Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамические характеристики элементов и ил соединений

    Термодинамические характеристики некоторых соединений актинидных элементов (298° К)  [c.107]

    Этот пример помогает нам сделать очень важный вывод нельзя, оценивая устойчивость какого-то соединения, оперировать термодинамическими характеристиками только этого соединения. Нужно обязательно принимать во внимание термодинамические характеристики других соединений, которые могут быть образованы этими же элементами. [c.89]


    Метод однотипных соединений и реакций можно применять для расчетов термодинамических характеристик органических реакций прежде всего в той форме, которая применялась для расчетов неорганических реакций (см. гл. III и IV), т. е. при использовании химического подобия однотипных соединений элементов одной подгруппы периодической системы и аналогичных реакций этих соединений. [c.278]

    Характерная особенность (/-элементов (в отличие от элементов главных подгрупп) заключается в том, что их соединения, отвечающие высшим степеням окисления элемента, не проявляют вторичную периодичность во многих свойствах, в том числе в таких как температура плавления, термодинамические характеристики 5, Ая, АС (рис. 3.70). [c.481]

    Определение термодинамических характеристик реакций, протекающих в обратимых гальванических элементах, можно проводить как на системах, состоящих из органических соединений хи-нон-гидрохинон, так и на ряде окислительно-восстановительных систем, содержащих неорганические ионы в различных степенях окисления. В качестве примера обратимой реакции, используемой для определения термодинамических функций и протекающей в гальваническом элементе, состоящем из водородного и хингидронного электродов, рассмотрим восстановление хинона в гидрохинон. Реакция протекает в две стадии с образованием в качестве промежуточного продукта хингидрона  [c.310]

    Эволюция закона и системы проявляется и в расширении набора периодических функций. Если Д. И. Менделеевым были названы атомные объемы, то после развития учения о строении атома к настоящему времени к ним относятся также ионизационные потенциалы, электроотрицательность, температуры плавления и кипения и др. Оказалось, что периодичность присуща не только элементам, но и их соединениям. Для них наряду с указанными выше величинами периодически меняются и различные термодинамические характеристики (энтальпии, изобарные потенциалы образования оксидов, галидов и т. д.). [c.101]

    Измерены энтальпии ферментативного гидролиза крахмала амилазой при 310 К в широкой области концентраций реагентов. Определена теплоёмкость в области 5 - 300 К ряда производных элементов V группы со связями элемент - азот и некоторых алкильных соединений элементов той же группы. Определена также температурная зависимость давления пара и соответственно вычислены термодинамические характеристики парообразования некоторых из изученных соединений. [c.134]


    Комм. К какому типу простых веществ относятся бор, алюминий, галлий, индий Используя результаты опытов и справочные данные, сравните восстановительные свойства простых веществ в кислотной, щелочной и нейтральной среде. Почему для взаимодействия алюминия с водой требуется предварительная обработка его поверхности (Оп. 4 и П4) Рассчитайте термодинамические характеристики реакций взаимодействия алюминия с неметаллами и оксидом металла (Оп. 5, Оп. 6, Оп. 7). Как меняется металлич-ность простых веществ в ряду бор — алюминий — галлий — индий — таллий Охарактеризуйте устойчивость степеней окисления этих элементов в соединениях. [c.186]

    Из фторидных комплексов хорошо изучены соединения алюминия, причем получены данные о термодинамических характеристиках всех шести ступеней координации [19]. Менее полно изучены фторидные комплексы элементов той же группы галлия, индия и скандия, а также комплексы хрома (III), железа [c.78]

    На протяжении всей этой книги постоянно подчеркиваются взаимосвязи между свойствами элементов и их соединений, которые являются неотъемлемой чертой систематики элементов в периодической таблице. Родственные взаимосвязи между элементами, находящимися в одной колонке, служили основой для рассмотрения благородных газов, галогенов, халькогенов, групп азота, углерода и кремния. Закономерности, наблюдающиеся в рядах, подчеркивались при рассмотрении электронной структуры, относительной электроотрицательности и образования химических связей для того чтобы показать, как изменяются те или иные свойства в зависимости от порядкового номера, использовались многочисленные графические изображения. Энергия ионизации (потенциал ионизации), ковалентные, ионные и вандерваальсовы радиусы, термодинамические характеристики (значения энтропии, теплот образования и тепловых эффектов) — вот некоторые свойства, рассмотренные как функция Z. [c.289]

