Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общая характеристика свойств электронных состояний

    Исключительно важно освоить прогнозирующую роль периодического закона и периодической системы элементов Д. И. Менделеева. Тогда, даже не прибегая к учебнику, удастся многое рассказать о свойствах элементов и нх соединений. Так, по положению элемента в периодической системе можно описать строение атома — заряд и состав ядра, электронную конфигурацию атома. А по последней определить степени окисления элемента, возможность образования молекулы в обычных условиях, тип кристаллической решетки простого вещества в твердом состоянии. Наконец, можно определить формулы высших оксидов и гидроксидов элементов, изменение их кислотно-основных свойств по горизонтали и вертикали периодической системы, а также формулы различных бинарных соединений с оценкой характера химических связей. Это значительно облегчит изучение свойств элементов, простых веществ и их соединений. Начинать следует с рассмотрения общей характеристики каждой подгруппы. [c.101]


    Общая характеристика группы. Атомы всех элементов, составляющих вторую группу периодической системы (табл. 8), имеют на внешнем энергетическом уровне по два электрона. В соответствии с этим все они в свободном состоянии являются металлами. Двухзарядные положительные ионы, в виде которых они находятся в соединениях, различаются прежде всего тем, что ион бериллия Ве2+ имеет всего два Электрона, в ионах Mg2+, Са , Ва и Яа на внешнем уровне находится по 8 электронов, а в ионах 2п2+, нHg — по 18 электронов. В соответствии с этим цинк, кадмий и ртуть, будучи по свойствам близки мем<ду собой, отличаются от остальных элементов этой группы и составляют самостоятельную подгруппу элементов. [c.53]

    Так, по положению элемента в периодической системе можно описать строение атома — заряд и состав его ядра и электронную конфигурацию, по последней определить степени окисления элемента в соединениях, возможность образования молекулы в обычных условиях, тип кристаллической решетки простого вещества в твердом состоянии. Наконец, можно определить формулы высших оксидов и гидроксидов элементов, изменение их кислотно-основных свойств по горизонтали и вертикали периодической системы, а также формулы различных бинарных соединений с оценкой характера химических связей. Это значительно облегчает изучение свойств элементов, простых веществ и их соединений. Начинать следует с рассмотрения общей характеристики каждой подгруппы. [c.157]

    Вопросы для самопроверки 1. Дайте общую характеристику элементов V А подгруппы, исходя из их положения в периодической системе. Какие степени окисления характерны для элементов этой подгруппы 2. Как в ряду N—Р—Аз—5Ь—изменяются окислительно-восстановительные свойства элементов 3. Какова максимальная ковалентность азота и какова фосфора Ответ обоснуйте, исходя из положения этих элементов в различных периодах и строения их атомов. 4. По какому типу химической связи построена молекула N2 Какова кратность связи в молекуле азота Как объяснить малую реакционную способность азота 5. Какие степени окисления характерны для азота В каких гибридных состояниях могут находиться валентные орбитали атома азота Приведите примеры соединений азота с различным типом гибридизации его валентных орбиталей 6. При каких условиях осуществляется синтез аммиака Какими свойствами обладает аммиак Какова форма молекулы ЫНз Какую среду имеет водный раствор аммиака 7. Чем объясняется, что молекула ЫНз является донором электронной пары Какое строение имеет ион МН 8. Какие кислородные соед шения образует азот Какое строение имеют молекулы оксидов азота Какие из оксидов азота являются кислотообразующими 9. Какое строение имеет молекула азотистой кислоты Какие две таутомерные структуры известны для НЫОг Чем можно объяснить малую термическую устойчивость НЫОг 10. Приведите примеры реакций, подтверждающих окислительно-восстановительные [c.50]


