Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комплексы переходных металлов. Теория поля лигандов

    Комплексы переходных металлов. Теория поля лигандов [c.544]

    Данная глава является продолжением гл. 9, и прежде, чем приступить к чтению изложенного здесь материала, следует хорошо понять принципы, рассмотренные в гл. 9—11. Однако в случае комплексов ионов переходных металлов основой интерпретации спектров ЭПР служит теория поля лигандов, и по этой причине изложение материала в настоящей главе связано с его изложением в гл. 9 лишь косвенно. [c.203]


    Автор пользуется теорией поля лигандов и методом молекулярных орбиталей для объяснения структуры и стабильности образующихся комплексов. Каталитическую реакцию он моделирует с помощью комплекса, состоящего из центрального атома — активного центра (как правило, атома переходного металла), окруженного реагирующими частицами—лигандами этого комплекса. [c.5]

    Резюмируя, можно сказать, что химия неорганических комплексных соединений и ее развитие за последнее время (теория поля лигандов) позволяют построить точные молекулярные модели каталитических реакций в этих моделях реагирующими частицами являются лиганды комплекса, образованного вокруг центрального атома активного центра (обычно атома переходного металла). [c.25]

    Помимо целей идентификации и спектрофотометрии, электронные спектры поглощения находят широкое применение для решения структурных проблем и прежде всего в химии координационных соединений. Наиболее характерны в этом отношении спектры комплексов переходных металлов, строение которых связано с наличием в них частично или полностью заполненных -орбиталей. Самую простую модель для описания связей в комплексных соединениях переходных металлов дают теории поля лигандов и кристаллического поля. Они позволяют выяснить влияние лигандов на снятие вырождения -орбиталей центрального атома (иона) металла и понять или даже предсказать строение, спектры и магнитные свойства комплексов. Согласно теории кристаллического поля вырожденные электронные энергетические уровни центрального иона могут претерпевать существенные изменения (расщепление) под возмущающим действием полей лигандов, окружающих центральный ион. [c.181]

    Теория кристаллического поля добилась особого успеха при описании комплексов переходных металлов, в которых внешние электроны находятся на -орбиталях. Теория рассматривает поведение пяти -орбиталей центрального атома в электрическом поле, создаваемом лигандами, различно расположенными в пространстве. Хорошо известно, что в отсутствие внешних полей все пять -орбиталей вырождены, т. е. имеют одинаковую энергию. Помещение атомных -орбита-лей в электрическое поле, создаваемое лигандами, вырождение частично или полностью снимает, и уровни расщепляются. Основная задача, таким образом, состоит в изучении расщепления в зависимости [c.210]


    Теория поля лигандов позволяет построить приближенные молекулярные модели каталитических окислительно-восстановительных реакций превращения углеводородов [20, с. 106], в которых реагирующими частицами являются лиганды комплекса, образованного вокруг центрального иона переходного металла. [c.100]

    В соответствии с теорией химической связи комплексы переходных металлов четвертого периода можно классифицировать преимущественно на ионный и ковалентный типы. Центральный атом (металла) в ионном комплексе имеет те же электронное строение и магнитный момент, что и свободный ион металла по правилу Хунда такому состоянию отвечает определенный максимум числа неспаренных электронов. В ковалентных комплексах электронное строение центрального атома отвечает минимуму неспаренных электронов, что достигается за счет спаривания части этих электронов под влиянием поля лигандов. [c.165]

    N0", МНз). При этом менее выгодные -орбитали заполняются электронами лишь после полного заполнения более выгодных. Теория кристаллического поля предсказывает дополнительную стабилизацию некоторых комплексных частиц полем лигандов, а также искажение высокосимметричных конфигураций комплексов некоторых металлов (Си " , Сг + и др.). Эта теория объясняет цвет соединений и магнитные свойства комплексов переходных металлов. Для ионов с внешней электронной конфигурацией 5 р теория не дает каких-либо интересных результатов. Для комплексных частиц с сильно выраженным ковалентным характером связей, особенно при наличии я-взаимодействия, эта теория также мало пригодна. Теория кристаллического поля наиболее эффективна для описания высокоспиновых комплексных соединений переходных металлов и /-элементов. [c.20]

