Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические свойства смешанных растворителей

    ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА СМЕШАННЫХ РАСТВОРИТЕЛЕЙ. [c.41]

    Вот почему в химии растворов за последние десятилетия чрезвычайно большое, нередко доминирующее распространение получили смешанные, чаще всего двойные растворители, позволяющие направленно изменять и подбирать физико-химические свойства среды. В этой главе будут рассмотрены основные закономерности, которым подчиняются физические и химические свойства смешанных растворителей. [c.41]


    Физико-химические свойства смешанных водно-органических растворителей существенно меняются при понижении температуры. Ниже приведены данные для смесей вода—этиленгликоль—метанол с разным объемным соотношением компонентов при двух температурах 624]  [c.234]

    Ш.1. ФИЗИЧЕСКИЕ СВОЙСТВА СМЕШАННЫХ РАСТВОРИТЕЛЕЙ, ОБРАЗОВАННЫХ ХИМИЧЕСКИ НЕ ВЗАИМОДЕЙСТВУЮЩИМИ КОМПОНЕНТАМИ [c.41]

    Поскольку в подавляющем большинстве случаев смешанные растворители, применяемые в исследовательской и технологической практике, составляются из двух компонентов, концентрационные изменения свойств смешанных растворителей, вступающих в химическое взаимодействие, рассмотрим на примере двойных жидких систем. Как и в случае систем с невзаимодействующими компонентами, отметим, что более обстоятельное изложение проблем физико-химического анализа жидких систем, в частности методов определения стехиометрии и констант устойчивости образующихся в них гетеромолекулярных ассоциатов, содержится в монографиях [201, 242,9, 233]. [c.47]

    Эти величины, выраженные в логарифмических единицах и приведенные в последней графе таблицы, изменяются от 3,5 для уксусной кислоты до 0,8 для 2,6-динитрофенола. Это показывает, что различное влияние ацетона на силу кислот при переходе от смеси диоксана с водой (смешанный растворитель обладает химическими свойствами, близкими к воде, но диэлектрической проницаемостью ацетона) определяется прежде всего отличием в энергии сольватации (взаимодействия) анионов кислот с дипольными [c.338]

    Обращение к смешанным растворителям позволяет управлять не только донорностью и полярностью растворителей, но и любыми другими свойствами — вязкостью, летучестью, электропроводностью, температурами кипения и замерзания и т. д. Вот почему, учитывая разнообразие находящихся в распоряжении сегодняшней экспериментальной химии и химической технологии раствори- [c.47]

    Эти величины, выраженные в логарифмических единицах и приведенные в последней графе таблицы, изменяются от 3,5 для уксусной кислоты до 0,8 для 2, (3-ди нитрофенол а. Это показывает, что различное влияние ацетона на силу кислот при переходе от смеси диоксана с водой (смешанный растворитель обладает химическими свойствами, близкими к воде, но диэлектрической проницаемостью ацетона) определяется прежде всего отличием в энергии сольватации (взаимодействия) анионов кислот с дипольными молекулами растворителя, так как катион у всех кислот один и тот же. В связи с ранее сказанным следует заметить, что член [c.384]


    Известно, что многие теории вполне удовлетворительно описывают опытные данные по химическим потенциалам электролитов в растворе, однако они оказываются непригодными для описания теплот разбавления и других производных от термодинамического потенциала свойств в том смысле, что даже в области малых концентраций требуют введения физически нереальных значений параметров, например, большого изменения г о с температурой. С этой точки зрения Ю. М. Кесслеру и сотрудникам удалось построить логически замкнутую теорию, свободную от упомянутого недостатка. Полученное ими уравнение для теплот разбавления [233], работоспособно до 0,5 моль/л при использовании тех же параметров, которые применяют для описания коэффициентов активности. Это позволило авторам обнаружить влияние структуры смешанного растворителя вода—формамид на теплоты разбавления хлорида калия [234]. [c.106]

    В зависимости от химических свойств компонентов и условий опыта соосаждение микроколичеств элементов из раствора происходит либо за счет адсорбции их на поверхности коллектора, либо за счет обмена ионов микрокомпонента с ионами осадка макрокомпонента, либо за счет образования изоморфных смешанных кристаллов. Так или иначе, микрокомпонент, рассеянный ранее в большом объеме раствора, после соосаждения находится в небольшом количестве осадка. Последний растворяют в малом объеме подходящего растворителя и анализируют. Если, нанример, первоначальный объем раствора был равен 1000 мл и полученный осадок, содержащий почти все количество микрокомпонента, затем растворен в 0,5 мл кислоты, то концентрация микрокомпонента в этом растворе [c.33]

