Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение и количественное определение органических кислот

    Разделение и количественное определение органических кислот. Смесь кислот — муравьиной, уксусной, пропионовой и масляной в количестве 8—10 мл — нейтрализуется 0,1 н. раствором щелочи по фенолфталеину и выпаривается на водяной бане досуха. Выпаренный остаток обрабатывается 2 каплями серной кислоты (1 1) до растворения солей, добавляется 0,1 г безводного сернокислого натрия и из полученной смеси органические кислоты извлекаются 1 % -ным раствором бутилового спирта в хлороформе 5-кратно так, чтобы общее количество полученного раствора составляло 5 мл., [c.333]


    Методы спектрофотометрического анализа основаны на качественном и количественном изучении спектров поглощения различных веществ в инфракрасной области спектра (невидимые электромагнитные колебания с длиной волны от 0,76 до 500 мк), видимой (от 0,76 до 0,4 мк) и ультрафиолетовой (от 0,4 до 0,01 мк). Задача спектрофотометрического анализа — определение концентрации вещества путем измерения оптической плотности на определенном участке видимого или невидимого спектра в растворе исследуемого вещества. Например, при определении хрома исследуют оптическую плотность раствора хромата желтого цвета, поглощающего свет в сине-фиолетовой части видимого спектра. При проведении фотометрического анализа необходимо создать оптимальные физико-химические условия (избыток реактива, светопреломление растворителя, pH раствора, концентрацию, температуру). Фотометрический анализ применяют для определения соединений различных типов окрашенных анионов кислот, перманганата, гидратированных катионов меди (II), никеля (II), роданидных комплексов железа (III), кобальта (II), различных гетерополикислот фосфора, мышьяка, кремния, перекисных соединений титана, ванадия, молибдена, лаков различных металлов с органическими красителями и др. Экстракционные методы разделения химических элементов основаны на различной растворимости анализируемого соединения в воде и каком-либо органическом растворителе. При этом происходит распределение растворенного вещества между двумя растворителями (закон распределения, 25). Для извлечения из водных растворов чаще всего применяют различные эфиры (диэтиловый эфир), спирты (бутиловый, амиловый спирт), хлорпроизводные (хлороформ, четыреххлористый углерод) и др. Иод можно извлечь бензолом, сероуглеродом, хлорное железо — этиловым или изопропиловым эфиром. [c.568]

    Для разделения и количественного определения органических кислот предложен метод распределительной хроматографии на колонке силикагеля. Неподвижным растворителем является вода, а подвижным — смесь бутилового спирта с хлороформом для проявления адсорбируемых кислот путем окрашивания применяется бромкрезол зеленый. [c.332]

    РАЗДЕЛЕНИЕ СМЕСИ ОРГАНИЧЕСКИХ КИСЛОТ С ПОМОЩЬЮ ХРОМАТОГРАФИИ НА БУМАГЕ (БЕЗ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ) [c.451]

    Хроматографические методы анализа связаны, главным образом,, с разделением, идентификацией и количественной оценкой различных классов органических соединений. В этой части речь пойдет об определении аминокислот, сахаров, высших жирных и летучих кислот. [c.562]


    В данном руководстве приводятся методики разделения и количественного определения органических кислот на бумаге, предложенные А. Е. Петровым-Спиридоновым, Р. Я- Школьником и [c.152]

    Хлорная кислота и перхлораты широко применяются в химическом анализе. Одна из старейших областей употребления хлорной кислоты—использование се для осаждения калия при его количественном определении. Хлорная кислота (обычно совместно с азотной и серной кислотами) применяется для разрушения органических веществ (влажное сожжение). В неорганическом анализе ее употребляют в качестве агента и среды при экстрагировании, окислении и разделении многих руд, для обезвоживания при определении окиси кремния. [c.119]

    В биологии и агропромышленной сфере хроматографическое разделение и концентрирование используют перед количественным определением микроэлементов, а также для обнаружения пестицидных соединений в окружающей среде. При технологическом контроле пищевых производств хроматография служит для очистки веществ, анализа смесей органических кислот, аминокислот и других продуктов. [c.417]