    Термодинамические характеристики соединений элементов III и V группа [c.531]

    Величины произведений растворимости вычисляют на основании точных данных растворимости исследуемого вещества при соответствующей температуре и сведений об ионном составе раствора, а также и на основании использования наиболее точных и проверенных термодинамических характеристик соединений некоторых элементов. (Работы А. Ф. Капустинского и др.  [c.101]

    В воздушно-ацетиленовом пламени различают следующие три основные зоны внутренний конус, тонкую реакционную граничную зону и зону внешнего конуса (рис. 3.4). Пространственное расположение каждой из зон, их высота, специфичность и активность проходящих в них процессов (дегидратация, испарение, диссоциация химических соединений, окислительно-восстановительные процессы и др.) обусловлены термодинамическими характеристиками пламени. Каждой из зон свойственны свои основные процессы и свои влияющие на них факторы. В связи с этим при выборе оптимальных условий определения того или иного элемента следует обратить внимание не только на рекомендации, касающиеся состава газовой смеси, но и на указания об использовании конкретной фото-метрируемой зоны пламени. [c.115]

    В настоящее время благодаря усилиям многих лабораторий, работающих в разных странах, накоплено много данных о термодинамических характеристиках значительного числа веществ. При их помощи вычислены свободные энергии образования соединений при 298 К, а также величины энтропий элементов и соединений. Эти величины наряду с теплотами образования сведены в так называемые таблицы стандартных величин (АЯ дд, [c.71]

    Разберем самый простой метод определения термодинамических характеристик вещества. Предположим, что поставлена задача определения А5° и АН° в реакции образования соединения АВО из элементов [c.103]

    Термодинамические характеристики соединений переходных элементов при 25°  [c.207]

    Но если теплота или свободная энергия образования простых ионных частиц или соединений некоторого элемента известны, то можно оценить теплоты и свободные энергии образования большого числа других соединений элемента, который находится в том же состоянии окисления, как и те частицы, для которых известны термодинамические характеристики. [c.113]

    Термодинамический подход предполагает необходимость обсуждения двух проблем-образования адгезионного контакта и взаимодействия контактирующих поверхностей полимеров. Поскольку эти проблемы тесно связаны с рассмотрением межфазных процессов, наибольшее внимание уделено описанию явлений смачивания и растекания. При этом формальное рассмотрение дополняется анализом энергетики межфазных взаимодействий полимеров, для чего обсуждается проблема оценки энергетических характеристик поверхности твердых, главным образом полимерных тел. Излагаемые соображения с учетом значимости процессов, протекающих на границах раздела элементов соединения, имеют важное значение для исследования адгезии. [c.5]


    Термодинамические свойства углерода, кремния, германия, олова и свинца в функции атомного номера представлены на рис. 22. Температуры и теплоты плавления и кипения резко падают при переходе от углерода к кремнию. Далее, при переходе к тяжелым аналогам термодинамические характеристики изменяются менее значительно и кривые обнаруживают характерные изломы, подтверждающие необходимость сдвигов элементов группы углерода в соответствии с табл. 10 и 11. Столь же закономерные колебания свойств проявляются и у соединений элементов а подгруппы. Так, например, теплоты образования окислов, сульфидов и галогенидов обнаруживают максимумы, приходящиеся на соединения кремния и олова (рис. 22, б). Характерные зигзаги и здесь соответствуют смещениям элементов группы углерода в табл. 10 и И. [c.88]

    Представляется важным обоснование сдвигов элементов фундаментальными характеристиками химических соединений, прежде всего ионных соединений металлов, с наиболее электроотрицательными элементами. Основной характеристикой устойчивости соединений, служащей мерой энергии межатомной связи, является изобарный термодинамический потенциал или свободная энергия их образования, определяемая уравнением Гиббса—Гельмгольца  [c.106]