    Усоверщенствованная модель ТКП, в которой электростатическое взаимодействие дополнено идеей перекрывания орбиталей, называется теорией поля лигандов (ТПЛ). Она с успехом применяется к большому числу комплексов переходных металлов в обычных степенях окисления, где величины перекрываний электронных облаков не слишком велики. В тех же комплексах, где перекрывание существенно, методы ТКП и ТПЛ непригодны. Для описания подобных комплексов надо пользоваться ММО. [c.169]

    Атомная спектроскопия является обширной областью, глубокое изложение теории которой может само по себе составить целую книгу. В данной главе был дан лишь краткий обзор, достаточный, однако, для понимания содержания следующей главы, посвященной теории поля лигандов комплексов переходных металлов. [c.248]

    Термин лиганд используют для обозначения атомов или молекулярных групп, окружающих атом переходного металла в его комплексах. Теория поля лигандов стремится объяснить свойства комплекса на языке возмущения лигандами энергий и волновых функций изолированного атома переходного металла или соответствующего иона. Поэтому теория поля лигандов справедлива тогда, когда справедлива теория возмущений, т. е. когда изменения волновых функций и энергий, индуцируемые лигандами, относительно малы. [c.249]

    Теория поля лигандов принимает во внимание взаимодействие орбиталей лигандов с орбиталями металла, по крайней мере в неявной форме. Для комплексов переходных металлов можно проводить и расчеты методом молекулярных орбиталей на разных уровнях приближений. Все эти более сложные расчеты предсказывают существование уровней, расщепленных таким же образом, как предсказывает теория кристаллического поля, и заселенных таким же числом электронов, какое могло бы поступить с d-уровня свободного атома металла. Детальное совпадение вычисленных свойств с экспериментальными может быть улучшено проведением более строгих расчетов, но важнейшие [c.315]

    Теория кристаллического поля была предложена Бете [171]. Эта теория основывается на предположении, что комплексы переходных металлов с лигандами устойчивы вследствие электростатического взаимодействия между центральным ионом и лигандами. Последние считаются источником внешнего электрического поля без учета структуры их электронных орбит. Для иона же металла рассматривается заполнение его d-орбит электронами. Возможностью образования ковалентной связи полностью пренебрегают. [c.47]

    НО называется теорией поля лигандов она с успехом применяется к большому числу комплексов переходных металлов. Иногда, однако, перекрывание орбит настолько существенно, что идеи теории кристаллического поля вообще непригодны, даже в качестве отправного пункта. В этих случаях положение ближе к типу 1 на стр. 162, и для его описания необходимо полное рассмотрение молекулярных орбит. Однако детали такого подхода выходят за рамки настоящей книги. [c.170]

    Теории кристаллического поля и поля лигандов оказались весьма плодотворными при рассмотрении корреляций между свойствами комплексов переходных металлов, например легкостью образования комплексов и стабильностью уже возникших соединений, реакционноспо-собностью, спектрами поглощения, магнитными свойствами, стереохимией и электронным строением комплексов. Подход Полинга, основанный на методе валентных структур, также не следует отвергать полностью в некоторых отношениях он дополняет теорию поля лигандов. Однако теории кристаллического поля и поля лигандов обладают тем существенным преимуществом, что они более приспособлены для количественного рассмотрения комплексных соединений. В настоящей книге мы коснемся применения теории кристаллического поля только к одному вопросу. [c.170]


    Теория поля лигандов позволила установить, что энтальпия комплексообразования в случае комплексов двух- и трехвалентных ионов переходных металлов, обладающих -электронами, бу- [c.143]

    В теории кристаллического поля [29, 30] предполагается, что взаимодействие иона переходного металла с лигандами носит чисто электростатический Характер. Общая теория поля лигандов наряду с электростатическими представлениями включает теорию молекулярных орбит и т. п., т. е. рассматривает весь комплекс взаимодействий центрального иона с лигандами. — Прим. ред. [c.325]