    Из приведенных данных и особенно из рассмотренных в гл. 8 очевидно, что в смешанных растворах сродство компонентов к растворенному иону или молекуле может существенно различаться. Следовательно, соотношение сольватных молекул, расположенных в координационной сфере растворенного иона, может отличаться от соотношения компонентов в смешанном растворителе [240]. Этот хорошо известный эффект назьшается предпочтительной сольватацией, и длл его выявления используются многие методы необходимо иметь для этой цели несколько пригодных методов, поскольку применимость каждого зависит от различных физических или химических свойств изучаемой смеси растворителей. Действительно, метод, дающий отличные результаты определения данного эффекта в одной системе, может оказаться в другой системе совершенно непригодным., [c.127]

    Учитывая благоприятные физико-химические свойства и высокую эффективность смешанного экстрагента, есть основание рассматривать его в числе растворителей, представляющих интерес для промышленной практики. [c.26]

    Поведение химического соединения в растворе зависит от физикохимических свойств растворителя, с которым оно вступает в реакцию. Например, одни и те же нитраты и хлориды многих элементов в зависимости от физико-химических свойств растворителей проявляют нейтральные, кислые и основные свойства, так, хлорид магния проявляет в спиртах нейтральные свойства, в смешанном растворителе спирт — метилэтилкетон — кислые, а в растворе уксусная кислота — уксусный ангидрид —хлороформ —основные свойства. Одинаково диссоциирующие в водных растворах электролиты отличаются электропроводностью их неводных растворов. [c.400]

    Зависимость физико-химических параметров таких смешанных водно-органических растворителей от состава при низких температурах была исследована только в последнее время в работах Дузу с сотр. [616—624]. Рассмотрим кратко данные об изменении физико-химических свойств смешанных растворителей при низких температурах и о влиянии этих изменений на активность ферментов в таких растворителях. [c.234]

    Метилацетон. При производстве ацетона и метилового спирта по способу сухой перегонки древесины получаются как отходы отдельные фракции, которые представляют собой смесь ценных продуктов. Очень часто по техническим усл01виям или экономическим соображениям эти продукты не могут быть получены раздельно, тогда их выпускают в продажу в смешанном виде. Метилацетон, или ацетометилацетон (у нас известен под маркой AMA), и представляет собой смесь из ацетона, метилового спирта и метилацетата. Процентное содержание каждого из этих продуктов в составе метилацетона бывает различно в зависимости от условий перегонки, в силу чего не представляется возможным указать точные физические и химические свойства этого растворителя. Можно указать примерно пределы, в которых меняется содержание каждого из указаннных продук- [c.15]

    К подобным же выводам пришли Раткович и сотр., исследуя свойства смесей спирт — амин. В выбранных ими бинарных модельных системах, состоящих из первичного, вторичного или третичного амина и определенного гомолога из ряда жирных спиртов, эти авторы определили составы и концентрации образующихся в данных растворах ассоциатов. Они считают, что разнообразные физико-химические свойства смесей растворителей и их компонентов находятся в такой тесной зависимости от явления ассоциации, что только разносторонние исследования этих свойств помогут разобраться в сложных равновесиях в растворах. Раткович и сотр. исследовали равновесия пар — жидкость [75] и теплоты смешивания растворителей [76, 77, 84] они изучали диэлектрические свойства таких систем [53, 81], их вязкость [78, 79, 82, 87] и проводимость [83 — 86]. В результате многочисленных исследований они подтвердили образование смешанных ассоциатов из различных спиртов и аминов, равно как и самоассоциатов из обоих компонентов таких систем. Они сумели показать влияние состава и строения компонентов и их концентрации на размер и структуру ассоциатов в некоторых случаях им удалось даже сделать вывод о форме этих ассоциатов (цепи, циклы). [c.213]


    Теоретический расчет свойства смеси определенного состава химически взаимодействующих растворителей может бьпъ осуществлен методами количественного физико-химического анализа [201, 9, 242] лишь в том случае, если с достаточной определенностью известно число всех химических форм, образующихся при таком взаимодействии, их стехиометрия, константа равновесия процесса их образования и значения величин свойств этих химических форм. Наличие столь внушительной совокупности сведений о жидкой системе, по-видимому, еще долго будет оставаться большой редкостью. Поэтому данные о ДП, вязкости и других свойствах смешанных растворителей с взаимодействующими компонентами находят экспериментально. Сведения о физических свойствах жидких систем можно найти в имеющихся справочниках [408, 11]. Вот почему можно говорить лишь об общих закономерностях, которым подчиняются концентрационные зависимости свойств смешанных растворителей с химически взаимодействующими компонентами. Прогноз же относительно характера этих зависимостей может быть сделан при оценке константы равновесия (энергии взаимодействия) между растворителями. [c.47]