    Значения нео бходимых для расчета термодинамических характеристик заимствованы из [1—4]. Константы равновесия вычисляли для реакций, в результате которых образуются твердые соединения этих элементов. Результаты вычисления приведены в табл. 1 и 2. [c.10]

    В табл. 20—22 для примера приведены термодинамические характеристики прочности связей некоторых элементов, энергии диссоциации ряда двухатомных молекул, а также тепловые эффекты диссоциации некоторых соединений [109, 130—133]. Пользуясь подобными данными, можно делать предварительный подбор стабилизаторов и активных наполнителей для стабилизации термостойких полимеров. [c.226]

    Особенностями книги являются отступления от традиционно принятого порядка изложения материала по общей химии сначала дана общая характеристика химических элементов и их соединений (гл. I), затем излагаются общие закономерности протекания химических процессов, включая их термодинамические основы (гл. И), и только после этого рассматриваются вопросы строения вещества (гл. И1). Такое расположение материала соответствует постепенному нарастанию его сложности. [c.3]

    Пособие содержит обобщение закономерностей химии на основе общих методов исследования — структурного, термодинамического и кинетического. -Дается необходимый теоретический фундамент для изучения химии элементов и их соединений. Проводится системное обсуждение современных представлений о химической структуре, химической динамике, динамике процессов в рас творах и химических процессах. Особое внимание уделено использованию общих методов исследования для характеристики веществ и химических процессов. [c.2]

    Представить термодинамические и кинетические характеристики в химических реакциях изучаемого элемента и его соединений (раздел 3). [c.171]

    За последнее время появилось большое число новых комплексонов, сложных по составу, содержащих несколько ими-нодиацетатных групп, в молекулы которых входят различные гетероатомы галогенов, серы, фосфора и других элементов. Изменение состава комплексонов приводит к новым свойствам образующихся комплексных соединений. Основной термодинамической характеристикой комплексных соединений является константа равновесия реакции диссоциации комплекса — константа устойчивости, или, что то же самое, ее обратная величина — константа нестойкости. Эта величина является наиболее объективной термодинамческой характеристикой прочности комплекса. [c.389]

    Закономерности изменения некоторых свойств элементов подгруппы кислорода при возрастании атомного номера представлены на рис. 24. Хотя свойства от кислорода к полонию меняются в одном направлении, это изменение имеет зигзагообразный характер атомные объемы, температуры и теплоты плавления и кипения падают от кислорода к сере гораздо сильнее, чем от серы к теллуру, причем имеется характерный излом, соответствующий селену. Аналогичный вид имеют ломаные линии изменения анергий диссоциации двухатомных молекул и нормальных потенциалов образования двукратнозаряженных отрицательных ионов. Такие же зигзагообразные ломаные кривые характерны и для изменения физико-химических свойств соединений халькогенидов. На рис. 24, б представлены иажнейшие термодинамические характеристики водородных соединений типа НзЭ. Здесь вновь отчетливо выявляется очень резкое понижение термодинамической прочности при переходе от Н2О к НдЗ и возрастание ее при переходе к гидридам селена и теллура. С этим же связаны и переломы на кривых теплот образования и поверхностного натяжения гидридов, приходящиеся на сероводород. Таким образом, количественно подтверждается необходимость смещений халькогенидов, указанных в табл. 10 и И. [c.91]