    Один метод локализации со специфической физиологической активностью был позаимствован нз ПЭМ. Этот метод меток поверхности клетки, который, будучи применен к образцам для РЭМ, приводит к образованию на поверхности клетки морфологически различаемых или аналитически идентифицируемых структур. Такие методики в сочетании с растровой электронной микроскопией высокого разрешения позволяют изучать природу, распределение и динамические свойства антигенных и рецепторных состояний на поверхности клеткн. Методы нанесения меток на поверхность клетки в общем случае достаточно сложны и включают процедуры иммунохимической и биохимической очистки. Подробные ссылки на них можно найти в работах [359—361], но сущность методик состоит в следующем. Для крепления антител в определенных антигенных состояниях на поверхности клетки используются стандартные иммунологические процедуры. Хитрость состоит в том, чтобы модифицировать антитела таким образом, чтобы они также несли морфологически различимую метку, такую, как латексные шарики или сферы из двуокиси кремния, распознаваемый вирус, как, например, вирус табачной мозаики, или один из Т-четных фагов, как показано на рис. 11.18, илн белковая молекула известных размеров, как ферритин или гемоцианин. В работе [362] (рис. 11.19) использовались гранулы золота, которые имеют большой коэффициент вторичной электронной эмиссии. Одна часть антитела имеет средство для специфичного антигенного закрепления на поверхности клетки, в то время как другая часть несет морфологически различимые структуры. В настоящее время иммунологические методы достигли такого уровня, когда они не могут быть использованы для изучения как качественных, так и количественных характеристик поверхности клетки [363, 364]. [c.244]

    Общая характеристика свойств электронных состояний............295 [c.267]

    ОБЩАЯ ХАРАКТЕРИСТИКА СВОЙСТВ ЭЛЕКТРОННЫХ СОСТОЯНИЙ [c.295]

    Поскольку при любых электронных переходах происходит изменение свойств электронной оболочки, это не может не найти отражения в такой важной энергетической характеристике молекулы, как кривая потенциальной энергии. Иными словами, в различных электронных состояниях вид потенциальных функций и г) молекулы должен быть в общем случае разным. При этом могут иметь место следующие варианты в возбужденном состоянии происходит увеличение или (чаще) уменьшение энергии диссоциации, и наоборот, уменьшение или (чаще) увеличение равно-.весного межъядерного расстояния, наконец, возбужденное состояние молекулы может вообще оказаться неустойчивым, т. е. попадая в него молекула диссоциирует на атомы или ионы. [c.66]

    Главное квантовое число п определяет общий запас энергии электрона. В зависимости от формы орбиты моменты количества движения Р=тьг электронов одного квантового слоя в атоме отличаются друг от друга по величине, а это и обусловливает небольшую разницу в их энергетическом состоянии. Главное и побочное квантовые числа и составляют энергетическую характеристику электрона. Электрон имеет свойства частицы и волны Благодаря волновым свойствам электроны движутся не по строго очерченным орбитам, а охватывают все пространство вокруг ядра, создавая электронное облако . В этом пространстве есть [c.56]

    Теперь рассмотрим, как проявляется различное строение внутренних электронных оболочек атомов инертных газов на их параметрах и характеристиках, включая химические свойства. Прежде всего оказывается, что возрастание атомного радиуса от гелия к радону не происходит монотонно с увеличением атомного номера, а обнаруживает совершенно закономерные изломы (рис. 26). Атомные радиусы аргона и ксенона оказываются повышенными, а неона, криптона и радона уменьшенными по сравнению с общим монотонным возрастанием. Аналогично изменяются параметры решеток неона—радона, а также их атомные объемы и первые ионизационные потенциалы, характеризующие энергию связи электронов внешней -оболочки с ядром, по-разному экранированным внутренними оболочками. С возрастанием атомного номера от гелия к радону потенциалы ионизации понижаются, но опять-таки немонотонно, с теми же характерными изломами, что и атомный радиус. Плотности инертных газов в твердом и в жидком состояниях [80] изменяются более монотонно (см. рис. 26), однако показывают слабые, но столь же закономерные отклонения от монотонного изменения, что и атомные радиусы. При переходе к плотности жидкости в критических условиях начинает превалировать монотонное изменение свойств, которое для газообразного состояния превращается уже в монотонное изменение, такое же, как увеличение атомного веса с возрастанием атомного номера. [c.94]

