Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Метан, поглощение

    Блок абсорбции и стабилизации верхнего продукта первой ректификационной колонны 6. Основным аппаратом блока является фракционирующий абсорбер 13, разделенный глухой перегородкой на две части нижнюю — абсорбер-десорбер с 31 тарелкой и верхнюю— абсорбер второй ступени с 6 тарелками. В абсорбере-де-сорбере из газа поглощаются пропан и бутаны, а из жидкой фазы отпариваются метан и этан. Абсорбентом служит фракция н. к.— 85 °С. Абсорбер второй ступени предназначен для поглощения паров бензина, увлеченных сухим газом из абсорбера-десорбера. Абсорбентом служит фракция 140—240 °С. Насыщенный абсорбент из абсорбера второй ступени насосом подается в первую ректификационную колонну б сухой газ, выходящий с верха абсорбера второй ступени, поступает в топливную сеть завода. Тепло абсорбции в абсорбере-десорбере снимается в трех точках по высоте абсорбционной части аппарата циркуляцией абсорбента через холодильники. [c.107]


    ВЫХОДЯЩИЙ сверху абсорбера, пропускается через систему очистки от компрессорного масла и направляется потребителям. Абсорбент в основном поглощает углеводороды начиная от пропана и выше и небольшую часть метана и этана. Насыщенный абсорбент выходит снизу абсорбера и поступает в выветриватель, где за счет снижения давления выделяются метан и этан. После выветривателя насыщенный абсорбент проходит теплообменник, паровой подогреватель и направляется и десорбер, где выделяются поглощенные углеводороды. [c.166]

    По описанной схеме удается извлечь только около 50% имеющегося в исходном газе пропана. Для повышения степени извлечения сжиженных газов применяют абсорбционно-отпарную колонну (фракционирующий абсорбер), состоящую из двух секций разных диаметров. Верхняя секция меньшего диаметра служит абсорбером, сверху нее подается свежий абсорбент, а снизу поступает газ. В нижнюю секцию подводится тепло, в результате чего происходит выделение поглощенного абсорбентом метана, этана и пропана. Последний вновь поглощается свежим абсорбентом в верхней секции фракционирующего абсорбера. Таким образом сверху аппарата уходит сухой газ (метан и этан), а снизу насыщенный абсорбент. Применение абсорбционного метода позволяет извлечь из исходного сырья 70— 90% пропана, 97—98% бутана, весь пентан и более тяжелые компоненты. [c.166]

    Метод синтеза этилового спирта, предложенный в 1932 г. В. Ф. Герром с сотрудниками, заключается в следующем. Пирогенный газ пропускают через активированный уголь с целью поглощения последним гомологов этилена очищенный газ содержит водород, метан, этан и этилен (до 22 % по объему). В таком составе газ (так называемая этиленовая фракция) при нормальном давлении и температуре около 100 °С поступает в железные скрубберы с насадкой из мелких кусков кварца, орошаемых — навстречу газовому потоку — концентрированной серной кислотой (плотность при 15 °С — 1,84) В указанных условиях максимальные выходы этилового спирта колебались по лабораторным данным в пределах 7—8 % на газ (30% потенциала этилена в газе) при расходе кислоты в 14—16 кг/кг абсолютного спирта, по данным работы полузаводской спиртовой установки — не выше 6,5 % на газ нри расходе кислоты до 18 кг/кг абсолютного спирта. [c.26]

    Поступающий в ожижитель 98,8%-ный водород содержит следующие примеси 0,6% СН4, 0,3% СО, 0,3% N 2 и Аг, следы паров воды и двуокиси углерода. Полное удаление всех примесей проводится в процессе охлаждения и ожижения водорода методами адсорбции и фильтрации. Пары воды удаляются при 4,5—5°С путем поглощения их окисью алюминия метан адсорбируется активированным углем при 100 °К СО, N2, Аг удаляются адсорбцией на силикагеле при 80 °К. Регенерация адсорбентов и фильтрующих элементов осуществляется периодически в процессе ожижения. [c.85]


