Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура термической деформации полимеров

    ТЕМПЕРАТУРА ТЕРМИЧЕСКОЙ ДЕФОРМАЦИИ ПОЛИМЕРОВ [c.136]

    Переработка поливинилхлорида в изделия, нити, пленки сопряжена с большими трудностями, что объясняется низкой температурой термической деструкции полимера, близкой к области температур, в которой начинают появляться пластические деформации поливинил- [c.515]

    Сравнение термомеханических кривых / и 2 (см. рис. 4 I, о) свидетельствует о влиянии гибкости на поведение полимера при деформации Чем больше гибкость полимера, тем до более низкой температуры он сохраняет высокоэластическое состояние. В жесткоцепных полимерах характерные температуры переходных состояний сдвигаются в сторону больших значений. Так, для некоторых поли.меров (иапример, для целлюлозы) значении температур стеклования н текучести находятся выше температурь термического разложения. [c.230]


    Усадка при отверждении или термостарении и термическое расширение полимера имеют большое значение, так как они определяют стабильность размеров изделий и внутренние напряжения, возникающие при ограничении деформации полимера. Кроме того, от усадки и термического расширения зависит свободный объем и плотность упаковки молекул, являющиеся одними из основных характеристик полимеров [1, 86]. Здесь под усадкой мы понимаем изменение объема, происходящее прн постоянной температуре вследствие реакции отверждения или старения, под термическим расширением — изменение объема полимера к неизменным химическим строением при изменении температуры. При нагревании неполностью отвержденного полимера происходят одновременно оба процесса, что может привести к сложным зависимостям удельного объема системы от времени и [c.66]

    Как отмечалось ранее, внутренние напряжения возникают при ограничении деформации полимера подложкой. Их уровень зависит в основном от модуля упругости клея, термических коэффициентов линейного расширения клея и субстрата, геометр. и клеевого соединения, а также от температуры. [c.142]

    Влияние тепловых колебаний скажется только при достижении таких температур, за пределами которых эти колебания способны привести к разрыву химической связи в основной цепи, т. е. к термической деструкции. Правда, за последнее время все большее число исследователей, считают, что механический обрыв цепей при деформации полимеров происходит под действием тепловых колебаний, а механические силы только способствуют этому, снижая энергию связей [77, 147, 150]. Однако на границе термической де- [c.112]

    Как следует из рис. 111, кривая указанной зависимости для полимеров делится на ряд участков. Границы участков на оси абсцисс обозначены точками. Первой самой низкой температурной точкой является температура хрупкости (Т р) полимера. Затем при повышении температуры, если полимер подвергается малым нагрузкам, его деформация не обнаруживается вплоть до температуры стеклования (Тд), выше которой возникают высокоэластические свойства, сохраняющиеся до точки Дальнейшее повышение температуры приводит к переходу полимера из высокоэластического в вязко-текучее состояние (Г ). Й, наконец, при последующем повышении температуры начинается термическая деструкция полимера при температуре его разложения Гр. Чем выше температура химического разложения полимера, тем выше его термостойкость. [c.372]


    Кривая 2 показывает поведение температурно-необратимого студня. Деформация, появившаяся при переходе через точку Тс, сохраняется постоянной или даже несколько понижается, но необратимое течение не наблюдается и при достижении температуры кипения растворителя или термического распада полимера. Такое [c.20]

    Не следует думать, что все линейные аморфные полимеры могут существовать во всех трех физических состояниях. При чрезмерной жесткости цепей или наличии в них очень сильно взаимодействующих групп температура стеклования может быть настолько высокой, что термическое разложение полимера будет происходить раньше, чем он нагреется до температуры стеклования. Увеличение длительности действия механических напряжений также не приведет к появлению высокоэластичности, если при всех температурах ниже температуры разложения для развития высокоэластической деформации требуется невообразимо большое время. В таких случаях низшие полимергомологи будут вести себя как низкомолекулярные вещества вплоть до достижения той стенени полимеризации, при которой температура стеклования превысит температуру разложения. После этого все высшие полимергомологи будут существовать только, в стеклообразном состоянии. [c.249]