    Очень высокая химическая активность щелочных металлов обусловлена низким ПИ], низкой температурой плавления, рыхлой, легко разрушаемой кристаллической структурой, малой плотностью. Все эти, а также многие другие характеристики ЩЭ в металлическом состоянии взаимно связаны, и общей причиной уникальных свойств ЩМ, конечно, является их особая электронная структура — наличие только одного электрона на электронной оболочке с главным квантовым числом п и поэтому очень непрочной, легко разрушаемой. [c.12]


    Иод в парах и в растворе (в насыщенных углеводородах) имеет полосу поглощения в видимой области около 520 нм, а в ультрафиолетовой области в районе 230 нм. Спектральные характеристики растворов иода представлены в табл. 1.7, 1.8, 1.9. При образовании комплексов полоса 520 нм сдвигается в сторону меньших длин волн и ее интенсивность несколько увеличивается. Сдвиг полосы поглощения иода от фиолетовой области к голубой наблюдается при образовании любых стабильных а-комплексов. Он сильно увеличивается с ростом диэлектрической проницаемости растворителя. Установлено, что величина сдвига растет с увеличением устойчивости комплексов с алифатическими аминами. Высказывается мнение, что решающее влияние на сдвиг полос поглощения оказывает универсальное взаимодействие, т.е. неспецифическая сольватация, определяемая полярностью и поляризуемостью растворителя [15]. Малликен [29] объяснил наличие двух полос в электронных спектрах молекулярных соединений на основе концепции переноса заряда. При этом волновая функция основного состояния молекулярного комплекса представлялась в виде двух слагаемых. Первое характеризует систему, когда в комплексе молекулы донора и акцептора имеются такие же геометрические параметры, что и в свободном состоянии, а взаимодействие между донором и акцептором определяется силами электростатической природы диполь-диполь, диполь-индуцированный диполь и др. Второе слагаемое характеризует состояние, в котором электрон перенесен от донора к акцептору, при этом перенос заряда осуществляется с наиболее высокой занятой орбитали донора на наиболее низкую свободную молекулярную орбиталь акцептора. Из теории следует, что энергия полосы переноса заряда определяется величинами потенциалов ионизации донора и сродства к электрону для акцептора. Для отдельных групп растворителей родственного характера удалось установить линейную зависимость между сдвигом полосы поглощения иода и потенциалом ионизации [30]. Детально изучена связь длинноволновой полосы поглощения иода со свойствами растворителей и показано, что для ст-доноров наблюдается связь с потенциалом ионизации функции универсальных взаимодействий, а для случая замещенных пиридинов срК. Сдвиги полос для я-доноров не описываются этими зависимостями [31]. Отмечено, что для комплексов иода с ст- и л-донорами зависимость сдвигов полос поглощения в ультрафиолетовой области от основности растворителя не может быть описана общим уравнением. [c.22]

    Широкое применение Ш-нитридов в качестве материалов полупроводниковой техники, электронной промышленности, химического приборостроения, для изготовления конструкционной керамики общего и специального назначения, в производстве твердых, износостойких материалов, абразивов, защитных покрытий и т. д. [1—4] обусловило развитие новых методов их получения (обзоры [3—18]), которые позволяют эффективно регулировать функциональные свойства нитридов путем направленной модификации их структурного и химического состояний. Синтезируемые при этом системы (в том числе в неравновесных условиях — например, в виде тонких пленок, покрытий, гетероструктур [12—14, 17,18]), включают большое число разнообразных дефектов, отличающих характеристики получаемого материала от свойств идеального кристалла. Очевидна роль дефектов в формировании эксплуатационных параметров многокомпонентных нитридных систем — керамик, композитов [2, 3, 9,16]. [c.34]