    Как видим, появление дополнительно еще только одной жидкой фазы существенно усложняет общую картину фазового равновесия в двухкомпонентной системе. Очевидно, образование промежуточных твердых фаз в двухкомпонентной системе также должно внести самостоятельный элемент в диаграмму состояния. Как правило, промежуточные твердые фазы формируются на основе определенных химических соединений, которые могут плавиться конгруэнтно либо распадаться в результате перитектического превращения. Обсуждение характера концентрационной зависимости изобарно-изотермического потенциала промежуточных, фаз следует вести в соответствии со строго термодинамически обоснованным понятием фазы. При этом требуется уточнение принадлежности растворов на основе существующих в системе определенных химических соединений к одной или разным фазам. Как известно, природа фаз определяется особенностями межмолекулярного взаимодействия. Последнее в первую очередь обусловлено сортом частиц, их образующих, так как именно природа частиц, образующих данную фазу, обусловливает величину и характер сил обменного взаимодействия, что приводит к формированию вполне определенных химических йязей. Если растворы и фазы различаются родом образующих их частиц (по сортности), то, следовательно, их химические составы (речь идет об истинных составах) качественно различны. Следствием этого является тот факт, что термодинамические характеристики фаз, различающихся родом частиц, описываются разными фундаментальными уравнениями. Это очень важное заключение с необходимостью приводит к выводу о том, что такие растворы даже в пределах одной гомогенной системы должны рассматриваться как самостоятельные фазы. Различие между зависимостями свойств растворов, имеющих качественно иные химические составы, от параметров состояния должно проявляться если не в виде функций, то по крайней мере в значениях постоянных величин, фигурирующих в уравнениях этих функций и отражающих специфику меж-частичного взаимодействия, а следовательно, и химическую природу сравниваемых растворов. В случае растворов или фаз переменного состава данному качественному составу или, иначе говоря, данному набору частиц по сорту отвечает конечный интервал Голичественных составов в данной системе, в пределах которого только и существует строго определенный единственный вид зависимости термодинамических и иных свойств от параметров состояния. Положение о том, что характер зависимости свойств от параметров состояния определяется качественным химическим составом, весьма существенно и названо А. В. Сторонкиным принципом качественного своеобразия определенных химических соединений. Значение этого принципа заключается в том, что его использование позволяет четко определить принадлежность рас- [c.293]

    Экстракции неорганических соединений в виде ионных ассоциатов посвящено очень большое число работ (см. обзоры [1 —3]). Только небольшая часть из них посвящена термодинамике экстракции, например [4—7] и др. Очень мало данных по теплотам экстракции ДЯ, не встречается значений энтропии экстракции ДЛ , отсутствуют данные о связи важнейших термодинамических характеристик ДЯ, Д6 и коэффициента распределения О со структурными (зарядами и радиусами ионов экстрагируемых соединений). Между тем установление такой связи позволило бы арг10г1 находить лучший реактив для экстракции данного элемента. [c.59]

    Развитие экстракционных методов достигло такой ступени, что в настоящее время можно экстрагировать любой элемент или разделить любук пару элементов путем применения тех или других экстракционных систем или выбора условий. Соответственно этому состоя-ншо развития изменяются и задачи исследования. Ранее целью исследовательской работы были главным образом поиски новых экстрагентов, новых групп комплексных соединений, новых экстракционных систем. Такие работы продолжаются, однако становится весьма актуальным вопрос о критическом сравнении ряда методов, о выборе критериев сравнения и объективной оценки методов. Отсутствие таких критериев задерживает развитие, так как наиболее важно искать пути улучшения качества методов, а не просто увеличивать их число. Много внимания уделяется также исследованию механизма экстракции (см., например [8, 9], поискам более совершенных экстракционных систем. Изучаются различные химические и термодинамические характеристики экстрагирующихся комплексов кроме теоретического интереса, это дает возможность рассчитывать и оценивать влияние кислотности, маскирующих веществ и др. Для фотометрического анализа, очевидно, главными критериями являются прочность окрашенного комплекса, степень извлечения, интенсивность поглощения света, а также избирательность отделения. [c.219]

    В общих руководствах по химическому анализу благородным металлам отведено незначительное место, специальные пособия по этим вопросам отсутствуют. Между тем анализ платиновых металлов и золота относится к числу наиболее трудных разделов аналитической химии. Это объясняется близостью химических свойств платиновых металлов и золота, неизбиратель-ностью большей части применяемых в анализе реагентов, трудностью переведения металлов в растворимое состояние, а также склонностью этих элементов к образованию устойчивых комплексных соединений. Состав и устойчивость комплексных соединений, в виде которых благородные металлы обычно находятся в анализируемом растворе, играют весьма важную роль и часто определяют успешность проведения анализа. Следует отметить почти полное отсутствие термодинамических характеристик и значений констант устойчивости соединений, применяемых в анализе, что затрудняет управление реакциями, протекающими в растворах благородных металлов. По этой причине собранные в этой книге наблюдения и приемы экспериментаторов, работавших в области анализа платиновых металлов, могут оказаться весьма полезными в аналитической практике. [c.3]