    Даже если термомеханическая кривая имеет классическую форму (рис. П.11) и состоит из трех участков, следует воздержаться от утверждения, что полимер существует во всех трех физических состояниях, переходя при нагревании из одного в другое. Нужно учитывать, что возрастание деформации в порошкообразном образце может быть вызвано побочными причинами. Особое внимание необходимо обратить на последний участок кривой. Если этот участок находится в интервале температур, в кото рых термическая или термоокислительная деструкция еще не проходит достаточно глубоко, можно говорить о течении полимера. Чтобы убедиться в том, что развитие большой деформации (до 100% при сжатии) вызвано течением, а не деструкцией полимера, необходимо параллельно проделать термогравиметрический анализ (получить термогравиметрическую кривую). Это. особенно важно в случае теплостойких полимеров, для которых развитие большой деформации наступает в интервале температур 600—800 °С, и эта деформация, вызванная глубокой термической деструкцией полимера, может быть ошибочно принята за течение. Нужно учитывать также, что в процессе термомеханических испытаний помимо деструкции может происходить и структурирование. Эти два процесса всегда сосуществуют, но один из них протекает с гораздо большей скоростью и определяет направление всего процесса. Структурирование может проявляться в образовании поперечных связей между цепями полимера, в циклизации и т. д. В результате начавшееся течение полимера приостановится, а на термомеханической кривой появится площадка, аналогичная по форме плато высокоэластичности для линейных полимеров. Поэтому наличие такой площадки (а вернее, прекращение деформации) еще не позволяет утверждать, что полимер в данном интервале температур находится в высокоэластическом состоянии. [c.80]

    Одной из наиболее характерных особенностей радиационно-сшитых полимеров является отсутствие текучести при температуре, превышающей температуру плавления необлученного продукта и, как следствие, формо-устойчивость, предопределяющая возможность эксплуатации изделия при высоких температурах, вплоть до температуры термического разложениям- Равновесная деформация полиолефинов при действии постоянной на- [c.8]

    Исследование влияния типа связей на характер термомеханических кривых, модуль упругости и равновесную высокоэластическую деформацию трехмерных полимеров на основе фенолформальдегид-ных смол, эпоксидных и других термореактивных пленкообразующих показало, что значительная роль в образовании пространственной структуры в этих системах принадлежит физическим связям. Из термомеханических кривых полимеров с различным содержанием поперечных связей следует, что они характеризуются значительной высокоэластической деформацией, но не переходят в вязкотекучее состояние из-за наличия пространственной структуры. Температура стеклования трехмерных полимеров увеличивается с повышением степени отверждения, зависящей от температуры формирования. Однако даже при высокой температуре 140 °С не реализуется полная глубина отверждения, а пространственная сетка является термически лабильной. Это выражается в том, что по мере нагревания трехмерных полимеров и приложения нагрузки часть связей, образующих сетку, разрушается, а на их месте образуются новые связи, число которых с повышением температуры уве- [c.126]

    Изменяя степень кристаллизации, можно существенным образом влиять на прочность полимеров. Однако даже при заданной степени кристаллизации в зависимости от режима термической обработки при формовании образцов можно получать более или менее прочный материал при заданных значениях температуры, скорости деформации или времени воздействия деформирующей силы. [c.228]


    Наряду с высокой механической прочностью СВМПЭ обладает химической стойкостью, стойкостью к растрескиванию, истиранию, ударным нагрузкам, морозостойкостью, низким коэффициентом трения. СВМПЭ способен работать в широком интервале температур —269 до - -120°С. Так, при отсутствии нагрузок или при незначительной механической нагрузке изделия из СВМПЭ можно применять до 120°С, не опасаясь существенной деформации. Эксплуатировать изделия при длительном воздействии температуры 120°С и выше не рекомендуется из-за опасности частичного термического разложения полимера. Изделия из СВМПЭ могут служить и при низких температурах, вплоть до температуры жидкого гелия (до —269°С), при этом СВМПЭ имеет еще некоторую прочность и стойкость к удару. [c.69]