    Специфические методы количественного определения имеются не для всех органических кислот, причем эти методы часто довольно трудоемки и сложны. Одновременно в растениях может быть 5—6 и более органических кислот и их разделение обычными химическими методами требует большой затраты времени. Более быстрыми являются методы, основанные на применении ионообменных смол и хроматографии на бумаге. [c.125]

    Для количественного анализа зоны органических кислот вырезаются и в дальнейшем производится определение содержания органических кислот обычным титрованием. Описанным способом удается произвести, например, разделение молочной, щавелевой и лимонной кислот в количестве 20 - каждая. [c.164]

    В отличие от анализов других галогенов количественное определение фтора в органических соединениях редко удается довести до конца непосредственно после разложения. Анализу мешает присутствие неорганических соединений азота, серы, хлора, брома, иода и фосфора, которые образуются при окислении и восстановлении органических образцов, содержащих эти элементы. Эти мешающие соединения можно отделить осаждением подходящими реагентами, испарением или переводом их в термически устойчивые соединения. Для разделения можно применить отгонку кремнефтористоводородной кислоты с водяным паром. В этом случае примеси остаются в реакционной смеси. [c.69]

    Для разделения органических кислот широко используют и немодифицированные пористые полимерные сорбенты (порапак р, полисорб-1, хромосорбы 101, 102) и сорбенты, модифицированные 2—4% ортофосфорной кислоты. Нанесение на полимерный сорбент ортофосфорной кислоты приводит к улучшению формы пика кислот и хорошему разделению изомеров масляной и валериановой кислот 77—79]. Полисорб-1, модифицированный 20% смеси тви-на-80 и изофталевой кислоты, взятых в соотношении 3 1, также обеспечивает хорошее разделение изомеров масляной и валериановой кислот при количественном анализе зазбавленных водных растворов органических кислот 80]. В работе [81] для количественного определения кислот Сз—Сб предложено модифицировать порапак р фазой РРАР в количестве 6%. [c.88]

    В теоретической части учебника более подробно рассмотрен вопрос о влиянии величины pH раствора на полноту осаждения труднорастворимых электролитов. Приведена методика приближенного вычисления величины pH, требуемой для достижения полного осаждения гидроокисей и солей слабых кислот. Рассмо трен также вопрос о влиянии на полноту осаждения процессор комплексообразования и о маскировке мешающих определению ионов. Введен специальный параграф, посвященный методике разделения ионов в количественном анализе. При этом кратко рассмотрено действие важнейших неорганических и органических осадителей, а также применение некоторых физико-химических методов разделения (экстрагирование, хроматографические мег тоды). В параграфе, посвященном соосаждению, более подробно, чем в первом издании, рассмотрена внутренняя адсорбция. [c.8]

    В литературе описано много работ по разделению и количественному определению органических кислот на бумаге методом распределительной хроматографии основным из них является метод Лугга и Овертолла и его модификации  [c.152]

    Комплексные соединения элементов подгруппы галлия широко используются для их количественного определения, разделения и очи-стки. Так, из растворов (6—8 М) галогеноводородных кислот элементы подгруппы галлия легко экстрагируются органическими растворителями в виде Н[М Т4], чем пользуются при их отделении от сопутствующих элементов, например алюминия, который в этих условиях образует неэкстрагирующиеся анионные комплексы состава [А1Г (Н20)б-п] Комплексные соединения с купфероном, 8-оксихинолином, этиленди-аминтетраацетатом используются для количественного определения элементов, а с ацетилацетоном и его производными — для получения окисных пленок, проведения транспортных реакций, а также для очистки и разделения смесей элементов подгруппы галлия. [c.179]


    Несколько работ посвящены хроматографическому поведению и количественному определению сульфокислот антрахинона. Моно-(1-и 2-), 1,5-, 1,6-, 1,7-и 1,8-дисульфокислоты антрахинона разделяли хроматографированием на бумаге в системах растворителей н-бута-нол — МНз — вода (2 1 1) и -бутанол — пиридин — вода 3 1 1). В этих условиях антрахинон-2,6- и антрахинон-2,7-дисульфокислоты не разделяются, но отделяются от других сульфокислот. Е. В. Соколова разработала методику разделения и количественного определения 2-антрахинонсульфокислоты в 1-изомере , а также методику контроля процесса сульфирования антрахинона . Для разде--ления антрахинон-1- и антрахинон-2-сульфокислот использовалась (Органическая фаза системы н-бутанол — вода — уксусная кислота (300 150 4), а для анализа продуктов сульфирования антрахинона — система я-пропанол — ЫН40Н (2 1), а также я-пропанол — 10%-ная уксусная кислота. Ряд антрахинонсульфокислот можно разделять в системе 80%-ный этанол— керосин Эта же система годится для разделения моно- и дисульфохлоридов а ктрахинона, но не для разделения изомерных нитросульфокислот. [c.124]