    Общая характеристика подгруппы хрома. Электронная конфигурация хрома н молибдена (п—1)с1 П5 вольфрама п—Их степень окисления +6. Для хрома еще характерны степени окисления +3 и +2. Соединения хрома (И) —сильные восстановители. Они окисляются на воздухе, если только Сг +-1юи не стабилизирован за счет комплексообразовання. В трехзарядном состоянии хром близок к алюминию. Соединения молибдена и вольфрама по свойствам близки друг другу. Для них характерны степени окисления +4 н +6. [c.417]

    Объем книги и общий уровень изложения в ней не дают возможности систематически изложить основы квантовой химии, на автор стремился познакомить студента с основными методами ее необходимыми для понимания выводов и квантовомеханических представлений, используемых в книге. В дополнениях дана характеристика волнового уравнения Шредингера, основы квантовомеханической теории атома водорода и элементы квантовомеханической теории химической связи. Расширено рассмотрение молекулярных спектров. Значительное внимание уделено методам электронного парамагнитного резонанса, ядерного магнитного резонанса, нашедшим широкое применение при исследовании разных вопросов и уже на данной стадии развития подводящим к пониманию особенностей тонких и сверхтонких изменений в состоянии частиц. Введены основные сведения об элементах симметрии молекул и кристаллов. Описаны расчетные методы статистической термодинамики и основные понятия термодинамики необратимых процессов. Введено вириальное уравнение состояний и другие соотношения, используемые для расчета свойств неидеальных газов в широкой области температур и давлений. Приведен дополнительный материал, характеризующий особенности свойств веществ при высоких и очень высоких температурах. Описаны особенности внутреннего строения и свойств полимерных материалов. [c.12]

    Целесообразно рассматривать таблицу Менделеева как своеобразную матрицу, элементами которой являются собственно химические элементы. Роль строки выполняет здесь период, а роль столбца — группа. Совокупность этих характеристик должна обеспечивать инвариантность положения элемента в таблице. В свете современных представлений о строении атома принадлежность элемента к конкретному периоду определяется числом электронных слоев атома в нормальном, невозбужденном состоянии. Номер периода отвечает номеру внешнего слоя, который не завершен и заполняется электронами. А принадлежность элемента к той или иной группе определяется общим числом валентных электронов, т. е. электронов, находящихся на внешней и недостроенных внутренних оболочках . Например, хром [Сг1 [Arl "ЗdЧs и сера [Sl fNe] Зs 3/) являются элементами одной и той же VI группы, поскольку оба атома имеют по б валентных электронов. Отметим, что деление на периоды и группы введено Д. И. Менделеевым, который определил принадлежность элемента к конкретной группе, ориентируясь на химические свойства, в частности на форму и характер высших оксидов и гидроксидов. Действительно, такие непохожие друг на друга металлический хром и неметаллическая сера в высшей степени окисления, соответствующей номеру группы, образуют оксиды [c.8]

    Общая характеристика. Эти элементы редкие, за исключением алюминия, на долю которого приходится 8,8% массы земной коры (третье место — за кислородом и кремнием). Во внешнем электронном уровне их атомов по три электрона а в возбужденном состоянии Проявляют высшую валентность 111 Э2О3, Э(ОН)з, ЭС1з и т. д. Связи с тремя соседними атомами в соединениях типа ЭХд осуществляются за счет перекрывания трех гибридных облаков поэтому молекулы имеют плоское трехугольное строение, дипольный момент нуль. Из-за того, что в атомах галлия, индия и таллия предпоследний уровень содержит по 18 электронов, алюминия 8 и бора 2, нарушаются закономерные различия некоторых свойств при переходе от алюминия к галлию температур плавления элементарных веществ, радиусов атомов, энтальпий и свободных энергий образования оксидов, свойств гидроксидов и пр. (табл. 23). Таков же характер изменения различий при переходе от магния к цинку. [c.279]