    В рамках данной книги необходимо исследовать влияние термомеханического разрыва цепей на механические свойства полимеров. Поэтому вплоть до данного момента автор старался по возможности отделить и исключить влияние окружающей среды. Во многих случаях подразумевалось, что исследуемые зависимости свойств материала (например, от деформации, напряжения, температуры, морфологии образца, концентрации свободных радикалов) являлись доминирующими по сравнению с зависимостями от влажности, содержания кислорода, воздействия химической среды или облучения. Совершенно очевидно, что данные внешние факторы чрезвычайно важны для выяснения сроков службы элементов конструкций из полимерных материалов. Значительное число последних подробных монографий и основополагающих статей касается деградации полимеров при воздействии окружающей среды (например, [196— 203]). В них подробно рассматриваются такие аспекты внешних условий деградации, которые в данной книге в дальнейшем не рассматриваются, а именно термическая деградация, огне- и теплостойкость, химическая деградация, погодные изменения и старение, чувствительность к влаге, влияние электромагнитного излучения, облучения частицами, кавитации и дождевой эрозии, а также биологическая деградация. За любой детальной информацией по перечисленным вопросам и методам [c.313]

    Изменение свойств полиамидов при нагревании может рассматриваться с нескольких точек зрения. Например, интерес представляет определение положений температур переходов первого и второго рода при нагревании или охлаждении полимера. Может исследоваться поглощение или выделение тепла, с помощью которых определяют теплоемкость полимера и скрытую теплоту перехода. Скорость переноса тепла характеризует теплопроводность, а изменение объема при нагревании — термический коэффициент расширения материала. Тесно связанным с точками переходов и, возможно, более важным показателем является теплостойкость, которая определяется температурой, при которой в условиях равномерного подъема температуры при некоторой нагрузке, деформация испытуемого образца достигнет заданных размеров. [c.150]

    Несмотря на очевидность того, что это переход первого порядка, полимер сохраняет свою форму и не подвержен вязкому течению. Применение сжатия при температуре выше указанной приводит к некоторой эластической деформации в сочетании с очень медленной пластической деформацией. При повышении напряжения или попытке подвергнуть полимер большой деформации кручения его масса ломается. Растяжение при температуре выше 327° приводит к тому, что полимер несколько удлиняется, а затем рвется или ломается. Если температура возрастает выше 327°, резиноподобное состояние остается неизменным до наступления термического распада цепи полимера. Этот термический распад, который в слабой степени наблюдается около 450° и в более сильной при высоких температурах [10], сопровождается образованием летучих продуктов ). [c.384]

    Рассасыванию напряжений способствует также введение в композицию пластификаторов. Введение пластификаторов особенно важно еще и потому, что внутренние напряжения создаются не только при исиарении растворителей и формовании пленки, но и в процессе ее эксплуатации, наиример, при колебаниях температуры, что объясняется неодинаковым коэффициентом термического расширения полимерного покрытия и основы, на которую оно нанесено (особенно резкое различие коэффициентов характерно для комбинации полимер — металл). Наличие в пленках пластификаторов хотя и понижает разрывную прочность, но одновременно резко повышается их деформируемость. На рис. 138 схематически показано преимущество пластифицированной пленки в отношении устойчивости к быстрым температурным деформациям. Для непластифицированной пленки, разрывная прочность которой О] выше, чем разрывная прочность пластифицированной пленки аа, наступает разрыв, если температурная деформация основы составит величину бкр, превышающую критическое (разрыв- [c.327]

    Кроме улетучивания растворителя протекают и другие процессы, связанные с уменьшением объема пленки химическая усадка, сопутствующая образованию химических связей. При этом изменяются межмолекулярные расстояния, перегруппировка молекул происходит неравномерно, постепенно замедляясь в ходе процесса отверждения. Наименьшие внутренние напряжения возникают при склеивании эпоксидными смолами, так как они отверждаются с небольшим изменением объема и без выделения летучих продуктов. Вторая причина — это напряжения, вызванные раз личием термических коэффициентов линейного расширения (КЛР) адгезива и склеиваемого материала. Полимеры имеют КЛР в 6—10 раз больше, чем дерево, стекло, металлы. Напряжения возникают в тех случаях, когда отверждение клея проводят при повышенной температуре, а затем температура пони-жается. Эти напряжения могут быть уменьшены при постепенном остывании склеенного изделия. У комбинированных из разных материалов конструкций это может быть причиной деформации и даже разрушения. [c.66]