    При нагревании до 700—850 молекула ацетона распадается на кетен и метан реакция протекает с поглощением тепла  [c.474]

    Когда пойдут пары чистого эфира (полное поглощение пузырьков газа в азотометре), прекращают нагревание, закрывают кран 5. Поднимают уравнительный сосуд и оставляют его в таком положении 5—10 мин. Затем, беря за проволоку, надевают эвдиометр, наполненный прокипяченной водой, на конец изогнутой трубки под поверхностью воды и, осторожно открывая кран 4, переводят метан в эвдиометр. После 10-минутного стояния производят отсчет объема газа, поднимая эвдиометр так, чтобы уровень жидкости в нем совпадал с уровнем жидкости в цилиндре. Одновременно отмечают температуру и давление. [c.249]

    Снять спектр поглощения метана, подобно съемке спектра полистирола. 7. Проанализировать полученный спектр, отнести полосы поглощения к деформационному симметричному и асимметричному колебаниям, помня, что должны наблюдаться Р- и / -ветви, которые могут быть не разрешены на отдельные полосы поглощения. 8. Определить деления шкалы длин волн для С-ветвей, соответствующих деформационным колебаниям молекулы метана. 9. Определить волновые числа основных полос поглощения деформационных колебаний, пользуясь дисперсионной кривой. 10. Построить дисперсионную кривую прибора ПСП-12 с призмой как это описано на стр. 47 п.п. 16—22. Начальное деление шкалы длин волн 12,80, скорость записи спектра 3. Зеркальную заслонку открыть, когда на шкале будет деление 13,00. Конечное деление шкалы 15,00. 11. Сопоставить спектр полистирола со спектром, изображенным на рис. 31,6, определить деления шкалы длин волн для каждого максимума и построить дисперсионную кривую. 12. Установить газовую кювету, заполненную метаном перед входной щелью прибора и снять спектр поглощения метана подобно съемке спектра полистирола. Если окажется поглощение, близкое к 100%, то определить деление шкалы длин волн, соответствующее участку спектра с максимальным поглощением, установить это деление на шкале. Частично разбавить метан в газовой кювете воздухом при помощи резиновой груши, наблюдая за движением стрелки записывающего приспособления. Она должна сместиться примерно на 20 делений. 13. Повторить съемку спектра метана при тех же условиях. 14. Определить волновое число полосы поглощения (С -ветви), соответствующей асимметричному колебанию метана, пользуясь дисперсионной кривой. 15. Определить среднее значение Дсо в Р-ветви вращательно-колебательного спектра метана, пользуясь дисперсионной кривой. 16. Рассчитать момент инерции молекулы метана "по уравнению (1,39). 17. Определить межатомное расстояние С—Н, исходя из того, что молекула метана имеет тетраэдрическую структуру и угол Н—С—Н составляет 109°28. 18. Сопоставить полученное значение волнового числа колебания и межатомное расстояние с табличными данными. [c.63]

    Простые молекулы насыщенных органических соединений (метан, этан) имеют характерные полосы в вакуумной области. Появление в соединениях кратной связи вызывает сдвиг поглощения в сторону больших длин волн. Так, в спектре этилена появляется интенсивная полоса при к = 1800 нм. Наличие сопряженных двойных связей в молекулах [c.53]

    В газе, оставшемся после удаления всех способных поглощаться компонентов, могут содержаться еще водород, метан, азот и благородные газы. При фракционном сжигании на СиО при 270—290 С водород переходит в воду. При 850—900 °С метан сгорает до двуокиси углерода и воды. Сжигание может происходить в атмосфере кислорода или на платиновой спирали. Азот (+ благородные газы) обычно находят по разности между исходным объемом и суммой объемов компонентов, определенных при поглощении и сжигании. [c.86]