    М. о. м. успешно примен. для высокосимметричных молекул, прежде всего молекул комплексов переходных металлов (см. Поля лигандов теория). На основе М. о. м. строится б. ч. полуэмпирических методов и неэмпирииеских методов квантовой химии. Осн. понятия М. о. м, испольэ. в теории хим. связи и реакционной способности, в мол. спектроскопии. [c.350]

    Теория кристаллического поля дает общее, но не совсем точное представление о строении комплекса переходного металла. Когда шесть лигандов подходят к центральному иону металла, энергия всей системы уменьшается вследствие электростатического притяжения между зарядами (например, между катионом и неподеленной парой электронов лигандов). Однако по энергии трн 2ё-орбнтали более выгодны, чем две е -орбитали. Применить ауфбау-прннцип довольно просто для этого нужно знать, сколько электронов поставляет центральный ион. Если он поставляет лишь один электрон (как в случае Ti ), комплекс имеет конфигурацию tig, если два (как в V" ), конфигурация будет и если три (как в Сг "), конфигурация будет Дальше ситуация усложня- [c.545]

    Возможно, наиболее важным понятием, связанным с координационными соединениями и контролирующим их, является льюисовская кислотность иона металла. Это понятие будет расомотре-но в гл. 2, а здесь достаточно сказать, что комплексы непереходных металлов (Ма+, К+, Са +, Мд +, Ва +, А1 +) удерживаются вместе с электростатическими силами и их стереохимия определяется почти исключительно размером лиганда и зарядом на ионе металла. Устойчивости комплексных ионов изменяются параллельно с основностью протонов лигандов, и эффективная роль иона металла подобна таковой протона. Стереохимия комплексов переходных металлов более сложна, и в настоящее время не существует удовлетворительной эмпирической или теоретической модели для детального описания всех аспектов их структуры или даже стереохимии. Для многих из этих металлов ионная модель усложняется тем, что их электронные облака не имеют сферической формы (эффекты кристаллического поля), а также, что подразумевается в их названии, очень значительным отступлением от ионного характера, связанным с переходом от ионной к ковалентной связи. Для таких комплексов важна как нейтрализация зарядов, так и кислотность по Льюису, и для описания химической связи в этих комплексах были развиты теория поля лигандов и метод молекулярных орбиталей [2, 5]. [c.19]

    Электронные спектры комплексов переходных металлов можно интерпретировать с помощью теории кристаллического поля. При обсуждении комплексов 0 мы будаЛ заниматься системами с локальной симметрией О,,, хотя симметрия всей молекулярной системы может быть и не такой. При описании типа расположения донорных атомов, непосредственно связанных с металлом, мы не будем строго придерживаться терминов симметрии и не будем учитывать остальные атомы лигандов. Естественно, такое допущение не всегда оправдано. В данном разделе мы рассмотрим, как интерпретировать и предсказывать электронные спектры и как опенить величины наблюдаемого -орбитального расщепления. Мы должны дать представление об эффективном методе координационной химии — использовании электронных спектров при рещснин структурных проблем. Все эти вопросы более подробно обсуждаются в ряде монографий, в которых ссылки на работы, содержащие спектры многих комплексов [1. 2, 4, 5, 9, 10, 12]. [c.88]

    Первые две стадии реакций контактного окисления, наряду с изложенными выше механизмами, могут протекать по механизму комплексообразования в тех случаях, когда катионы решетки сохраняют свою индивидуальность. Вервей [241 для обратных шпинелей , а затем Морин [25] — для окислов металлов с незапол- ненными З -уровнями электронов указали на такую возможность, объяснив возникновение в таких соединениях электропроводности присутствием в них ионов одного и того же металла в различных валентных состояниях и в эквивалентных позициях кристаллической решетки. Можно предполагать, что подобного рода механизм электропроводности возможен не только для окислов (в том числе и тройных систем окислов [26]), но и для многих полупроводниковых соединений переходных металлов. Базируясь на этих представлениях, Дауден [27 ] рассматривает хемосорбцию на поверхности и явления замещения одного сорбента другим как реакции образования и превращения комплексов по механизму и 8)у2-замещения. Киселев, [28] также рассматривает адсорбцию как процесс поверхностного комплексообразования, когда при возникновении донорно-акцеп-торных связей неподеленная пара электронов лиганда оказывается затянутой на внутренние орбитали атома решетки, являющегос центром адсорбции. При таком механизме адсорбированные молекулы всегда будут в той или иной мере реакционноспособны. Действительно, затягивание неподеленной пары лиганда на внутренние орбитали центрального атома приведет к деформации адсорбированной молекулы и ослаблению внутримолекулярных связей. Отметим попутно, что трактовка Киселева справедливо распространяет электронные представления и на механизм кислотно-основного гетерогенного катализа. Развивая представления теории поля лигандов, Руней и Уэбб [29 ] показали, что механизм реакций дейтеро- бмена, гидрирования и дегидрирования углеводородов на переходных [c.27]