    Второй момент связан с методикой приготовления образцов для испытаний, а именно с их термической предысторией. Было четко показано [16], что, так же как и в линейных полимерах [122], существенное влияние на свойства сетчатых полимеров оказывает их термическая предыстория. Отжиг сетчатого полимера приводит к большей конформационной однородности цепей, к улучшению его упаковки и как следствие к некоторому повышению (до 20%) величины предела вынужденной эластичности по сравнению с неотожженным полимером. В то же время быстрое охлаждение полимера (закалка) приводит к падению предела вынужденной эластичности и повышению предельной величины деформации (рис. 33). Еще большее влияние оказывает длительный прогрев полимеров при температурах несколько выше температуры стеклования полимера (рис. 34) с последующим их отжигом [123]. [c.231]

    Как мы уже знаем, старение полимеров представляет сумму физико-химических изменений их исходной структуры, под воздействием химических реакций, протекающих под действием тепла, света, радиационных излучений, механических напряжений, кислорода, озона, кислот, щелочей. Эти реакции приводят к деструкции полимерных цепей или их нежелательному, неконтролируемому сшиванию, в результате чего полимеры становятся липкими и мягкими (деструкция) или хрупкими и жесткими (сшивание), а главное—менее прочными. В реальных условиях эксплуатации полимерных изделий на них действует одновременно несколько из перечисленных факторов. Например, солнечный свет, кислород воздуха, озон. Для стран с жарким климатом на это накладывается еще повышенная температура, влажность. При работе многие полимерные изделия разогреваются (иаиример, при многократных деформациях эластомеров) или используются для работы в условиях повышенных температур, в результате чего интенсивно развиваются термическое и термоокислительное старение полимеров. [c.201]

    С температурой стеклования тесно связана температура TepMH4e Koi деформации полимеров. Если указывает температурный интервал, i котором происходит размягчение материала в статическом режиме, то тем пература термической деформации определяет температурный интервал, i котором полимер размягчается и начинает деформироваться под действие нагрузки. В полимерной промышленности в качестве эмпирического пара метра для сравнения поведения различных полимеров при переходе из твер дого состояния в мягкое чаще используют температуру термической дефор [c.136]

    Установлено, что данное выражение справедливо для ряда полимеров (ПВХ, ПК, ПММА, ПС, ацетата целлюлозы) в более или менее широких интервалах температур и скоростей деформации [154, 156, 158]. Значения у (зависящих от температуры) активационных объемов при комнатной температуре заключены в интервале 1,4 нм (ПММА) — 17 нм (ацетат целлюлозы). Это означает, что, согласно данному представлению, деформация полимеров при достижении предела вынужденной эластичности обусловлена термически-активированным смещением молекулярных доменов в объемах, размеры которых в 10 (ПММА) — 120 (ПВХ) раз больше длины мономерного звена. Ряд авторов указывал [155—158, 160], что приведенный выше критерий (8.29) соответствует критерию вынужденной эластичности Кулона To+ ip = onst. Коэффициент трения ц обратно пропорционален у. Анализируя свои экспериментальные данные по поликарбонату с учетом выражения (8.29), Бауэне— Кроует и др. [158] приходят к выводу о существовании двух процессов течения. Они связывают их с а-процессом (скачки сегментов основных цепей) и с механизмом механической -релаксации. [c.304]

    Гвсрдос стекловидное состс яние гюлимера сохраняется до О . Выше этой температуры полимер постепенно переходит в .частичное состояние, причем эластические деформации увеличиваются с повышением температуры. Одновременно в полимере появляется пластичность, возрастающая с повышением температуры. При 145—155 полистирол можно перерабатывать в изделия прессованием, а при 180—220°—литьем под давлением. Выше 200° начинается термическая и окислительная десч рук-ция по, 1имера, ускоряющаяся с повышением температуры (рис. 93). При температуре около 300° полистирол разрушается, основным продуктом деструкции является мономер. В атмосфере азота деструкция иолимера происходит при значительно более высокой температуре при 300° полистирол де-пол имер изуется в азоте крайне медленно (рис. 94) и только при 375—400 скорость деполимеризации начинает приближаться к скорости деполимеризации полистирола на воздухе при 200 (рис. 95). [c.362]