    Метан и другие углеводороды могут быть выделены из сухих газов различными методами. Одним из наиболее эффективных является непрерывный адсорбционный метод. Сущность его заключается в избирательном поглощении углеводородов активированным углем с дальнейшей отгонкой сорбированных углеводородов из угля водяным паром. [c.70]

    Адсорбционный метод разделения газовых смесей основан на избирательном поглощении углеводородов твердыми сорбентами, хорошо поглощающими (адсорбирующими) высшие углеводороды и практически не адсорбирующими основной разбавляющий компонент — метан. Величина адсорбции газа или паров зависит от природы поглощающего вещества (адсорбента) и поглощаемого вещества (адсорбтива), величины удельной поверхности и структуры пор адсорбента, парциального давления поглощаемых паров или газов и температуры. [c.148]

    Другой Пример перехода 2 —2 приведен на рис. 43, где представлена полоса новой системы полос, недавно полученной как в поглощении, так и в испускании при импульсном разряде через метан 166]. В этой полосе снова видны одиночные Р- и / -ветви. Анализ спектрограммы сразу же показывает, что линии / -ветви не продолжаются линиями Р-ветви последние расположены в промежутках между линиями / -ветви, убедительно свидетельствуя о том, что происхождение спектра связано с молекулой, имеющей два одина--ковых ядра-с нулевыми спинами. Из условий эксперимента совершенно очевидно, что эти ядра должны быть ядрами углерода (опыты с метаном, содержащим подтверждают это). Таким образом, казалось весьма вероятным, что указанный спектр представляет собой новую систему полос радикала Са- Однако колебательный и вращательный анализы новой системы показывают, что ни нижнее, ни верхнее состояния новой системы не могут быть идентифицированы с известными состояниями Сг, а среди предсказанных состояний Сг трудно найти состояния, соответствующие двум наблюдаемым новым состояниям. [c.77]


    Из рис. 3.2 ВИДНО, что полоса поглощения СО , с центром при 15 мкм (667 см ) уже практически насыщена. Дальнейшее усиление парникового эффекта при увеличении концентрации СО будет определяться в основном абсорбцией в более слабых полосах с центром при 16,2, 13,9, 10,4 и 9,4 мкм. Поэтому увеличивается относительный вклад в парниковый эффект других малых хазовых составляющих (МГС) атмосферы, также поглощающих в "окнах прозрачности" ИК-радиацию. Это метан и другие органические соединения, молекулы КаО, О.,, N11 ,, ЗОа- [c.79]

    Метан - главный органический компонент атмосферы Земли. В силу высокой химической инертности он имеет наибольшее время жизни в сравнении с другими органическими соединениями и поэтому содержится в атмосфере в наибольших количествах. Роль метана в глобальных процессах не ограничивается его непосредственным участием в поглощении восходящего ИК-излучения подстилающей поверхности. Как будет показано в дальнейшем, содержание его в значительной степени определяет окислительные свойства атмосферы и, тем самым, - судьбу многих других малых газовых составляющих [c.102]

    В насыщенных углеводородах (парафинах и циклопарафинах), содержащих простые связи, возможны только переходы а—>-а. Полосы, соответствующие этим переходам, лежат в области вакуумного ультрафиолета например, метан имеет полосу поглощения при 125 нм, этан — при 135 нм. [c.66]

    Бинарная смесь углеводородов из газометра 17 подается в установку с помощью крана 15. Точный расход смеси устанавливается по пенному расходомеру 13 и контролируется но реометру 14. Расход азота, моделирующего неадсорбирующиеся компоненты смеси (метан, водород и т. п.), измеряется и поддерживается постоянным с помощью реометров 12. Колонка 7 вспомогательная, она предназначена для установления заданных расходов обоих потоков. Нитрометр 1 предназначен для сбора поглощенных газов, десорбция которых происходит при одновременном воздействии тепла и потока двуокиси углерода. Нитрометр заполнен 40%-ным раствором едкого кали, который поглощает десорбирующий агент — двуокись углерода. Анализ исходного газа и десорбата производится с помощью хроматографа. [c.154]