    В разд. 8.6 мы уже говорили, что вещества, содержащие неспаренные электроны, обнаруживают парамагнетизм, т.е. способность втягиваться в магнитное поле. Величина парамагнетизма обусловлена числом неспаренных электронов. Вещества, не содержащие неспаренных электронов, диамагнитны они слабо выталкиваются магнитным полем. Таким образом, один из способов установления числа неспаренных электронов в веществе заключается в измерении воздействия магнитного поля на образец данного вещества при помощи способа, схематически показанного на рис. 23.15. Массу исследуемого вещества измеряют сначала в отсутствие магнитного поля, а затем в магнитном поле. Если образец имеет большую кажущуюся массу в присутствии магнитного поля, это означает, что данное вещество втягивается магнитным полем и, следовательно, является парамагнитным. Если же образец имеет меньшую кажущуюся массу в присутствии магнитного поля, это означает, что вещество выталкивается магнитным полем и, следовательно, является диамагнитным. При изучении комплексов переходных металлов представляет интерес выяснение зависимости между числом неспаренных электронов, связанных с конкретным ионом металла, и природой окружающих лигандов. Например, важно понять, почему комплекс Со(Т Нз) не содержит неспаренных апектронов, а комплекс СоРв содержит четыре неспаренных электрона, хотя оба комплекса включают кобальт(1П). Всякая теория, претендующая на правильное описание химической связи, должна давать удовлетворительное объяснение этому наблюдению. [c.387]

    Исследования магнитных свойств и окраски комплексов переходных металлов сыграли важную роль в создании различных теорий химической связи координационных соединений. Теория кристаллического поля успешно объясняет многие свойства координационных соединений. В рамках этой теории взаимодействие между ионом металла и лигандами рассматривается как электростатическое. Лиганды создают электрическое поле, которое вызывает расщепление энергетических уровней -орбиталей металла. Спектрохи-мический ряд лигандов соответствует их нарастающей способности расщеплять энергетические уровни -орбиталей в октаэдрических комплексах. [c.401]

    Для катионов с недостроенной 18-электронной оболочкой в меньшей степени применимы простые электростатические представления, основанные на законе Кулона. Такие электронные оболочки при действии электроотрицательных лигандов деформируются значительно больше, чем 8-электронные оболочки катионов, и доля ковалентности химической связи металл — лиганд сильно возрастает. Изменение устойчивости комплексов элементов четвертого периода можно объяснить с позиций усовершенствованной электростатической теории, которая принимает во внимание не только чисто кулоновское взаимодействие между частицами, но и форму орбиталей -электронов. Речь идет о теории кристаллического поля, созданной в 30-х годах этого столетия физиками Г. Бете и Ван-Флеком и позже примененной химиками для объяснения спектров поглощения и магнитных свойств комплексов переходных металлов. [c.250]

    В ряде теорий предполагается существование активных центров на пов-сти тв. катализаторов и рассматривается конкретная структура этих центров. Исследование кинетики каталитич. р-ций указьшает на существование центров разл. активности. Использование совр. фиэ. методов исследования, а также квантово-хим. представлений (в частности, теории поля лигандов) позволяет установить возможную природу активных центров и механизм их действия. Так, высокая активность переходных элементов объясняется образованием комплексов реагирующих в-в с атомом переходного металла, входящего в состав катализатора, и дальнейшим превращ. молекул в координац. сфере иона переходного металла. [c.248]