    Полиарилаты, содержащие двойные связи, на основе 3,3 -диаллил-4,4 -дигидро-ксидифенил-2,2-пропана, с добавкой о-аллилфенола, на основе фумаровой кислоты и т.п. могут быть отверждены при нагревании или за счет сополимеризации с другими ненасыщенными соединениями [177-186]. Это позволяет в широких пределах модифицировать свойства полимеров, например повышать их термические характеристики. Так, отвержденному полиарилату изофталевой кислоты и 3,3 -диаллил-4,4 -дигидроксидифенил-2,2-пропана свойственна высокоэластическая деформация в широкой области температур разрушение этого полимера наблюдается при температурах, превышающих 500 °С [11]. [c.160]

    Научные исследования в области полистирола ведутся как в направлении модификации существующих материалов с целью повышения их теплостойкости и ударостойкости, так и в напра(влении синтеза новых полимеров. Большое внимание уделяют синтезу и изучению свойств кристаллического стереорегулярного полистирола и его производных, например различных алкилстиролов и галоидзамещенных стиролов, обладающих высокой теплостойкостью, а также привитых сополимеров. В 1965 г. в опытных количествах был получен полимер а, р, р -трифторстирола, сочетающий высокую химическую и термическую стойкость с легкостью переработки i[82]. В 1967 г. разработан сополимер стирола и метилметакрилата с температурой тепловой деформации выше 100°С 1118]. Изучают радиационный метод полимеризации стирола. Фирмой Foster Grant o., In . получен сополимер стирола, а-метилстирола и акрилонитрила [119]. Большой интерес представляет конверсионная полимеризация стирола (в положение 1,6), при которой получается полимер со значительно более высокой температурой размягчения. Однако промышленное производство этого полимера затруднено медленной кристаллизацией его из расплава. [c.193]

    Влияние тепловых колебаний скажется только при достижении таких температур, за пределами которых эти колебания способны привести к разрыву химической связи в основной цепи, т. е. к термической деструкции. Правда, за последнее время все больше исследователей считают, что механический обрыв цепей при деформации полимеров происходит под действием тепловых колебаний, а механические силы только опособствуют этому, снижая энергию связей 2б, 129 Однако на границе термической деструкции можно говорить как о механической активации термической деструкции, так и о тепловой активации механической деструкции. Для линейных полимеров это имеет практическое значение главным образом в случае механической активации химической деструкции и реализуется при разрушении трехмерных пространст- [c.93]

    Дополнительная ориентация достигается или растяжением нити между двумя вращающимися с различной окружной скоростью дисками (при этом создается значительно большее напряжение, чем в осадительной ванне, где оно обусловлено только гидродинамическим сопротивлением), или вытяжкой готовой нити, если полимер способен переходить в пластическое состояние. В некоторых случаях, когда процесс установления равновесия в матричной фазе зашел достаточно далеко и пластическая деформация ее оказывается малой даже при вытягивании между роликами прядильной машины, нить подвергают временному нагреванию с целью понижения вязкости матричной фазы и продолжения ориентационного процесса (этот прием называют пластификацион-ной вытяжкой). Так поступают при формовании целлюлозных волокон из вискозных растворов, поскольку в результате последующей кристаллизации и очень высокой температуры плавления кристаллитов целлюлозы (значительно выше температуры термического распада) ориентационная вытяжка готового волокна оказывается невозможной. [c.223]

