реакции состоят из ряда простых процессов, включающих взаимодействие не больше чем двух молекул. Поэтому в настоящее время кажется почти невероятным предположение о том, что макромолекулы, состоящие из множества мономерных звеньев, образуются не в результате ряда последовательных простых реакционных актов, а каким-то другим путем. Такие представления об образовании больших молекул возникли, однако значительно раньше, чем появились убедительные теоретические доказательства в пользу этой концепции например, уже в 1915 г. Остромысленский [1] рассматривал образование углеводородных полимеров как ступенчатый синтез. Несмотря на то что предположение о механизме последовательных реакций нашло всеобщее признание, еще на ранней стадии развития работ по виниловой полимеризации вопрос о природе этого процесса служил предметом спора между отдельными авторами. Существовали две противоположные точки зрения согласно одной из них, развиваемой Уадби и Кацем [2] на примере полимеризации индена, катализируемой 8пС14, образование полимера происходит в результате ступенчатой реакции вторая точка зрения, поддерживаемая вначале главным образом Штаудингером, предполагала образование полимера по цепному механизму. Разница между этими двумя механизмами сводится к следующему. [c.15]

    При исследовании кинетики полимеризации винилхлорида Прат [30] обнаружил автокаталитический эффект, сходный с описанным выше для акрилонитрила. Было найдено, что он имеет место при температурах от 25 до 96°, хотя при наивысшей температуре после достижения глубины полимеризации 40% реакция идет очень медленно вследствие израсходования инициатора. Было проведено специальное исследование [31] по выяснению влияния кислорода на полимеризацию. Как и в случае акрилонитрила, кислород действует как сильный ингибитор. Прат установил, что чем больше индукционный период, тем больше скорость последующей реакции. Это ясно указывает на образование неустойчивой перекиси в результате реакции между мономером и кислородом в период ингибирования. [c.143]

    Таким образом, в безобрывных процессах анионной полимеризации при условии к к или при использовании метода посева константы роста поддаются непосред-ствепиому определению. Для полного описания процессов, в которых константа инициирования относительно мала и концентрация растущих цепей непрерывно меняется, необходимо применение метода нестационарной кинетики. Для простоты мы рассмотрим этот метод на примере полимеризации, где реакции обрыва и ограничения роста цепей отсутствуют. [c.352]

    Менее ясен вопрос о полимеризации а-окисей под влиянием таких возбудителей, как алкилпроизводные алюминия. Если полимеризацию в системе АШд—этилен можно рассматривать как анионную, то применительно к окисям больше оснований ожидать катионного механизма. Это следует из результатов подробного исследования Кокли полимеризации окиси пропилена в присутствии триметилалюминия [145]. При полном исключении следов воды при 0° процесс ограничивается образованием циклических низкомолекулярных соединений, вплоть до пентамеров. Полимеризация идет медленно и обрывается до исчерпания мономера. Из кинетики реакции следует, что активные соединения образуются быстро и затем расходуются по реакции первого порядка. Одновременно с полимеризацией происходит медленное выделение метана скорость этого процесса меняется параллельно изменению скорости полимеризации. Для обеих реакций время убыли скорости вдвое составляет около 20 час. Эти данные согласуются со следующей схемой процесса. Триметилалюминий как акцептор электронов образует комплекс с мономером по кислороду (быстрая реакция) из-за относительно мал011 активности ЛШд как кислоты Льюиса для ионизации этого комплекса необходимо участие второй молекулы мономера  [c.386]

    Анализ кинетического закона в терминах уравнения Аврами позволяет сделать вывод [27] о соотношении и взаимосвязи процессов, приводящих к структурным и химическим превращениям в системе. Так, если скорости обоих процессов соизмеримы, экспериментальная зависимость глубины превращения от времени позволяет получить информацивэ как о физическом, так и о химическом процессе. Если скорость химического процесса существенно ниже, чем физического, кинетика реакции отражает истинно химическую сторону процесса. В противоположном случае, когда процесс структурирования запаздывает, он все же может оказать косвенное влияние и на химический процесс через изменение подвижности молекул, диэлектрической проницаемости среды, экранирование активных центров и т. п. В работе [27] приведены примеры процессов различного типа применение растворителя, изменение температуры, проведение процессов полимеризации в присутствии агентов передачи цепи — все эти способы позволяют переводить процесс из одного режима в другой. Что касается трехмерной полимеризации, то на примере диметакрилатов триэтиленгликоля (ТГМ-3) и бш -триэтиленгликоль-фталата (МГФ-9) показано, что в широком интервале глубин превращения [c.100]

    Степовпк, Шилова и Шилов [39] исследовали кинетику реакции полимеризации этилена на растворимом комплексном катализаторе типа (С5Н5)2Т1С12 + А1(СНз)2С1, который образуется по уравнению [c.32]


Смотреть страницы где упоминается термин Полимеризация кинетика реакций: [c.130]    [c.84]    [c.197]    [c.111]    [c.72]    [c.419]    [c.394]    [c.13]    [c.89]    [c.103]   
Синтетические каучуки Изд 2 (1954) -- [ c.338 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции полимеризации



© 2025 chem21.info Реклама на сайте