    Изотермы адсорбции метан и водорода на активном угле -1Ъ при поглощении из технического водорода. [c.170]

    Необходимо объяснить следующие факты а) метан и хлор не реагируют в темноте при комнатной температуре б) реакция легко протекает в темноте при температурах выше 250 "С или в) при освещении ультрафиолетовым светом при комнатной температуре г) если реакция инициируется светом, то на каждый фотон света, поглощенный системой, образуется большое количество (несколько тысяч) молекул хлористого метила д) присутствие небольшого количества кислорода замедляет реакцию на некоторое время, а затем реакция протекает нормально, причем длительность этого периода зависит от количества присутствующего кислорода. [c.46]

    Сырой газ ИЗ газопровода подается в первый абсорбер, который орошается абсорбентом. Насыщенный абсорбент поступает в выветриватель (эксианзер), где из него выделяются легкие углеводороды. В выветривателе поддерживается давление 35 ати. Выделившиеся углеводороды снова сжимают и направляют во второй абсорбер, в секцию, расположенную ппже ввода основного потока газа. В этой секции метан абсорбента вытесняется этаном и пропаном, содержащимися в сжатом газе. Таким образом, секция выполняет роль этановой колонны и служит абсорбером для поглощения этана и пропана. [c.27]

    В обеих установках компоненты газа, выходящего из печи низкотемпературного риформинга, находятся, по-видимому, в химическом равновесии, и дальнейшее образование метана может быть достигнуто только введением иового компонента или снижением температуры. В настоящее время для обогащения газа в процессе Газинтан используется каталитическая гидрогенизация, т. е. снижается температура (приблизительно до 350°С) и вводится дополнительный очищенный пар лигроина, реагирующий, с оставшимся водородом и паром. Температурный профиль во втором реакторе, однако, повышается с самого начала, так как при низкой температуре не происходит никакого эндотермического крекинга или риформинга, а избыточный водород обеспечивает немедленное начало экзотермических реакций гидрогенизации. Аналогично процессу КОГ и здесь желательно улучшить характеристики горения получаемого газа путем дополнительной стадии метанизации. Это обеспечивает удаление любого остаточного водорода, и после поглощения основной части двуокиси углерода, находящейся в газе, окончательный продукт становится полностью взаимозаменяемым с природным газом, содержащим главным образом метан. Выходное давление обычно близко -к 35 кгс/см (3,5 МПа). [c.109]

    Решение. Конверсия метана природного газа — метод производства во-.дорода и азотоводородной смеси при синтезе аммиака. Это взаимодействие метана природного газа с водяным паром, диоксидом углерода и кислородом реакции (1) —(4)] осуществляют чаще всего каталитически, в трубчатых илв шахтных конверторах. Реакции (1) и (2) эндотермичны и процесс конверсии метана в целом происходит с поглощением теплоты. Необходимая теплота подводится Б конвертор путем сжигания части природного газа до Oj и HjO, а также по реакциям (3) и (4), идущим с выделением теплоты. Одновременно с метаном конвертируются до СО и Нг высшие углеводороды, содержащиеся в природном газе СзНб. СзНа. iHio. [c.41]