    По причине своего негативного характера этот принцип называют иногда запретом Паули. Этот запрет означает, что любым двум электронам атома запрещено быть во всех отношениях похожими друг на друга, что все они дифференцированы и отличаются друг от друга а) либо нахождением в разных квантовых (энергетическ х) слоях (то есть различным общим запасом энергии, различным зна-че 1ием главного квантового числа п и различным принципиальным удалением от ядра) б) либо нахождением в р а з-ных энергетических подуровнях (то есть различием в энергетической характеристике, различием в значениях побочного квантового числа к, различными формами орбит) в) либо нахождением в разных энергетических состояниях (то есть еще некоторым, хотя и менее значительным, различием в энергетической характеристике, различными дозволенными поворотами орбит в магнитном поле) г) либо своим спином как особой качественной характеристикой еще не вполне выясненной природы. Принцип Паули по существу перекликается с известным выражением В. И. Ленина электрон так же неисчерпаем, как и атом (можно ведь понимать под неисчерпаемостью многообразие его качественных характеристик в разных условиях, то есть на различном удалении от ядра). Этот принцип поясняет индивидуал ьность элементов и дискретность свойств их (порционный, скачкообразный характер изменения) ведь у каждого элемента имеется свое особенное распределение электронов по слоям, по подуровням, по состояниям , по спину , а также (как это будет показано в гл. 10) свой особенный состав ядра. [c.122]

    Совокупность этих характеристик должна обеспечивать инвариантность положения элемента в таблице. В свете современных представлений о строении атома принадлежность элемента к конкретному периоду определяется числом электронных слоев атома в нормальном, невозбужденном состоянии. Номер периода отвечает номеру внешнего слоя, который не завершен и заполняется электронами. А принадлежность элемента к той или иной группе определяется общим числом валентных электронов, т.е. электронов, находящихся на внешней и недостроенных внутренних оболочках. Например, хром [Сг] " — [Аг] 3(Р45 и сера [8] — [Ке]103 23р- являются элементами одной и той же VI группы, поскольку оба атома имеют по 6 валентных электронов. Отметим, что деление на периоды и группы введено Д.И.Менделеевым, который определял принадлежность элемента к конкретной группе, ориентируясь на химические свойства, в частности на форму и характер высших оксидов и гидроксидов. Действительно, такие непохожие друг на друга металлический хром и неметаллическая сера в высшей степени окисления, соответствующей номеру группы, образуют оксиды одинакового состава ЭОз (СгОз и ЗОз), которые к тому же обладают сходными (кислотными) свойствами. Им отвечают гидроксиды, имеющие ярко выраженный кислотный характер, — хромовая НгСгО и серная Н2804 кислоты. Таким образом, в группы Периодической системы объединяются элементы с одинаковым общим числом электронов на достраивающихся оболочках независимо от их типа. Подобное объединение позволяет выделить наиболее общий вид аналогии, который называется группо- [c.227]

    Рассмотренный выше общий подход к проблеме с успехом используется также при анализе влияния среды на характеристики электронных спектров. Отличие состоит лишь в том, что в этом случае задача заключается в определении изменения под действием межмолекулярных сил взаимного расположения двух потенциаль- и ных кривых комбинирующих электронных состояний (рис. 3.6). Последнее, в свою очередь, позволяет найти изменение частот переходов (смещение электронно-колебательной полосы), интегралов перекрывания волновых функций (интенсивность полосы), распределения вероятностей переходов (форма полосы) и т. д. Наибольшие успехи достигнуты в последние годы при теоретическом описании общих закономерностей смещения спектров поглощения и флуоресценции молекул в зависимости от физических свойств растворителя. Состояние дел в этой области таково, что сейчас уже можно говорить о создании современных физических теорий сольва-тохромии и сольватофлуорохромии, которые позволяют не только количественно объяснять большинство наблюдающихся фактов и закономерностей, но и предсказывать некоторые новые явления, а также извлекать из опыта новую информацию о свойствах. изучаемых систем (см. гл. 14 и 15). [c.105]