    Детальному исследованию процессов высокотемпературной вытяжки и кристаллизации волокон из поли-ж-фениленизофталамида, поли-4,4 -дифениленоксид-терефталамида и сополиамидов посвящены работы [102, 103]. Отмечен общий бимодальный характер зависимости прочности волокон от температуры термической вытяжки. Это означает, что на кривой зависимости прочности волокон от температуры вытягивания имеется два максимума прочности. Для волокон из поли-ж-фениленизофталамида в первой зоне вытяжки (220—260 °С) наблюдается заметное упрочнение волокна, сопровождающееся возрастанием максимальной кратности вытяжки. Поскольку данный температурный интервал лежит ниже температуры размягчения полимера, можно предположить, что вытягивание в первой зоне происходит в области вынужденной высокоэластичности полимера. Вытягивание во второй зоне (260—300 °С), несмотря на увеличение максимальной кратности вытягивания, приводит к уменьшению прочности и увеличению разрывного удлинения. В этой зоне вытягивание происходит в режиме истинной высокоэластичности и сопровождается интенсивными релаксационными процессами, приводящими к дезориентации макромолекул в аморфных областях и к снижению прочности. В третьей зоне (300—360 °С) происходит упрочнение волокна при снижении кратности вытяжки. В этой области, по-видимому, ориентация сопровождается интенсивной кристаллизацией полимера. При этом релаксационные процессы играют заметную роль, так как прочность увеличивается незначительно. В четвертой зоне, при температурах выше 360 °С, наблюдаются процессы необратимой деформации вязкого течения в термической деструкции, вследствие чего физико-механические свойства волокна ухудшаются. В результате двухстадийной термовытяжки при 260 и 360 °С удалось затормозить релаксационные процессы и получить волокна из поли-ж-фениленизофталамида с удовлетворительной прочностью около 50 гс/текс. [c.185]

    На рис. И1.49 изображена зависимость прочности и удлинения волокон из поли-п-фенилентерефталамида, полученных формованием из изо- и анизотропных растворов, от температуры термической вытяжки, производимой до максимальной кратности (в 1,2 раза). В данном случае, как и на примере поли-ж-фенилеиизофталамида [102], можно отметить четыре температурные области, характеризующие различную степень ориентации и упрочнения волокна. В первой области до температуры термообработки 350—400 °С нити упрочняются в 1,2—1,3 раза, по-видимому, в результате реализации высокоэластической деформации аморфных областей полимера. Во второй области (от 350—400 до 450— 500 °С) разрывные прочности волокон заметно снижаются. Эта температурная область соответствует, по-видимому, области расстекловывания поли-п-фенилентерефталамида (температура стеклования этого полимера 345 °С) [106]. Рас-стекловывание полимера сопровождается релаксационными процессами и частичной дезориентацией макромолекул, сопровождающейся снижением прочности волокон. Третья область температур (от 450—500 до 550 °С) характеризуется резким возрастанием прочности вследствие эффективной ориентации и интенсивной кристаллизации полимера, о чем свидетельствуют рентгенограммы волокон. При термообработке волокон выше 550 °С прочность уменьшается вследствие термоокислительноп деструкции полимера. [c.186]

    На основе упрощенного анализа явления можно ожидать, что в результате деформации при растяжении даже полимера, характеризующегося высоким содержанием пластинчатых структур (например, полиэтилена), большинство его цепей развернется и перейдет в выпрямленное состояние. При такой ориентации всегда наблюдается значительное уменьшение интенсивности дискретного рассеяния под малыми углами [53 ]. Предполагают, что слабую дифракцию от больших периодов, которую еще удается наблюдать, порождают оставшиеся нераспрямленными складки [54]. Если теперь к системе подвести тепло, чтобы обеспечить достаточную подвижность сегментов цепей, то при этом вновь образуются складки. Как следует из характера дискретного рассеяния под малыми углами, чем выше температура, тем больше количество складок и тем больше их период [12, 45]. Для того чтобы объяснить физические свойства полимеров, часто связанные с рекристаллизацией, следует предположить, что новообразование складок происходит совершенно случайно и в этом процессе должны принимать участие отдельные цепи или только малые группы цепей. Несомненно, что образование пластин не обусловлено процессами новообразования складок и рекристаллизации при температурах, обычно используемых на практике при термической обработке, так как следовало бы ожидать, что наличие таких кристаллических пластин должно оказывать вредное влияние на прочность ориентированного волокна. В самом деле, хрупкость полимера, часто вызванная слишком высокой температурой термической обработки, может быть обусловлена образованием пластин. Такие пластины, расположенные поперек оси волокна, наблюдал Кобаяши в отожженных волокнах линейного полиэтилена [55]. [c.225]