    В последнее время стала развиваться радиационная химия углеводородов и появились исследования радиол иза алканов, доложенные на симпозиуме по радиационной химии углеводородов в 1957 году [146]. Под влиянием облучения таза пучком электронов с энергией порядка 1,5 мэв при обыч-ной температуре могут свободно происходить процессы расщепления молекул алкана на радикалы и непосредственного отщепления молекул водорода и метана На основе изучения цримесей этилена и пропилена в качестве веществ, поглощающих атомы водорода и метил-радикалы, а также результатов изотопического исследования радиолиза смеси этана и полностью замещенного дейтероэтана на масспектрометре, было показано, что большая часть водорода образуется при радиолизе этана путем прямого отщепления его молекул от молекул этана в первичном процессе [146]. Изучение изото-лического распределения метана, образованного при радиолизе системы этан и дейтероэтан, дало доказательство того, что метан возникает путем непосредственного отщепления его молекулы от исходных молекул этана. Таким образом, процессы радиолиза алканов могут происходить под воздейст- вием больщой энергии облучения при обычных температурах по другому механизму, с отщеплением молекул в первичном акте, без участия радикалов. В этом отношении радиолиз несколько схож с высокотемпературным крекингом, при котором относительный вес радикально-цепных процессов снижается и возрастает роль процессов распада, проходящих по молекулярному механизму, что соответствует более высоким порядкам энергий в том и другом случаях. Интересно также, что в условиях радиолиза (25°) могут возникать горячие радикалы, энергия которых соответствует гораздо более высоким температурам, чем температура экспериментов, т. е. распределение по энергиям для таких радикалов не является Максвелл-Больцмановским. С другой стороны, при действии радиации на алканы возникают и радикалы, которые могут тшициировать процессы распада. В этих случаях важной характеристикой инициированного крекинга является общий выход радикалов, способных индуцировать крекинг, отнесенный к определенному количеству поглощенной энергии. Вследствие того, что ионизирующее излучение поглощается молекулами не избирательно, количество поглощенной энергии пропорционально общему числу электронов в единице объема и не зависит от химического строения алкана [147]. В то же время выход радикалов, отнесенный к одинаковой поглощенной энергии, весьма зависит от строения поглощающих молекул. С процессами образования радикалов конкурируют процессы спонтанной де.чактивации возбужденных молекул алканов, связанной с превращением энергии элект- [c.71]

    При пиролизе пропана, как это видно из уравнения реакции, всегда образуются в равных объемах этплен и метан количество поглощенного маслом метана составляет около 4% от абсорбировавшегося этилена. Следует добиваться, чтобы в масле поглощалось как можно меньше метана, так как присутствие слишком больших количеств метана приведет к тому, что в условиях давления и температуры, при которых проводят операции, в отнарной колонне не будет образовываться флегма и невозможно будет проводить ректификацию в колонне разделения этана и этилена. Нижняя часть абсорбционной колонны снаб кена выносным подогревателем, в котором масло нагревается до 120°. По паправлению вверх температура колопны понижается она может точно регулироваться при помощи двух или более промежуточных водяных холодильников. [c.170]

    Схема маслоабсорбционной установки сравнительно проста. Тяжелые углеводороды (Сз и выше) извлекаются в колоннах-абсорберах под давлением 0,5-1,2 МПа. В десорбере при давлении 0,3-0,5 ffla и температ ре к) ба 120-150 С выделяются поглощенные в абсорбере углеводороды, которые после конденсации образуют нестабильный бензин. В ряде случаев десорбцшо проводят в две ступени в первом десорбере выделяются метан и этан, во втором нестабильный бензин. [c.88]

    Определение углеводородов и водорода. При анализе многокомпонентных газовых смесей, содержащих наряду с СО,, СО и О,, также предельные и непредельные углеводороды (например метан СН , этилен С2Н4) и водород, поступают следующим образом. Для поглощения непредельных углеводородов служит раствор бромистого калия, насыщенный бромом при пропускании газовой смеси через такой раствор происходит бромирование непредельных углеводородов с образованием жидких бромпроиз-водных, например  [c.448]

    Для выяснений той роли, которую вода играет в нашем природном окружении, важно знать ее физические свойства в твердом, жидком и газообразном состояниях. Поэтому полезно начать с напоминания о некоторых особых свойствах воды, описанных в предыдущих главах. Для вещества с такой небольшой молекулярной массой вода обладает необычно высокими температурами плавления и кипения (см. разд. 11.5, ч. 1). Метан СН , имеющий приблизительно такую же молекулярную массу, как и вода, кипит при 89 К, в то время как вода кипит при 373 К. Вода обладает необьино высокой удельной теплоемкостью, равной 4,184 Дж/(г град). Удельная теплоемкость большинства простых органических жидкостей составляет лишь приблизительно половину указанной величины. Это означает, что при поглощении определенного количества теплоты температура воды повышается на меньшую величину, чем у многих других жидкостей. Теплота испарения воды тоже необычно высока, т.е. для испарения одного грамма воды требуется больше теплоты, чем для испарения [c.143]