    На САМ удобно оценивать количественно содержание фракций. САМ, предназначенную для колориметрических определений, пропитывают парафиновым маслом, например Shell Whitmore Oil 120, или уксусной кислотой, при этом САМ становится прозрачной, и на ней можно измерять поглощение и отражение. Поскольку САМ растворима в ряде органических растворителей, при проведении некоторых количественных определений можно использовать это ее свойство. Полученные растворы можно анализировать, колориметрически или сцинтилляционным методом. Для иммуннодиффузии и иммуноэлектрофореза САМ можно применять даже без агара. Разделяемые на САМ соединения, как правило, дают узкие зоны, что позволяет для большинства типов разделений уменьшить общую длину пути до 6—12 см. Миграция на меньшее расстояние приводит к сокращению длительности электрофореза и меньшему уширению зон под влиянием диффузии. В результате разделение, например, сывороточных белков можно осуществить при градиенте поте.ч-циала в 20—25 В/см за 60—90 мин. [c.293]

    Органические комплексные соединения. Наиболее важное органическое комплексное соединение ниобия — соединение с таннином. Это оранжевое вещество выпадает из нейтрального или очень слабокислого раствора в избытке таннина. Аналогичное соединение тантала (лимонно-желтое) выпадает из слабокислого раствора в интервале pH 3—4. Соединения не имеют определенного состава, но таннин количественно осаждает из растворов ниобиевую и танталовую кислоты. Осадки прокаливают до NbaOj и TajOg. Различие в условиях выделения танталово-го и ниобиевого соединения используется при разделении Та и Nb в количественном анализе. [c.52]

    ВИЛ, что медные и железные соли капроновой кислоты растворяются во всех органических растворителях, медные и железные соли масляной кислоты хорошо растворяются в хлороформе. Медные и железные соли муравьиной и уксусной кислот не растворяются ни в одном органическом растворителе. Бемер, Юкенак п Тильманс указывают, что соли масляной кислоты, кроме серебряных, ртутных и свинцовых, хорошо растворимы в воде. Наряду с этим Кларк отмечает, что соли тяжелых металлов масляной кислоты выпадают в осадок из водных растворов. Располагая этими скудными и иногда противоречивыми даннымп, мы поставили перед собой задачу разработать методику разделения металлов —медп, цинка, железа, свинца и олова, положив в основу различную растворимость солей жирных кислот, а также свойство их медных и железных солей растворяться в том или ином органическом растворителе. Мы поставили перед собой цель произвести разделение меди, цинка и железа в пищевых продуктах для количественного определения в них меди и цинка. [c.223]

    Приемник, где пятна окрашивались в следующие цвета (порядок перечисления соответствует возрастанию Си + темно-коричневый, РЬ + коричневый, желтый, ВР+ коричнево-черный и Нд2+ коричнево-черный. Разделение ионов тяжелых металлов (таллия, меди, свинца, мышьяка, кадмия, сурьмы, висмута и ртути), производимое при судебных экспертизах, исследовалось Кюнци и сотр. [12, 13]. На том же адсорбенте, что и в работе [2], с применением различных комплексообразующих реагентов и органических растворителей, обнаружено, что наилучшим растворителем является смесь 100 мл бензольно-ацетонового раствора (3 1), насыщенного винной кислотой и 6 мл 10 %-ной азотной кислоты. Однако в этом растворителе пятно ртути может налагаться на пятно висмута и пятно свинца налагается на пятно меди, а кадмий дает три пятна. С помощью смеси метанол—ацетонитрил—азотная кислота (пропорции не указаны) можно селективно отделить таллий (i 0,72) от остальных ионов, которые перемещались с фронтом или вблизи фронта растворителя. Отмечается [2, 12, 13], что не следует обращать внимание на абсолютные значения Rj, так как они зависят от состава разделяемой смеси. Для оценки результатов важны только относительная последовательность пятен ионов и их цвет после опрыскивания различными обнаруживающими реагентами. С растворителем Кюнци пятна разделяемых ионов располагаются в следующей последовательности Hg>Bi> Sb> d>As>Pb> u>Tl. Некоторые цветные реакции для различных ионов этой группы указаны в табл. 33.1. Сотрудники Кюнци применили разработанный метод для решения практических задач по количественному определению содержания некоторых металлов, например мышьяка в муке, таллия в крови, ртути в моче и мышьяка и кадмия в чае. Для количественной оценки размеры полученных пятен сопоставляли с размерами пятен при работе со стандартными растворами. Стандартное отклонение при определении содержания мышьяка и кадмия в чае составляло 10%, а при определении ртути в моче —0,5 мг-7о причем для проведения анализа требовалось всего 3 ч, в то время как анализ электролитическим методом занимал 12 ч, а стандартное отклонение для последнего метода составляло 0,4—0,5мг-%. [c.481]