    Еще одна причина неудовлетворенности простой электростатической моделью состоит в том, что член электронного отталкивания В, который в теории поля лигандов рассматривают как эмпирический параметр, обычно значительно меньше его значения в свободном ионе. Наиболее вероятной причиной этого является делокализация /-электронов по орбиталям лигандов. В количественной форме наиболее естественно учесть делокализацию на основе метода молекулярных орбиталей, причем этот метод имеет то преимущество, что он допускает как эмпирические, так и неэмпирические подходы. Неэмпирические расчеты комплексов переходных металлов в вычислительном отношении более трудоемки, однако не в такой степени, чтобы быть недоступными для современных ЭВМ, и в дальнейшем они, по-видимому, станут наиболее распространепными. [c.275]

    Среди ферментов, содержащих ионы переходных металлов, важное место принадлежит нитрогеназе. Ряд видов бактерий (в частности, находящихся в симбиозе с бобовыми растениями) и водорослей обладает способностью восстанавливать азот воздуха до аммиака. В конечном счете именно этим способом в организмы доставляется азот, необходимый как для белков, так и для нуклеиновых кислот. Такая реакция, как N2 + ЗПг-> 2NПз, в газе требует гетерогенного катализатора, давления порядка 250 атм и температуры до 450°С (процесс Габера—Боша). В бактериях эта реакция идет с участием нитрогеназы — комплекса двух белков, один из которых содержит молибден и железо, а другой — только железо. Роль Мо является определяющей. Несмотря на то, что структура нитрогеназы пока еще мало изучена, с помощью качественных методов квантовой химии, основанных на теории поля лигандов, удалось выявить роль молибдена. Активация молекулярного азота N2 происходит, по- видимому, в комплексе Ме — N = N — Ме (Ме — металл). При этом связь NN в N2 из тройной превращается практически в единичную. Рентгеноструктурный анализ показал, что в модельных комплексах N2 с металлами длина связи NN равна 0,137 нм (длина связи N=N 0,110 нм, N=N 0,123 нм, N—N 0,144 нм). [c.218]

    К воздействиям, снимающим вырождение, можно отнести возмущение состояния атомов иля ионов, входящих в состав молекул, полем окружающих атомов, ионов и молекул. Так, возмущение полем лигандов приводит к снятию вырождения а- или f-орбиталей, имеющемуся у иояов переходных металлов в своб. состоянии. Анализ этого расщепления лежит в основе описания комплексов переходных металлов в рамках теории кристаллич. поля (см. Поля лигандов теория). Н. Ф. Степанов. [c.111]

    Долгое время П. м. были, основными методами квантовохим. вычислений. С развитием вычислит, техники их постепенно вытесняют более фундаментальные неэмпирине-ские методы расчета. Однако для исследования сложных многоэлектронных молекул значение П. м. пока сохраняется. М. В. Базилевский. ПОЛЯ ЛИГАНДОВ ТЕОРИЯ, вариант молекулярных орбиталей метода, используемый для расчета энергии и электронной структуры высокосимметричных молекул, прежде всего комплексов переходных металлов. Основана на понятиях орбиталей и теоретико-групповом подходе, при к-ром, напр., сначала из nd-, (п -Ь l)s- и (м + 1)р-орбиталей центр, атома и отдельно из а- и я-орбиталей лигандов строят орбитали симметрии комплекса. С помсщью найденных т, о. орбиталей одного и того же типа симметрии определяют мол. орбитали (МО) как линейные комбинации орбиталей симметрий и соответствующие им орбитальные энергии. В Качеств, вариантах П. л. т. расположение уровней орбитальных энергий определяется с учетом того, сильно или слабо перекрываются орбитали центр, атома и орбитали лигандов, а также с учетом характера перекрывания (связывающего или антисвязывающего). Прн модельных количеств, расчетах получают схему расположения по энергии МО разл. типов симметрии, а также устанавливают тенденции в изменении этой схемы при вариации поля лигандов, изменении числа -электронов у центр, атома, учете я-электронов лигандов и г. п. [c.473]