    Коксовый газ — побочньш продукт коксования углей. Иначе его называют светильным газом, так как первоначально его использовали лишь как горючее, преимущественно для освещения. Основные составные части коксового газа — метан (30—50%) и водород (30—50%) кроме того, он содержит значительное количество паров ароматических углеводородов. Путем поглощения маслом с последующей отгонкой из коксового газа выделяют сырой бензол (до 1,5% от веса угля) — смесь ароматических углеводородов с температурой кипения 150—160° С. Из сырого бензола ректификацией получают чистый бензол, толуол, смесь ксилолов. Этим способом добывают основное количество бензола. Таким образом, в настоящее время коксовый газ — не только горючее, но и ценный источник ароматических соединений. [c.341]

    Из абсорбера насыщенный абсорбент направляется в абсорб-ционно-отнарную колонну 2, где из него выделяются метан и этан, поглощенные абсорбентом наряду с целевыми углеводородами. Для улавливания пропана, увлекаемого метаном и этаном, на верх колонны подается тощий абсорбент. Для отпарки метана и этана абсорбент забирается насосом с глухой тарелкки, расположенной в нижней части колонны, прокачивается для подогрева через теплообменник и возвращается обратно под эту же тарелку. [c.128]

    Колонна состоит из двух секций верхней — абсорбционной и нижней — отпарной (рис. 59). В верхней секцпн происходит препмуще-ственпое поглощение подаваемым наверх тощим абсорбентом пропана и бутана, выделяющихся наряду сметах , 1 и этаном нри отпарке их в нижней секции колонны. Из насыщенного абсорбента выделяются весь метан и 90—95% этана. Поступающий в питательную секцию колонны нестабильный насыщенный абсорбент, стекая вниз, нагревается нарами углеводородов. При этом из него отпариваются преимущественно метан и этан однако вместе с ними выделяются [c.132]

    Обращает на себя внимание тог факт, что предельные теплопроизводительности горючей смеси и воздуха заметно различны для таких органических топлив, как метан (наименьшее тепловыделение), бензол и ацетилен (наибольшее тепловыделение). Это легко объясняется тем, что молекула метана СН образуется при резко выраженном экзотермическом эффекте (тепловыделении), молекула бензола СеНв — при слабо выраженном экзотермическом эффекте, а молекула ацетилена С2Н2 — при эффекте эндотермическом (теплопоглощении). Понятно, что при сжигании молекул указанных топлив, т. е. при их разрушении, проявляется обратный эффект — добавочного тепло-поглощения при образовании продуктов сгорания метана и бензола (соответственно в несколько меньшем размере) и добавочного тепловыделения при образовании продуктов сгорания ацетилена. [c.15]

    Масляная абсорбция. Основана на поглощении углеводородов j и выше керосиновыми фракциями (мол. м. 180-240) при т-ре 10-30 °С и давл. 3,5-7,0 МПа. Метод обеспечивает извлечение 40-50% пропана, 85-90% бутанов и 95-100% газового беизина. Степень выделения целевых компонентов увеличивают, повышая уд. расход абсорбента. Сырой газ подают в ннж. часть абсорбера, регенериров. поглотитель - в верхнюю. Из верх, части аппарата отводят сухой газ, нз нижней - насыш. абсорбент. Последний направляют в абсорбционно-отпарную колонну, где из него удаляют метан и этан. После этого поглотитель поступает в десорбер (для извлечения из него углеводородов С, и выше) регенериров. абсорбент вновь направляют в верх, часть аппарата. [c.478]