    I. 2, в самом общем виде определяется состоянием электронов поверхности катализатора как твердого тела. В полупроводниках вследстБпе перекрывания волновых функций электроны валентных оболочек перемещаются в пространстве, в результате чего пропс-ходит переход электронов от атома к атому, т. е. электроны обобществляются. Если импульсы трансляционного движения различных состояний валентных электронов атомов кристалла отличаются на величину, меньшую значения неопределенности/г/ (/г — постоянная Планка, L — длина кристалла по оси движения электронов), то эти состояния не являются дискретными, их нельзя отличить друг от друга, электронные уровни отдельных атомов кристаллической решетки вырождаются, образуя зоны. Таким образом, электронные характеристики кристалла в целом и его поверхности являются результатом коллективных свойств электронов твердого тела, в конечном счете связанных с положением атомов тела в периодической системе элементов Менделеева. [c.30]

    Интерес к свойствам ионов с /-электронами стимулировал проведение многочисленных спектральных и магнитных исследований лантанидных и актинидных элементов. Некоторые общие характеристики спектров поглощения лантанидов в видимой области приведены на рис. 52. Как видно, полосы поглощения слабые и узкие (их ширина составляет всего около Vio ширины соответствующих полос в спектрах переходных элементов) далее, для каждого иона наблюдается много полос. Малая интенсивность и узость полос рассматриваются как указание на то, что соответствующие переходы происходят в пределах /-подоболочки и что /-подоболочка экранирована от сильных взаимодействий с окружающими атомами, характерных для d-подоболочек в ионах переходных элементов. Большое число полос является следствием многих причин. Одна из них — это большое число состояний, возможных при наличии в/-подоболочке двух или более электронов. Наглядно это можно представить, приближенно рассмотрев возможные расположения двух или более электронов на семи /-орбиталях. Один этот фактор может объяснить появление 119 полос в случае ионаЕи " с конфигурацией/ . Кроме того, появление дополнительных полос может быть обусловлено расщеплением уровней энергии из-за взаимодействия с несимметричным окружением или спин-орбитального взаимодействия. [c.239]

    Хотя эта схема приемлема и обоснована, она до сих пор еще не исследована экспериментально достаточно тщательно. Даже различные экспериментальные характеристики, в которых проявляются эти равновесия, — видимые и ультрафиолетовые спектры реагентов и продуктов, концентрация неспаренных электронов на разделенных ион-радикалах и свойства ионной пары В — А , находящейся в равновесии с ион-радикалами,— не были исследованы ни для одной системы в каком-либо одном растворителе. Совершенно ясно лишь то, что комплексы В, А и — А различимы и обладают в общем разными спектральными свойствами и что обе эти частицы могут одновременно существовать в растворе. Таким образом, ХП нельзя считать просточасти-цей В, А (XI), в которой коэффициент Ь для формы с переносом заряда В " — А велик. Ваишо всегда помнить о различии между резонансными структурами и фактическими электронными состояниями комплексов комплекс В, А является единой частицей или состоянием, которое можно рассматривать как построенное из вкладов резонансных структур В, А и В — А , причем вклад первой из них имеет большее значение. Наоборот, В+ — А" представляет собой другую единую частицу, в которой резонансная структура В — А вносит больший вклад. Последний комплекс подробно экспериментально не исследован, но некоторые его свойства можно предсказать на основании свойств других димеризованных радикалов в растворе [29]. При сближении двух сравнительно устойчивых радикалов будет возникать тенденция к образованию (слабой) связи между ними, т. е. спаривание электронов и переход системы в сииглетное состояние это значит, что комплекс не должен обладать интенсивным сигналом ЭПР. Может быть обнаружена новая полоса поглощения, возникшая в результате взаимодействия обоих компонентов таким же образом, как возникает полоса поглощения переноса заряда в комплексе В, А. [c.344]