    Более простой вариант П. л. т.— теория кристаллич. поля, в к-рой лиганды моделируются точечными зарях(ами, диполями ИТ. п., орбитали же центр, атома рассматривают в явном виде. При этом предполагают, что спектральные и другие характеристики комплексов переходных металлов полностью определяются соотношением энергий орбиталей, получающихся из исходных d- или f-орбиталей центр, атома под влиянием кристаллич. поля точечных зарядов-лигандов, а также тем, как эти орбитали заполняются электронами. Как и в теории поля лигандов, предполагается, что при слабом поле лиганды влияют слабо и сохраняет смысл классификации атомных термов центр, атома по орбитальному моменту. Расщепление / уровней определяется взаимод. ( -электронов между собой. В случае сильного поля влияние лигандов очень велико н атомные состояния с определ. орбитальным моментом теряют смысл. Расщепление d-уровней определяется полем лигандов, а их взаимод. между собой можно- считать возмущением (см. Вырождение энергеттеских состояний). Окончательное расположение уровней образующихся состояний определяется с учетом возможной мультиплетности термов. [c.473]

    Исключительно полезна теория поля лигандов для объяснения и предсказания свойств комплексов, у которых лиганды и ком-плексообразователй связаны кроме простых а-связей еще и я-свя-зями. Как известно, в последних электронная плотность максимальна не по оси связи, а в плоскости, перпендикулярной этой оси. Образование, двух видов св язей в комплексах переходных металлов при взаимодействии -орбиталей комплексообразователя с р- или -орбиталями лигандов можно схема ически представить, как изображено на рис. IV. 12. [c.82]

    Основные положения теории кристаллического поля изложены здесь очень кратко. Теория позволяет успешно интерпретировать в очень многих случаях спектры поглощения растворов, содержащих ионы переходных элементов. Следует, однако, иметь в виду, что при исследовании комплексов с ковалентными связями необходимо пользоваться теорией поля лигандов, которая является объединением теории кристаллического поля с методом молекулярных орбит Малликена [15]. В последние два-три года появились несколько статей и книг, посвященных этим вопросам, на русском языке. Среди них можно отметить статью Т. Данна в монографии Современная химия координационных соединений [16], книгу И. Б. Бер-сукера и А. В. Аблова Химическая связь в комплексных соединениях [17], книгу Л. Оргела Введение в химию переходных металлов [18] и особенно книгу К. Бальхаузена Введение в теорию поля лигандов [5]. [c.115]

    Представления теории поля лигандов применимы не только к трактовке реакций окисления. Так, Руни и Уэбб [122] показали, что механизм реакций дейтерообмена, гидрирования и дегидрирования углеводородов на переходных металлах может быть хорошо объяснен исходя из представлений о поверхностных я-комплексах. Они считают, что поверхностные атомы металлов обладают свойствами свободных атомов или ионов. Приложение теории поля лигандов к вопросам гетерогенного катализа, видимо, весьма перспективно. [c.42]

    Оргел [ИЗ] рассмотрел некоторые свойства ионов переходных металлов на основе теории молекулярных орбиталей и теории поля лигандов. Мы ограничимся, главным образом, применением теории поля лигандов для определения энергии удаления двухвалентных ионов из водного раствора. Понижение энергии комплекса, обусловленное влиянием поля лигандов, определяется симметрией и напряженностью поля (т. е. природой лигандов и их расположением), а также числом и состоянием -электронов. Теория предсказывает, что поле лигандов не должно оказывать влияния на свойства комплекса, если -подуровни заняты полностью или если они заполнены ровно наполовину. Эти два случая реализуются соответственно для ионов 2н и Мн +. В нервом приближении понижение энергии за счет поля лигандов пропорционально (V —5), где V — число неспаренных -электронов. Приняв в рассмотрение некоторые осложняющие факторы, в особенности для иона Сн " , Оргел дал оценки понижения энергии для ряда ионов в квакомплексах. Если вычесть эти поправки из наблюдаемых значений энергии удаления ионов из водного раствора, то получаются исправленные значения, которые возрастают с ростом атомного номера. Если, далее, вычесть из суммы двух первых ионизационных потенциалов иона Си + энергию, необходимую для того, чтобы перевести электрон с -орбитали на 5-орбиталь, то максимум на кривой зависимости ионизационных потенциалов от атомного номера также исчезает. В связи с этим полагают, что наблюдаемые отклонения в зависимости энергий удаления ионов из раствора связаны с влиянием ноля лигандов. Соответствующая поправка может достигать 5% от общей теплоты удаления иона из раствора. [c.194]