    В продуктах распада радикальных пар 1-Ш (метилбензоат, толуол) протоны метильной и фенильной групп поляризованы отрицательно (эмиссия в спектре этих групп), в продуктах превращения радикалов, избежавших рекомбинации (бензол, метан, метияхлорид), поляризация положительна (поглощение в спектре ЯМР). Такая хим. сортировка ядер по их ориентации подтверждает спиновую селективность радикальных р-ций как источник ХПЯ. [c.234]

    Газы, которые состоят из атомов одного и того же рода, характеризуются тем, что атомы не обладают заряда.ми свободного электричества. Такие газы, как водород, кислород и азот, не излучают тепловой энергии и совершенно прозрачны для тепловых лучей, излучаемых каким-нибудь посторонни телом. Для технических расчетов большое значение имеет тепловое излучение углекислого газа и водяных паров, так как оба эти газа являются хорошими излучателями и присутствуют в больших количествах в газообразных продуктах горения. Окись углерода сернистый ангидрид и метан также хорошо излучают тепловую энергию, но присутствуют обычно в небольших концентрациях. На рис. 13-1 6 и 13-17 показаны спектры поглощения углекислоты и водяното пара. Из этих рисунков видно, что газы ведут себя не так, как твердые и жидкие тела, поскольку они излучают и поглощают лучистую энергию лишь определенных узких областей спектра. Для водяного пара эти области лежат сравнительно близко друг к другу. Излучение происходит главным образом в области с длиной волн более 1 мк, поэтому оно невидимо для глаза. Из ри-468 [c.468]

    Когда пойдут пары чистого эфира (полное поглощение пузырьков газа в азотометре), прекращают нагревание, закрывают кран 3. Поднимают уравнительный сосул и оставляют его в таком положении 5—Юмин. Затем, беря за проволоку, надевают эвдиометр, наполненный прокипяченной водой, на конец изогнутой трубки под поверхностью воды и, осторожно открывая кран 5, переводят метан в эвдиометр и через [c.233]

    На рис. 7,3 представлены изотермы адсорбции метана и водорода на угле / -23 при их поглощении из технического водорода, содержащего 15% (об.) примеси — метана [5]. Из графика видно, что адсорбционная способность по метану возрастает с повышением давления, достигая 40 см /г при давлении 2-10 Па (20 кгс/см ). Однако сравнение точек изотермы чистого метана (пунктирная линия) и изотермы метана в присутствии водорода при равном парциальном давлении показывает, что присутствие даже такого плохо сорбирующегося газа как водород значительно (в 2 раза) снижает адсорбционную способность но примеси. Аналогичные выводы сделаны при анализе изотерм адсорбции окиси углерода и азота. [c.170]

    Эквивалентная толщина насыщенного сорбента. После завершения стадии адсорбции концентрация в сорбенте обычно распределена неравномерно. Так, для рассматриваемого процесса (см. рис. 3.26) лищь слой угля толщиной около I м насыщен метаном в остальной части слоя концентрация метана меньше предельной. Существующие же решения для расчета процессов адсорбции, в частности уравнения (3.125) и (3.128) для линейной изотермы адсорбции, справедливы при однородном начальном заполнении сорбента. Для приближенного использования уравнений (3.128) будем рассчитывать процесс регенерации, приняв, что все поглощенное на стадии адсорбции вещество равномерно распределено в слое толщиной Н-, при концентрации насыщения. Величину Я, можно рассчитать на основе материального баланса по уравнению [c.158]

    Сельское хозяйство и климат всегда были неразрывно связаны. Возможное глобальное повышение температуры в новом столетии и последующие изменения в распределении осадков неизбежно скажутся на сельскохозяйственном производстве и демографической ситуации. Грядущие климатические изменения могут быть вызваны ростом концентрации некоторых газов в атмосфере, таких, как диоксид углерода СО2, метан СН4 и закись азота N30. На основании ряда компьютерных моделей разработаны прогнозы увеличения роли эмиссии N30 и СН4 в будущих глобальных изменениях. Около 70 % СН4 и 90 % N30 поступают в атмосферу из почв. Почвы, вместе с тем, могут бьггь и хранилищем этих газов, поэтому соотношение между обеими функциями почвы (эмиссия и связывание газов) имеет существенное значение для определения стратегии улучшения использования земель, когда одновременно стимулируется как продукция газов, так и их поглощение почвой. [c.88]