    Поляризуемость зависит от свойств и размеров электронного облака и служит одной из важнейших характеристик электрических свойств молекулы (атома, иона). Из уравнения (1.2) следует, что при =1 а=цинд, т. е. поляризуемость равна дипольному люменту, индуцированному электрическим полем с напряженностью, равной единице. Поляризуемость имеет размерность объема и численно близка к кубу эффективного радиуса г молекулы (атома, иона) Например, анв=0,20-см , ан2 = 0,32> 10- см , асс14 = = 10,14"10-2< см и азпС1<= 13,04 10" см . Чем труднее смещаются электроны молекулы под действием электрического поля, тем меньше поляризуемость. Все изменения, происходящие в структуре молекулы (атома, иона) под воздействием внешнего электрического поля, называются электрической поляризацией вещества или просто поляризацией. Поляризация, отнесенная к одному молю вещества, называется мольной поляризацией, а к единице массы — удельной поляризацией. Поляризация неполярных молекул практически не зависит от присутствия других молекул в системе и от внешних условий (давление, температура), которые определяют состояние вещества. Поляризация же полярных молекул зависит от этих факторов. Существуют три основных вида поляризации, являющиеся составляющими общей поляризации  [c.6]

    Особенностью химичесютх реакций является передача электрона от одного атома или молекулы к другим. Процесс передачи электрона вовсе необязательно реализуется переходом свободного электрона. Электрон может быть отщеплен от реагента, если в его непосредственном соседстве находится электронный акцептор. Прирост свободной энергии при акцептировании электрона должен превосходить энергию, необходимую для его отщепления от электронного донора. Освобождение электрона можно также осуществить, сообщая донорной системе избыточную энергию с помощью теплового, фотохимического или электростатического воздействии. Такой процесс происходит независимо от наличия каютх-либо акцепторов электронов. Отщепленный электрон диффундирует в среде до его захвата в результате одного из двух возможных актов. Он может присоединиться к атому или молекуле, которые обладают положительным сродством к электрону. В то же время, если электрон перемещается в конденсированной среде, состоящей из молекул с нулевым или отрицательным электронным сродством, он оканчивает свой путь в ловушке , образованной его собственным поляризационным полем. Такой захваченный электрон уже не в состоянии свободно перемещаться в веществе. Из своей потенциальной ямы электрон может освободиться только при условии, если он приобретет энергию извне или перейдет в соседнюю ловушку. Электрон, захваченный в растворителе, отличается от свободного электрона меньшей подвижностью и большей локализацией. Кроме того, захваченный электрон характеризуется отрицательной свободной энергией образования, т. е. является термодинамически более стабильным. Эти свойства, напоминающие свойства отрицательного сольватированного иона, позволяют рассматривать электрон как особую гидратированную частицу. В общем смысле электронный акцептор также можно рассматривать как ловушку, в которой электрон локализован гораздо сильнее, чем в ловушке, образованной молекулами растворителя. Электрон, окруженный ориентированными молекулами растворителя, является (и это его наиболее существенная в химическом отношении характеристика) необычайно активным электронным донором. Такое образование, существующее в жидкостях, называется солъватированным электроном е , если же растворителем является вода, то это гидратированный электрон вад. [c.169]

    Валентность элемента в настоящее время рассматривается как число ковалентных связей его атома в данном соединении, современные синонимы этого термина — ковалентность , связность . Именно в ковалентной химической связи проявляется высокая химическая специфичность каждого элемента и каждого его валентного состояния специфичность энергии связи, степени полярности и стереометрических характеристик — углов связи, их длин. Ионная связь менее специфична она собственно становится связью только в конденсированных фазах, главным образом в твердых телах, в которых кристаллические структуры ионных веществ довольно однообразны и определяются зарядами и размерами ионов. Ковалентная валентность не является, так сказать, априорным свойством элемента, т. е. ее нельзя с определенностью предсказать заранее, как максимальное окислительное число валентность зависит от партнеров данного атома в соединении и от условий получения последнего. Поэтому нельзя априорно определять валентность по числу неспаренных электронов в основном состоянии атома, как это иногда делается валентность определяется числом общих электронных пар между дапкым атомом и соединенными с ним атомами. При этом в равной мере учитывается каждая а-, я- и 6-связь. Например, в тетракарбонилникеле N ( 0)4 валентность никеля оказывается равной 8, поскольку одна из главных валентных схем этого соединения такова  [c.30]