    Выше рассматривались общие закономерности явлений перехода второго рода в разли щых типах каучуков и других выеокополимеров. Все изложенные факты, по крайней мере качественно, согласуются с концепцией о скачкообразном изменении величины вращения у С — С связей при температуре перехода. Аномалия теплоемкости указывает на происходящие при этом изменения размера участков цепи, затронутых движением сегментов. Увеличение при переходе термического расширения относится за счет вязкого течения. Температура хрупкости, наоборот, обусловлена каучукоподобной эластичностью. Отмечено наличие ряда линейных зависимостей между температурой перехода и хрупкости, с одной стороны, и молекулярным весом, содержанием пластификатора и т. д. — с другой. При отсутствии более обширных исследований и более обоснованных теорий можно принять эту закономерность как эмпирическую, хотя она между прочим и соответствует теоретическим представлениям о вязкости расплава и эластической деформации полимеров. [c.77]

    Таким образом, термические напряжения и обусловленное ими разрушение полимера связаны с термическими коэффициентами расширения и механическими свойствами полимера. В этом кратко.м разделе мы не можем подробно расс.мотреть разрушение и деформацию эпоксидных полимеров, тем более, что механические свойства аморфных полимеров подробно описаны в ряде монографий [I, 71, 72, 73]. Между разрушением и деформированием линейных и трехмерных стеклообразных полимеров с феноменологической точки зрения нет принципиальных различий [1, 74], что дает воз.можность использовать прн изучении внутренних напряжений и растрескивания весь математический аппарат, разработанный в механике полимеров для описания дефоомиоованпя. релаксации наисяжения и разрушения. Для расчета произведения гАа из свойств полимера необходимы, как уже указывалось, значения нерелаксирующего модуля а зависимости от температуры, которые имеются для очень малого числа полимеров. Для описанных выше полимеров была проведена проверка возможности такого расчета и получено удовлетворительное совпадение с экспериментом [101]. [c.77]

    Не меньшее влияние, чем температура, на внутренние напряжения в эпоксидных полимерах оказывает поглощение воды [102], всегда присутствующей в атмосфере. В эпоксидных смолах, представляющих собой жесткие полярные полимеры со сравнительно большим водопоглощением [до 5—6% (масс.)], прн поглощении воды возникают большие внутренние напряжения, в некоторых случаях превосходящие термические напрял е-ния. В этом случае внутренние напряжения, налагающиеся нз термические, возникают за счет деформации набухания полимера е,(. и пропорцпональны гВср, причем в этом случае 2 и зависят от относительной влажности ср. Как и в предыдущем случае определение Ег и Вф — сложная задача, и проще определять произведение 26,р = /(ф), которое также представляет собой величину, характерную для полимера. Значение произведения Е2В,( представляет большой интерес, так как оно позволяет судить об относительном значении внутренних напряжений в разных полимерах и рассчитывать из значения авн, если известно значение А(х, у, г)- [c.77]

    Поскольку возникновение термических напряжений обусловлено релаксационными процессами, их значение зависит от скорости нагревания и охлаждения. Например, при быстром охлаждении поливинилхлорида внутренние напряжения оказываются в 2 раза выше, чем при медленном [82]. Термические напряжения в слоях и пленках полимеров могут быть уменьшены [83, 84] и даже сняты при термообработке вследствие релаксации, а собственные напряжения практически не релаксируют. Если в процессе повторного нагревания не происходит доотверждение или пластическая деформация пленки покрытия, форма зависимости внутренних напряжений от температуры сохраняется постоянной (рис. IV.18). Значение термических напряжений [81 85 86 87, с. 213, 389 88 89, с. 40] независимо от типа соединяемых материалов пронорциональпо разности ТКЛР (Аа), модулю упругости [c.173]


Смотреть страницы где упоминается термин Температура термической деформации полимеров: [c.509]    [c.509]    [c.137]    [c.568]    [c.34]    [c.66]    [c.69]    [c.60]    [c.190]    [c.34]    [c.568]    [c.60]    [c.60]    [c.171]   
Смотреть главы в:

Полимеры -> Температура термической деформации полимеров




ПОИСК





Смотрите так же термины и статьи:

Деформации полимера

Полимеры термические

Температура полимеров



© 2025 chem21.info Реклама на сайте