    Истинные растворы характеризуются отсутствием поверхностей раздела между составными частями раствора, одинаковым составом и свойствами по всему объему. В качестве компонентов выступают химически индивидуальные вещества, которые могут быть выделены из раствора методами ректификации, кристаллизации, экстракции и др. Смешением их можно вновь получить растворы любого допустимого состава. Растворенными считают те из компонентов, которые при обычных условиях находятся в агрега-тивном состоянии, отд 1чном от раствора. Остальные компоненты представляют растворитель. В случае жидких растворов в качестве растворенных выступают веш ества, которые при обычных условиях твердые или газообразные, в качестве растворителя — жидкости. Если компоненты раствора при стандартных условиях существуют в жидком состоянии, они представляют собой смешанный растворитель. Состав раствора в отличие от состава химических соединений в довольно широких пределах может меняться непрерывно. В этом отношении растворы сходны с механическими смесями, отличаясь от них своей гомогенностью и изменением многих свойств при смешении. Свойства растворов в значительной степени зависят от взаимодействия частиц растворенного вещества между собой, с молекулами растворителя и молекул растворителя между собой. [c.208]

    Впервые получена полная фазовая диаграмма системы ЖК - 2 неме-зогена, что позволило определить и сформулировать направление исследований по созданию физико-химических основ для применения смешанных растворителей в технологии выделения и очистки ЖК. Выявлена перспективность использования методов структурных составляющих для количественного прогноза свойств ЖК и смесей, содержащих ЖК. [c.103]

    В большом числе водно-органических и неводных растворов изучено анодное поведение никеля (спирты, АЦ, АН, ФМ, ДМФ, ДМСО, ПК, ТГФ, НАс) [600, 51, 125, 126, 4, 779, 106, 1129]. Во всех изученных растворах при низких плотностях тока (почти во всех случаях применялись кислые растворы) наблюдалось активное растворение никеля со 100 %-ным выходом при расчете на N 2+. Процесс необратимый, его протекание связано с участием анионов, молекул растворителя и осложнено адсорбционными явлениями [1200, 779]. При высоких плотностях тока (аотенциалах) в присутствии кислородсодержащих анионов (например, СЮ4 ) и воды наступает пассивация электрода. В ДМСО скорость анодного растворения никеля на несколько порядков ниже, чем в других растворителях, в том числе и воде. Торможение анодной реакции, вероятно, обусловлено хемосорбцией ДМСО [4, 1, 779]. Сделана попытка корреляции анодного поведения никеля с физико-химическими свойствами протолитических и апротонных растворителей 125, 126, 636]. В водно-органических смесях состав смешанного растворителя влияет на поведение никелевого анода в определенной области концентраций воды [636]. [c.121]

    Поскольку растворенные в воде полиоксиметиленгидраты являются крайне непрочными соединениями, выделение их в чистом виде — весьма сложная задача. Правда, Штаудингер в упоминавшихся выше работах 30-х годов сообщил о выделении им простейших полиоксиметиленов из водных растворов дробной экстракцией смешанных растворителем ацетон — петролейный эфир [1]. Однако доказательства того, что в ходе этих экспериментов были выделены именно индивидуальные оксиметиленгидраты, представляются не вполне достаточными, тем более, что воспроизвести наблюдение Штаудингера в последующий период времени никому не удалось. В табл. 22 суммированы данные разных авторов о физико-химических свойствах простейших полиоксиметиленгидратов, многие из которых получены на основе косвенных наблюдений. Например, в работе [226] значение плотности и вязкости оксиметиленгидратов с числом 3—4 были найдены на основе брутто-измерений с учетом рис. 33. [c.92]