    Вначале сетку аппарата разогревают до 300—500°, затем в аппарат вводят аммиачно-воздушную смесь (содержащую 10% NHa), которую продолжают пропускать через аппарат в течение 3—4 ч, пока устанавливается температура 800—900° и достигается определенная. активность катализатора. После этого в смеситель газов через специальный фильтр и расходомер начинают подавать метан. В выходящих из контактного аппарата газах содержится (при работе на метановой фракции нефтяного газа, содержащей 97—97,5% СН4) около 6% H N, 1,5—1,7% NH3, 0,2% СО2, 4,3—4,5% СО, 0,5% СН4, 7,5% Н2, 0,1% О2, 56,7% азота, 23—23,5% водяного пара. Степень превращения аммиака в H N в зависимости от условий составляет 63—70%- После контактирования газы с температурой 900—1000° проходят котел-утилизатор, где быстро охлаждаются до 150° (т. е. до температуры несколько выше точки росы с целью предотвращения гидролиза синильной кислоты). Охлажденную газовую смесь направляют в башкю, орошаемую слабым раствором смеси серной кислоты и сульфата аммония для поглощения непрореагировавшего аммиака ц Предотвращения образования полимеров цианистого водорода i37-iS9  [c.483]

    Пластовая нефть содержит более или менее значительное количество растворенных попутных газов. Эти газы в основном состоят из метана и этана. Часто в попутном газе содержится много азота. Эти газы, как показали исследования, находясь в растворенном состоянии в пластовой нефти, вызывают десольватацию частиц асфальтенов. Адсорбируясь, на частицах асфальтенов, этан, метан и азот уменьшают толщину сольватного слоя. (Адсорбция - поглощение вещества из газовой или жидкой среды поверхностным слоем твердого тела - адсорбента. Абсорбция - поглощение вещества из газовой или жидкой среды всей массой другого вещества - абсорбента.) Наиболее сильное влияние на этот слой оказывает азот, по силе действия за ним стоят метан и этан. В пластовой нефти в присутствии азота, метана и этана десольватированные частицы асфальтенов сильно взаимодействуют и образуют пространственные структуры, прочность которых выше, чем у той же нефти, но частично или полностью дегазированной. [c.8]

    Хотя СО2 является самым важным из антропогенных парниковых газов, не он один имеет значение. На рис. 5.14 для периода 1980-90 гг. показаны относительные вклады различных газов в общее потепление, обусловленное парниковыми газами, за это десятилетие. Немногим более чем наполовину эффект был связан с СО2, но другие газы, включая метан (СН4), закись азота (N 0) и ХФУ (см. табл. 5.1), также внесли существенный вклад в общий результат. В случае этих газов, несмотря на то, что абсолютные количества их, поступающие в атмосферу, были невелики по сравнению с СО2, их вклады в парниковый эффект оказались больщими из-за того, что поглощение ими энергии происходит в ненасыщенных частях спектра излучения Земли (см. рис. 5.12). Это можно проиллюстрировать тем, что из расчета молекула-на-молекулу метан в 21 раз более эффективно поглощает энергию, чем СО2, а ХФУ-11 — более чем в 12 ООО раз. Таким образом, понимание циклов парниковых газов в целом так же важно, как знание цикла СО2. [c.237]


Смотреть страницы где упоминается термин Метан, поглощение: [c.221]    [c.63]    [c.28]    [c.306]    [c.276]    [c.123]    [c.287]    [c.107]    [c.341]   
Лабораторная техника химического анализа (1981) -- [ c.221 ]




ПОИСК





Смотрите так же термины и статьи:

Метан по поглощению в инфракрасной области



© 2024 chem21.info Реклама на сайте