    Антимониды переходных металлов. Зонная теория твердого тела в общем виде исключает образование полупроводниковых соединений в системах с участием переходных металлов. Наличие у атомов переходных металлов дефектных -оболочек должно привести к перекрытию валентных зон и зон проводимости. Однако опыты подтвердили полупроводниковые свойства соединений, в состав которых входят атомы переходных металлов. Так как вырождение энергетических состояний электронов в зону происходит при химическом взаимодействии, которое может наблюдаться при каком-то критическом расстоянии между атомами, был предложен следующий критерий для определения состояния -электронов в соединениях переходных металлов. В качестве основной характеристики выбран коэффициент [c.221]

    При анализе свойств аквакомплекса титана полоса поглощения в его оптическом спектре была приписана фотопереходу -электрона из основного состояния 2 на возбужденный уровень eg. Аналогичный подход, очевидно, справедлив и в случае рассматриваемого экси-комплекса. Величина —энергия фотоперехода — будет представлять собой разность энергий уровня, на котором расположен -электрон, и одного из более высоко расположенных уровней. Основываясь на ряде самых простых представлений теории и обширном экспериментальном материале, попытаемся в самых общих чертах представить себе оптические характеристики такого образования. [c.105]

    Значение теории групп для квантовомеханического исследования молекул и кристаллов состоит в следующем во-первых, теория групп позволяет, исходя только из свойств симметрии системы, провести классификацию электронных и колебательных состояний молекулы и кристалла и указать кратность вырождения энергетических уровней системы во-вторых, на основе теории групп удается установить некоторые правила отбора для матричных элементов, существенные при расчете вероятностей переходов и других характеристик в-третьих, на основе теории групп можно провести качественное рассмотрение возможного расщепления вырожденного уровня энергии при изменении симметрии системы (например, появлении внешнего поля). Наконец теория групп позволяет существенно понизить порядок решаемых уравнений при использовании симметризованных (преобразующихся по неприводимым представлениям группы симметрии системы) функций благодаря тому, что матричные элементы операторов, вычисленные с такими функциями, удовлетворяют некоторым соотношениям общего характера. [c.6]

    Не забудем, однако, что мы приняли валентность как главную характеристику данного элемента. С этой точки зрения можно еще спорить, является ли ТЬ гомологом Се или Hf, можно ли рассматривать Ат как го-лшлог Ей или нет. Ни в коем случае, однако, нельзя серьезно утверждать, что Ра является даже плохим гомологом Рг, их основные химические свойства не имеют ничего общего. Это верно также для пар N<1 — и, Рт — Кр и т. д. Только начиная с кюрия, когда степень окисления - -3 становится действительно преобладающей и валентности выше 4 исчезают (по крайней мере, на уровне нынешних знаний), гомология с лантаноидной серией вполне обоснована. С другой стороны, хотя сейчас известно, что в особенных условиях все лантаноиды в твердом состоянии могут быть восстановлены до валентности + 2 [17], во второй половине этого семейства только Ь (И) существует в водных растворах, тогда как эта степень окисления сравнительно легко осуществляется, согласно Я. Малы и других авторов [18—20], для элементов 98—102, а для последнего она даже более стабильна в водных растворах, чем + 3. Эти факты немного неожиданны, и, если подтвердятся, указывают, вероятно, на какие-то различия электронных структур тяжелых 4/- и 5/-элементов или же на различия электронных связей. [c.71]


Смотреть страницы где упоминается термин Общая характеристика свойств электронных состояний: [c.161]    [c.265]    [c.46]    [c.24]    [c.50]    [c.108]    [c.367]    [c.110]   
Смотреть главы в:

Физические методы исследования в химии 1987 -> Общая характеристика свойств электронных состояний




ПОИСК





Смотрите так же термины и статьи:

Свойства и состояние тел

Состояния электрона

Характеристика электронных

Характеристики состояния



© 2025 chem21.info Реклама на сайте