    Ермоленко подробно изучил зависимость адсорбируемости различных веществ от их растворимости и полярных свойств среды (Колл. Ж. 2, 179, 1936 3, 831, 1937 6, 561, 1940 7, 227, 1941, и др.) и показал, что обратная зависимость адсорбируемости и растворимости наблюдается в случае смешанных растворителей, если оба компонента растворителя близки по полярности. Если же опи сильно отличны, то адсорбируемость при увеличении полярного компонента в смеси проходит через минимум. Наличие антибат-ности между адсорбцией и растворимостью пикриновой кислоты при разной природе адсорбентов (уголь и силикагель) Ермоленко приписывает разной ориентации молекул пикриновой кислоты на поверхности разных адсорбентов к силикагелю обращены группы — ОН, к углю — группы NOj. При растворителях разной химической природы трудно установить какую либо равномерную зависимость между адсорбцией и полярными свойствами растворителя, но в случае ряда гомологов, например спиртов, оказывается, что степень адсорбции различных органических веществ иа минеральных адсорбентах и на угле находится в прямой зависимости от диэлектрической постоянной спиртов и в обратной зависимости от их молекулярной поляризации и молекулярной рефракции.—Прим. рп . [c.102]

    Исторический обзор возникновения интереса к неводным растворителям, а следовательно, и к выяснению роли растворителя в природе растворов, дан в известных монографиях Вальдена 121 иЮ. И. Соловьева [3]. Еще в середине XVI в. Бойль заинтересовался способностью спирта растворять хлориды железа и меди. Позднее ряд химиков отмечает и использует растворяющую способность спирта. В 1796 г. русский химик Ловиц использует спирт для отделения хлоридов кальция и стронция от нерастворимого хлорида бария, как будто положив начало применению неводных растворителей в аналитических целях. В первой половине XIX в. подобные наблюдения и их практическое применение встречаются чаще, причем химики устанавливают случаи химического взаимодействия растворителя с растворенным веществом, показывая, что и в органических жидкостях могут образовываться сольваты (Грэхем, Дюма, Либих, Кульман). Основным свойством, которое при этом изучалось, была растворимость. В 80-х годах XIX в. Рауль, исследуя в целях определения молекулярных весов понижение температур замерзания и повышение температур кипения нри растворении, отмечает принципиальное сходство между водой и неводными средами. Но систематическое физико-химическое изучение неводных растворов наряду с водными начинается только в самом конце столетия, когда Каррара осуществляет измерение электропроводности растворов триэтилсульфония в ацетоне, метиловом, этиловом и бензиловом спиртах, а также ионизации различных кислот, оснований и солей в метиловом спирте. В этот же период М. С. Вревский проводит измерения теплоемкостей растворов хлорида кобальта в смесях воды и этилового спирта [4], а также давлений и состава паров над растворами десяти электролитов в смесях воды и метилового спирта [5]. Им впервые четко установлено явление высаливания спирта и определено как .. . следствие неравномерного взаимодействия соли с частицами растворителя . Несколько раньше на самый факт повышения общего давления пара при растворении хлорида натрия в смесях этанола и воды, на первый взгляд противоречащий закону Рауля, обратил внимание И. А. Каблуков [6]. Пожалуй, эти работы можно считать первыми, в которых подход к смешанным растворителям, к избирательной сольватации и к специфике гидратационной способности воды близок современному пониманию этих вопросов. Мы возвратимся к этому сопоставлению в гл. X. [c.24]

    В жидких растворах все компоненты находятся в молекулярно-дисперсном состоянии и равномерно распределены по объему в виде атомномолекулярных частиц и их ассоциатов [3]. Без особых оговорок в дальнейшем рассматриваются истинные растворы. Они характеризуются отсутствием макроскопических поверхностей раздела между составными частями раствора, одинаковым составом и свойствами по всему объему. В качестве компонентов выступают химически индивидуальные вещества, которые могут быть выделены из раствора методами ректификации, кристаллизации, экстракции и др. Смешением их можно вновь получить растворы любого допустимого состава. Растворенными веществами считают компоненты, которые при стандартных условиях находятся в агрегатном состоянии, отличном от агрегатного состояния раствора. Остальные компоненты представляют растворитель. В случае жидких растворов в качестве растворенных выступают вещества, которые при стандартных условиях твердые или газообразные, в качестве растворителя — жидкости. Если два или более компонентов раствора при обычных условиях жидкости, имеют дело со смешанными растворителями. В общем случае правильнее считать растворителем совокупность всех компонентов по отношению к одному, растворение которого нас интересует. [c.6]