    В. П. Глебов, Г. И. Мотин, Ф. М. Яхилевин выполнили расчеты содержания равновесных соединений в продуктах сгорания сернистого мазута, характеристики которого приведены выше. В связи с отсутствием ряда термодинамических характеристик некоторых окислов ванадия (УОг и УлОю) необходимые для расчета данные были взяты для соответствующих окислов фосфора, являющегося элементом той же группы таблицы Менделеева. Кроме того, при-40 [c.40]

    Этот метод хотя иногда и более сложен по процедуре, чем метод окислительных чисел, и в некоторых случаях с трудом применим, но обладает рядом достоинств,, а именно не требуется знания или расчета окислительных чисел элементов во взятых и полученных соединениях в схемах расчета воспроизводятся процессы, происходящие при электрохимическом способе осуществления окислительно-восстановительных реакций, а это-позволяет находить соответствующие термодинамические характеристики (так называемые окислительновосстановительные потенциалы) частных редоксреакций и через них предсказывать возможность протекания общих таких реакций между членами двух сопряженных редокспар (см. далее). Порядок составления уравнений по этому методу показан на двух примерах. [c.117]

    Приведенные ниже таблицы содержат значения термодинамических характеристик ниобия, тантала и их соединений. В табл. 1 и 7 представлены стандартные теплоты образования АЯмз и стандартные энтропии (5298), а также температуры фазовых и полиморфных превращений. В табл. 2 и 8 приведены теплоты превращений и температуры, к которым эти теплоты (АЯпревр, ДЯпл, АЯнсп и АЯсубл) относятся. Табл. 3 и 9 содержат уравнения мольной теплоемкости Ср и температурные интервалы, в пределах которых рекомендуется пользоваться уравнением для расчета теплоемкости. Для ряда уравнений приведены погрешности. В табл. 4 и 10 собраны уравнения для расчета давления пара (1 р) в мм рт. ст. и указан температурный интервал, для которого эти уравнения справедливы. Табл. 5 и 11 содержат уравнения термодинамических потенциалов АХт) реакций образования соединений из элементов и температурный интервал, для которого справедливы рекомендованные коэс ициенты А, Л и С) уравнений. В табл. 5 и 11 приведены также погрешности этих уравнений. Табл. 6 и 12 содержат некоторые данные для кристаллических структур. [c.184]

    Углерод, кремний, германий и серое олово обладают тетрагональными ковалентными решетками типа алмаза вследствие коллективизации четырех внешних валентных электронов (двух s- и двух р-электронов) и образования четырех пар спиново-связанных электронов, ориентированных под тетраэдрическими углами. Прочность связи, как показывает табл. 25, сильно убывает в ряду С—Si—Ge—Sn в связи с увеличением межатомных расстояний или длины направленных связей, о чем можно судить по убыванию их термодинамических характеристик (температуры плавления, теплоты сублимации и механических характеристик жесткости и прочности — модуля нормальной упругости и твердости). Из табл. 25 видно также, что кристаллические структуры изоэлектронных соединений А В вследствие дополнительной ионной связи прочнее, чем структуры элементов IV группы. Так, температуры плавления соединений InSb, GaAs, AIP соответственно выше температур плавления олова, германия и кремния. Микротвердость соединений InSb и BN превышает соответственно микротвердость олова и алмаза. Карбид кремния также отличается высокой прочностью. [c.171]