    Наиболее общеизвестное описание электронной структуры комплексов переходных металлов с помощью гибридизованных орбит вытекает, конечно, из первоначальной теории валентных связей см. в книге Полинга [32]. Позднее была возрождена предложенная физиками модель кристаллического поля, которая после некоторых необходимых изменений была переименована в теорию поля. яигандов . Эта теория представляет собой специализированное применение более общей теории МО, описываемой в настоящей главе. Она сосредоточивает внимание почти всецело на -орбитах валентной оболочки атома переходного металла- и рассматривает взаимодействие металла с ли-гандо.м так, как если бы оно было по своей природе чисто электростатическим, хотя это ограничение впоследствии обычно смягчается. Подробности к приложения теории поля лигандов см. в обзорах Оргела [30], Гриффита и Оргела [16], а также в книге Басоло и Пирсона [3]. [c.20]

    Как видно из этого изложения теории поля лигандов, данная теория весьма пригодна для изучения спектров поглощения комплексов переходных металлов, а также может быть. использована для исследования магнитных свойств этих комплексов. Однако она не может дать информации о взаимном обмене электронами между лигандом и ионом металла, т. е. о делокализации электронов. Наряду с указанными применениями в спектроскопии и магнето-химии эта теория может быть использована для качественной интерпретации кинетической устойчивости комплиссных соединений. При этом можно показать, что наибольшая кинетическая устойчивость комплексов переходных металлов с октаэдрической микросимметрией достигается у комплексов, которые не имеют eg-элeкт-ронов. Если же е -электроны присутствуют, то взаимное отталкивание между этими электронами и отрицательными зарядами лигандов приводит к уменьшению кинетической устойчивости. Еще [c.46]

    Для определения состава и строения экстрагируемых соединений (а также для изучения состояния элемента в водных растворах) нашли применение различные физические, особенно спектроскопические методы — спектрофотометрия в УФ-, видимой и ИК-об-ласти спектра, ЯМР, ЭПР, ЯГР. Например, измеряют электронные спектры органической фазы и сравнивают их со спектрами различных твердых или растворенных соединений, состав которых может соответствовать составу экстрагируемого комплекса. Жз сопоставления спектров делают вывод о составе комплекса, который присутствует в органической фазе. Такой прием, по-видимому, впервые использовал Фридмэн [26] для выяснения состава экстрагируемого простыми эфирами хлоридного комплекса железа (1П). Этим методом, измеряя спектры поглощения в УФ- и видимой части, удалось показать, что теллур (IV) из растворов галогеноводородных кислот экстрагируется кислородсодержащими растворителями в виде соединений HgTeXe [48]. Подобных примеров можно привести много. Более четкие выводы о составе и и строении экстрагируемых галогенидов можно делать для некоторых переходных металлов, исходя из полного анализа электронных спектров с привлечением теории поля лигандов. Примером служит решение вопроса о том, в каком виде кобальт экстрагиру- ется трибутилфосфатом из роданидных растворов (NH S N — [c.35]


Смотреть страницы где упоминается термин Комплексы переходных металлов. Теория поля лигандов: [c.284]    [c.111]    [c.473]    [c.388]    [c.315]    [c.388]    [c.38]    [c.29]    [c.114]    [c.325]   
Смотреть главы в:

Физическая химия. Т.1 -> Комплексы переходных металлов. Теория поля лигандов




ПОИСК





Смотрите так же термины и статьи:

Комплексы лигандом

Комплексы металлов комплексы металлов

Комплексы переходных металлов

Металло-азо-комплексы

Металлов комплексы

Металлы лигандами

Металлы переходные

Полиены, комплексы

Поляна теория

Теория поля лигандов



© 2025 chem21.info Реклама на сайте