    Технеций, по своим химическим свойствам близкий к рений, может быть отделен от молибдена по методу Мелоха и Пресса [37, 47 ]. Аттебери и Бойд [8] предложили метод разделения рения и технеция, основанный на элюировании сульфатом аммония и тиоцианатом аммония. Подробно изучалось также разделение пертехнетата и неррената элюированием перхлоратными растворами [96 ]. Это разделение лучше проводить с использованием смешанных растворителей — нанример, водно-этанольных смесей [85]. В литературе описаны также отделения молибдата от вольфрамата [18, 48] и перманганата [75], не представляющие, однако, большого интереса для аналитика. С.ледует отметить, что в кислой среде (pH < 2) ванадий (V) не поглощается анионитами в С1-форме, в то время как хромат-ионы поглощаются количественно. Это обстоятельство может быть использовано для упрощения определения ванадия в рудах и сталях [117]. [c.353]

    В каждой из глав излагаются основы тех или иных явлений, после чего рассматриваются химические следствия - влияние на скорость и равновесие, а также способы исследования этих эффектов. Прежде всего в основной раздел мы стремились включить наряду с традиционными физико-химическими данными сведения о химизме процессов, большая часть которых получена в последние годы и которые, естественно, не вошли в фундаментальные труды, упомянутые выше [3, 4]. Особое внимание уделено развитию нетермодинамических методов газофазным исследованиям, эффектам заместителей, данным квантовой химии, свойствам органических и смешанных растворителей. Детально рассматриваются основы применения некоторых не совсем обычных растворов электролитов (мицеллярных растворов, полиэлектролитов, ультраконцентрированных растворов, расплавленных солей) в предвидении, что реакции в таких рредах будут играть все возрастающую роль в будущем. [c.11]

    Общая характеристика экстрагентов. Анализ рисунка показывает, что все исследованные растворители, кроме трикрезил-фосфата, обладают высокой или удовлетворительной избирательностью (сравним с избирательностями диметилформамида, диэти-ленгликоля, сульфолана и фурфурола). Растворяющая способность большинства экстрагентов выше оптимальной. Только ди-р-цианэтиловый эфир зтиленгликоля попадает на графике в область оптимальных величин избирательности и растворяющей способности (1 7°толуола = 0,25 — 0,40). Это свидетельствует о том,, что последний растворитель, по-видимому, может успешно применяться для извлечения бензола и его низших гомологов из смеси их с другими углеводородами. О воз1 южности и-целесообразности использования его в промышленности можно будет судить только после определения физико-химических, эксплуатационных, токсикологических и других свойств. Экстракционные свойства остальных растворителей свидетельствуют о том, что они могут являться компонентами смешанных экстрагентов. [c.47]

    В качестве смешанных растворителей было предложено использовать смеси тетрагидрофурана с пропиленкарбонатом и диметилсульфоксидом [24), с низшими алифатическими спиртами (до 50% по объему) [68], с 1,2-диметоксиэтаном [64] и 1,2-диметилформалем (30%) или 1,1-диметилформалем (46%) [69]. Затем, к пропиленкарбонату предложено добавлять этиленкарбонат [43, 47], нитроэтилен [34], ацетонитрил и метил- или бутнлформиат [47]. Эти вещества рекомендуется добавлять также к у-бутиролактону, диметилформамиду и диметилсульфоксиду [47]. Существует также более общая заявка [33], в которой в качестве растворителя для источника тока предлагается использовать смеси пентациклических эфиров (этилен- и пропилен-карбоната, Y-бyтиpoлaктoнa и т. д.) с представителями нитропарафинов, алифатических или циклических эфиров, циклических кетонов и алифатических нитрилов. По причинам, которые указывались выше, далеко не всегда можно легко объяснить преимущества смешанного растворителя по сравнению с индивидуальными компонентами. В литературе имеется чрезвычайно мало данных не только по физико-химическим свойствам растворов электролитов в смешанных растворителях, но даже и по физическим свойствам самих смесей. Поэтому кроме тех простых соображений, о которых говорилось выше, работа по подбору смешанных растворителей, в основном, носит эмпирический характер. [c.59]

    На основании этих представлений можно ожидать, что в смешанном растворителе при возрастании диэлектрической постоянной или при уменьшении вязкости электропроводность растворов будет увеличиваться. Это действительно наблюдается на опыте. В смесях пропиленкарбоната с этиловым эфиром и этилеккарбонатом в растворах 1Ь1А1С14 и К РРв электропроводность возрастает за счет уменьшения вязкости или возрастания диэлектрической постоянной [12]. Несмотря на то, что смешанные растворители находят практическое использование в источниках тока [64], физико-химические свойства как самих смесей, так и растворов электролитов в них почти не исследовались. [c.72]