    Применяя pa чeTvПo термодинамическим характеристикам соединений и учитывая их свойства, можно, хотя и приближенно, решить, как нужно ставить опыт, чтобы из смеси окислов или из природных руд получить хлорированием тот или иной хлорид. Например, проведя термодинамический расчет, можно предсказать, что при хлорировании природной двуокиси титана будут хлорироваться в первую очередь примешанные к ней окислы металлов второй группы периодической системы элементов, а также окислы железа. Сравнивая же давления паров получаемых хлоридов, можно сделать вывод, что хлориды металлов второй группы останутся в реакционном пространстве, а хлорид железа отгонится и сконденсируется на более холодных частях прибе ра. Во втирую оче )ель будет хлорироваться сам окисел титана и лишь в последнюю—труднохлорируемые окислы, например окись кремния. При этом надо учитывать, что хлорид титана является по отношению к окислам хорошим хлорирующим агентом и что возможно установление равновесия реакции между хлоридом титана и такими окислами, как окиси алюминия, кремния и др. Зная это, подбирают такие условия реакции, чтобы возникающее равновесие сдвинулось в сторону образования хлорида титана. [c.179]

    Теоретический анализ работы гальванических элементов с позиции электрохимии, проведенный Малошуком в исследовании [1], позволил четко определить условия, в которые следует поставить электродные системы для получения достоверных термодинамических данных при минимально возможном числе измерений. Доказано, в частности, что гальванические цепи должны работать в условиях фазового равновесия кристалл — раствор. Преимущества предложенного метода состоят в том, что он позволяет находить термодинамические характеристики, минуя определение стандартных электродных потенциалов путем экстраполяции на бесконечное разбавление и тем самым избегать необходимости экспериментировать в условиях сильно разбавленных растворов, а также привлекать для расчета дополннтельные термодинамические данные. Дальнейщее развитие метода и его экспериме -тальное подтверждение нащли отражение в ряде последующих работ [2, 3, 4, 5]. При этом выяснилось, что предложенный теоретически и экспериментально обоснованный способ нахождения термодинамических характеристик носит общий характер и может быть попользован для определения основных термодянамичеаких констант (АС гэв, АЯ гоа, 5 2эа) целого ряда различных химических соединений. [c.66]

    Золото находится в породах в самородном состоянии или входит в виде вкраплений в сульфидные минералы, такиё как пирит, арсенопирит, пирротин, галенит, сфалерит, а также в силикатные минералы. Оно является одним из наиболее устойчивых элементов. Постоянными спутниками золота являются медь и серебро, В соединениях оно проявляет валентность +1 и +3. Несмотря на высокую химическую устойчивость, золото в природе весьма подвижно, что видно из данных, приведенных на рис. 6.7. На диаграмму Eh -pH нанесены данные об активности ионов золота в различных условиях. Сравнение термодинамических характеристик показывает, что золотоорганические комплексы по сравнению с тиосульфатными устойчивы в более широкой области окислительно-восстановительного потенциала. Это свидетельствует о расширении ореолов рассеяния золота, связанного с органическими веществами. [c.346]

    В заключение отметим, что рассмотренные вопросы составляют теоретический фундамент неорганической химии, на котором базируется изучение других ее разделов — химии элементов и их соединений, неорганического синтеза и методов исследования неорганических веществ. Между всеми разделами современной неорганической химии имеются глубокие внутренние связи, описываемые комплексом общих методов исследования структурного, термодинамического и кинетического. Применение только одного из них не дает полной картины процесса. Например, скорости реакции определяются не только кинетическими особенностями процесса, но и структурным соответствием между характеристиками, орбитальной симметрией реагентов и продуктов реакции (правило Р. Вудворта и Р. Гоффмана, 1965). Если соответствие имеется, реакции протекают легко, если соответствия нет —реакции протекают крайне медленно. [c.291]


Смотреть страницы где упоминается термин Термодинамические характеристики элементов и ил соединений: [c.90]    [c.116]    [c.87]    [c.64]    [c.59]    [c.208]    [c.209]   
Смотреть главы в:

Химическая термодинамика к курсу общей химии -> Термодинамические характеристики элементов и ил соединений




ПОИСК





Смотрите так же термины и статьи:

Элементы II соединения



© 2025 chem21.info Реклама на сайте