    АВ-17 в ОИ -форме. На анионите задерживались все кислоты. После промывания колонки водой кислоты вытесняли 0,1 п. щелочью. Щелочной раствор солей органических кислот подавали на третью колонку с катионитом КУ-2 в Н+-форме. На этой колонке происходило превращение солей в свободные кислоты, которые вытекали пз колонки. Раствор кислот упаривали досуха, и остаток растворяли в спирте. Спиртовые растворы кислот хранили до хроматографического анализа. Для разделения кислот применяли растворитель бутанол—уксусная кислота—вода. После разделения кпслот бумагу вынимали из камеры и просу-пп1вали в течение 24 час. до полного удаления следов уксусной кпслоты. Высушенную бумагу опрыскивали индикатором бром-крезолзеленым. Кислоты выступали в виде желтых пятен на зеленом фоне. В качестве свидетелей применяли яблочную, лимонную, янтарную II щавелевую кислоты. Для сравнительно-количественных определений сравнивали площадь пятен, измеренную планиметром. [c.213]

    Присутствие молибдена мешает количественному определению рения, поэтому в ходе анализа предусматривается разделение рения и. молибдена, либо колорпметрирование ведется в крепкой кислоте, т. е, Е условиях, где родатшдньгй ко.мплекс молибдена неустойчив [33, 38]. В присутствии молибдена проводится определение сравнительно высоких содержаний рения (0.01—0,001%), причем окрашенный комплекс рения не изв 1скают органическим растворителе.м. [c.365]

    В условиях дорожных испытаний, проводившихся восьмичасовыми этапами, отбирали пробы выхлопных газов, пропуская через специальную конденсирующую систему 19, 8 выхлопных газов. Конденсирующая система состояла из устройства для отдельных углеродистых частиц и воды и трех ступеней охланедения ири 0°, —25° и —65°. После отбора пробы конденсирующую систему направляли в лабораторию, где под вакуумом разделяли конденсат и анализировали полученные фракции масс-снектро-метром. В воде, содержащейся в выхлопных газах, количественно определяли альдегиды и кетоны. Метод определения основан на получении производных 2,4-динитрофенилгидразина и соответствующих альдегидов и кетонов и хроматографическом разделении их на индивидуальные соединения. Полученные низкомолекулярные соединения идентифицировали путем определения точек плавления и инфракрасных спектров поглощения. Высокомолекулярные соединения хроматографически разделяли на группы алифатических и ароматическйх альдегидов и кетонов. Кроме того, в воде определяли содержание органических кислот и нитратов. Кроме воды и газа, в конденсате были найдены высокомолекулярные органические соединения, состоявшие из несгоревшего топлива, полициклических ароматических соединений (присутствие 3,4-бензпирена не обнаружено) и окисленных углеводородов (альдегиды, кетоны, небольшое количество органических кислот). [c.205]