    Едва ли следует подробно рассматривать, какое богатство молекулярных форм раскрывается в смешанных фазах, где условия существования молекул данного вещества могут быть столь разнообразны благодаря дифференцирующему и стабилизирующему действию растворителя, что одно и то н е вещество даже простейшей структуры может до неузнаваемости менять свои химические свойства, а значит и химическое строение, вплоть до изменения тина связи (нанример, хлористый иод, диссоциирующий и иоиио и ковалентно мочевина, ведун1 ая себя как кислота в аммиаке, или как основание — в уксусной кислоте, или, наконец, нейтрально — в воде, и многие другие). [c.170]

    Композиционная неоднородность сополимеров, сильно отражающаяся на ИХ физико-химических свойствах, является следствием статистического процесса сополимеризации, поэтому ее оценка может дать информацию о, механизме сополимеризацли любых сомономерных систем 1, 2]. В данной работе исследовано влияние смешанного растворителя диметилсульфоксид (ДМСО) — вода на композиционную неоднородность сополимеров метакрилонитрила (МЛН) и акриловой кислоты (АК). [c.20]

    В литературе описано большое количество различных методотз Определения скорости испарения, но здесь приведены результаты только тех из них, которые широко используются на практике Однако даже данные, полученные этими несколькими методами, не очень хорошо согласуются друг с другом и вообще сомнительно, чтобы их можно было сравнивать. Обычно результаты определения выражают отношением скоростей испарения данного растворителя и какого-либо другого, принятого за эталон, у которого скорость испарения приравнена к единице. Эта методика оправдывает себя, так как обычной целью такого определения является сравнение растворителей между собой. Однако при определении скорости испарения смешанных растворителей, содержащих несколько химических соединений, возникают затруднения. К числу таких смесей относятся почти все алифатические углеводородные растворители, в то ,1 числе и широко применяемый уайт-спирит. Разумеется, свойства смеси слишком сложны, чтобы их можно было выразить одной сравнительной величиной. Для упрощения иногда сравнивают скорости улетучивания половины растворителя, однако полученные результаты не характерны для более ранней и более поздней стадий процесса испарения. [c.278]

    При нагревании эквимольных количеств исходных реагентов в среде полярного растворителя до температуры порядка 175 °С в результате взаимодействия аминогрупп тетрамина с карбоксильными группами диангидрида образуется незациклизованный промежуточный продукт I. Равновероятность образования двух типов структур I не доказана. Выделенный из реакционной среды промежуточный продукт структуры 1 подвергают дальнейшей термообработке при 200—250 °С в вакууме или в инертной среде. В результате реакции соседних амино- и карбонильных групп лроходит частичная внутримолекулярная циклизация с образованием полимера структуры II, содержащего внутри макроциклов реакционноспособные группы. Продукты, имеющие структуру I и II, растворимы в концентрированной серной кислоте, а также в смешанном растворителе, состоящем из ДМСО, КОН, Na2S04 и содержащего 1—2% (масс.) воды. Указывается, что из 8%-ных растворов в любом из этих растворителей по мокрому способу формования могут быть получены волокна, которые после дополнительной термообработки при 350—400 °С в среде азота приобретают высокую термическую стабильность и имеют химическую структуру типа III. Полимер структуры III может быть получен при обработке в инертной атмосфере или в вакууме полимера структуры II он растворим в метан-сульфокислоте. Механические свойства волокна из такого полимера и способ получения волокна приведены в табл. 4.42. [c.175]

    Лаки получают растворением ЭНБС при нагреве в спиртах, кетонах, ацетатах и смешанных растворителях. Лаки ЭН-2 и ЭИ-2 предназначаются для получения химически стойких антифрикционных покрытий, лаки ЭН-1 и ЭИ-1 для модификации материалов и покрытий, лак ЭН-3 — для модификации термопластов. ЭНБС модифицируют фторопластами, каучуком, полиамидами. На основе этих материалов могут быть получены лаки, сочетающие в себе лучшие свойства исходных компонентов. [c.23]


Смотреть страницы где упоминается термин Химические свойства смешанных растворителей: [c.123]    [c.47]    [c.61]    [c.8]    [c.271]    [c.288]    [c.393]    [c.56]    [c.640]    [c.318]    [c.107]    [c.59]    [c.20]   
Смотреть главы в:

Растворитель как средство управления химическим процессом -> Химические свойства смешанных растворителей




ПОИСК





Смотрите так же термины и статьи:

Растворители смешанные



© 2025 chem21.info Реклама на сайте