    Жидкостную хроматографию использовали впервые как метод окончательного разделения больших количеств полярных, термолабильных и (или) нелетучих веществ, например органических кислот [27] и фосфорорганических пестицидов [28]. Газовая хроматография была первым методом окончательного разделения летучих и (или) неполярных соединений, однако высокоскоростные жидкостные хроматографические системы сразу иосле своего появления оказались конкурентоспособными по отношению ко всем видам ГХ [29]. Для качественной идентификации с применением ЖХ используют относительные удерживаемые объемы. Количественное определение обычно выполняют с помощьк> системы детектирования, помещенной на выходе хроматографической колонки. Новые высокоскоростные ЖХ-системы аналогично газохроматографическим системам соединяют в себе возможности качественного и количественного анализа. Бирн [18] приводит сведения о современных детекторах для высокоскоростных систем, таких как детектор, измеряющий коэффициент преломления, и ультрафиолетовый детектор, в котором используется селективное поглощение [c.405]

    Период возрождения ТСХ наступил в последние несколько лет в связи с разработкой метода высокоэффективной ТСХ. Этим термином называют хроматографию на пластинках с- тонким слоем мелкодисперсных сорбентов, получивших широкое распространение в ВЭЖХ. К достоинствам ТСХ относятся высокая скорость разделения, простота аппаратурного оформления и низкая стоимость, однако этот метод не может конкурировать с газовой хроматографией или ВЭЖХ в плане разрешающей способности и точности количественного определения. Вместе с тем он имеет и немаловажные преимущества пластинки можно опрыскивать разнообразными реагентами, что обеспечивает достаточно высокую степень селективности обнаружения соединений, не столь легко достижимую при применении колоночной хроматографии. Например, углеводороды можно обнаруживать, опрыскивая пластинки концентрированной серной кислотой, которая обугливает органические соединения. ТСХ часто используют как метод предварительной очи- [c.404]

    Понятия чистоты и идентичности можно представить яснее, если исследовать понятие сходства. В старой литературе было сравнительно мало критериев сходства. Первыми критериями, используемыми при изучении различных видов материи, были качественные отличия, которые прежде всего бросались в глаза, а именно размер, цвет и форма. Между введением первой количественной меры (плотность) в качестве критерия чистоты и использованием химического состава в качестве меры сходства лежит период более двух тысяч лет. С развитием науки критерии сходства становились более многочисленными, а приборы для измерения свойств веществ—более совершенными. С увеличением точности измерения наши понятия о чистоте, идентичности и элементах настолько изменялись, что в настоящее время трудно утверждать, что чистый углерод можно получить из сахарозы, и поэтому следует предпочесть относительное определение чистоты. Если при хлорировании пропионовой кислоты в результате тщательной разгонки продукта выделяют фракцию, после повторной перегонки которой точка кипения, показатель преломления и плотность различных фракций не изменятся, то такой продукт можно вполне законно назвать чистым. Однако если в дополнение к вышеизложенным операциям включить разделение на оптические антиподы, то представления о чистоте и идентичности придется изменить, поскольку это чистое соединение представляет собой рацемическую смесь. Аналогичные аргументы можно выдвинуть в отношении любого органического вещества, если определяют концентрацию изотопов водорода и углерода в чистых органических соединениях. Понятие чистоты, следовательно, является относительным и полностью основывается на критериях, используемых для измерения сходства определенных фракций дан ного вещества. Эйрин [1] определяет чистое вещество как систему молекул, в которой после тщательного фракционирования не удается выделить фракции с различными свойствами. Можно показать, что чистая енольная форма ацетоуксусного эфира в кварцевом сосуде представляет собой чистое соединение, в то время как в стеклянном сосуде, где присутствуют следы щелочи, она становится смесью. Понятие чистоты включает применение специальных методов определения свойств, поэтому автор предпочитает ограничиться следующим определением Органическое вещество можно считать чистым, если оно при повторном фракционировании дает фракции такой же растворимости, с такими же температурами плавления и кипения, с одним и тем же показателем преломления и т. д. , т. е. беря наиболее обычные свойства. [c.350]

    Для определения железа в TagOg три навески образца по 0,1 г сплавляют каждую в кварцевом тигле с 2,5 г бисульфата калия, сначала на горелке, а затем в муфельной печи при 760° С. Сплав растворяют в 3 мл H2SO4 конц. (пл. 1,84), охлаждают и прибавляют 3 мл раствора винной кислоты. Затем раствор количественно переносят в делительную воронку и прибавляют 2 мл раствора роданида аммония, 0,5 мл дигексиламина и 5 мл амилацетата. Комплексное соединение железа экстрагируют в течение 1—2 мин и после разделения фаз переносят в градуированный цилиндр, доводят амилацетатом до объема 5 мл и фотометрируют органическую фазу при X 480 нм. [c.152]

    В каждом опыте рассчитывали баланс масс. Определяли содержание растворенных и нерастворимых органических соединений металлов и нерастворимых соединений, входящих в состав биомассы. Эта последняя фракция далее была разделена на металл внутри- и внеклеточный. Разделение осадка на фракции осуществляли с помощью просеивания, декантации, фильтрации и промывки в азотной кислоте и ЭДТА. Таким способом удается количественно отделить клеточную биомассу от осадка. Все определения металлов проведены методом атомно-адсорбционной спектрометрии. Подробная схема разделения описана в [19]. Было найдено, что металлы всегда распределяются между неорганической фазой и биомассой. Промывание клеточной биомассы раствором ЭДТА способствует выделению некоторого количества металлов, но полное извлечение происходит лишь после разрушения клеток. [c.292]

    Ход определения. К сухому остатку, полученному после разделения органических веществ (см. разд. 9.2), прибавляют 5 мл 207о-ного раствора едкого натра и после растворения кислот количественно переносят полученный раствор в колбу вместимостью 50 мл, приливают 3 мл диметилсульфата, закрывают пробкой и перемешивают смесь 2—3 мин. Затем колбу присоединяют к обратному холодильнику, нагревают на водяной бане 10—15 мнн, охлаждают, отъединяют холодильник и переносят содержимое колбы в делительную воронку вместимостью 100 мл. Образовавшиеся сложные эфиры кислот извлекают экстракцией гексаном (3 раза по 10 мл), экстракты объединяют, высушивают, прибавляя прокаленный сульфат натрия, переносят в предварительно взвешенный бюкс и испаряют растворитель под вентилятором до объема около 0,5 мл, после чего бюкс снова взвешивают. По разности масс и плотности гексана рассчитывают объем полученного раствора метиловых эфиров кислот в гексане. [c.296]

    Теноилтрифторацетон пригоден для разделения урана и плутония и очистки их от осколочных радиоактивных элементов. В этом случае из сильно кислых растворов сначала экстрагируются четырехвалентный плутоний и цирконий, а затем ничтожные количества других веществ вымываются из органического слоя азотной кислотой. Плутоний (Рп ) отделяется от циркония восстановлением до Рп и реэкстракцией из органического слоя водным раствором азотной кислоты. Уран после удаления плутония экстрагируется раствором теноилтрифторацв тона в гексане. Недавно описан быстрый количественный метод выделения плутония из смесей с другими элементами, также основанный на экстракции плутония раствором теноилтрифторацетона в ксилоле. Метод может быть контрольным при определении полноты отделения плутония. Этот же экстракционный раствор используется для выделения из кислых растворов нептуния-237 и микроколичеств нептуния-239. Все эти примеры свидетельствуют о важном значении фторированных р-дикетонов в современной радиохимии и атомной промышленности. [c.92]

    Образование комплекса вольфрама полностью подавляется добавлением лимонной кислоты [14] образование комплекса молибдена при этом не подавляется, и он может быть экстрагирован в соответствующий органический растворитель. Это свойство дает возможность количественно отделить молибден от вольфрама, который не экстрагирз ется, но может быть определен с дитиолом после разрущения лимонной кислоты, оставшейся в растворе. Такой метод разделения двух элементов дает более точные результаты, чем описанный ранее метод [15], основанный на последовательном фотометрическом определении. [c.312]


Смотреть страницы где упоминается термин Разделение и количественное определение органических кислот: [c.301]    [c.88]    [c.343]    [c.283]    [c.164]    [c.445]    [c.258]    [c.218]    [c.460]    [c.264]    [c.69]    [c.528]    [c.166]   
Смотреть главы в:

Руководство по ионообменной, распределительной и осадочной хроматографии -> Разделение и количественное определение органических кислот




ПОИСК





Смотрите так же термины и статьи:

Кислота количественное определение

Кислота органическая

Разделение количественное

Разделение определение



© 2024 chem21.info Реклама на сайте