Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенапряжение в растворах с комплексными

    В технологии электрохимических производств перенапряжение может оказаться как полезным, так и нежелательным. Например, при электролизе воды (растворов щелочи) для получения водорода катодное перенапряжение приводит к бесполезной затрате электрической работы. Если же цель технологического процесса — выделение металла, но одновременно в качестве побочного процесса может идти выделение водорода, то большое перенапряжение водорода полезно, так как оно, затрудняя выделение водорода, снижает бесполезный расход энергии на этот побочный процесс. Например, при электролизе щелочных растворов комплексных солей цинка на катоде должны разряжаться ионы водорода, а не цинка, так как равновесный потенциал водородного электрода менее отрицателен, чем цинкового. Но ионы гидроксония разряжаются на цинке с большим перенапряжением, т. е. при потенциале, гораздо более отрицательном, чем потенциал цинка. Поэтому из раствора при электролизе выделяется цинк. [c.297]


    Выше было упомянуто, что из комплексного раствора металл осаждается в иной форме, чем из простого раствора. Причины этого различия могут быть разные. Во-первых, комплексообразователь может адсорбироваться на металле. Этот случай будет рассмотрен в разделе 15. Затем комплексообразователь может просто понижать концентрацию разряжающихся простых катионов металла. Выделение металла из простых ионов в комплексном растворе имеет место в том случае, когда перенапряжение разряда комплексного иона намного больше, чем простого, и когда равновесие в растворе устанавливается сравнительно быстро. Возможное в этих условиях небольшое понижение концентрации разряжающихся ионов приводит к небольшому увеличению поляризации при разряде, что несколько облегчает появление новых зародышей. [c.108]

    После сближения на критическое расстояние электрическое поле помогает движению поляризованного комплекса и разряду серебра, а затем отталкивает освободившиеся анионы цианиды. Электроосаждение покрытий из растворов комплексных цианидов имеет ряд преимуществ. Снижение потенциала осаждения имеет большое значение при нанесении благородных металлов на неблагородные подложки, так как позволяет избежать сильной коррозии катода. Важный случай, связанный с применением медно-цианистой ванны, обсуждается ниже. Затрудненная диффузия комплексного аниона, энергия, необходимая для поляризации и восстановления аниона, и диффузионный барьер из-за высокой концентрации цианида вблизи катода — все это приводит к высокому перенапряжению процесса электроосаждения, что в свою очередь способствует образованию равномерных покрытий на катодах с неровной поверхностью. Ионы цианида, освободившиеся после разряда металла из комплекса, изменяют структуру покрытия аналогично действию специальных добавок и возможно, что не- [c.334]

    Работа 4. Перенапряжение при электролитическом осаждении меди из растворов комплексных солей [c.330]

    Цель работы. Изучение влияния природы лиганда на равновесный электродный потенциал меди и перенапряжение при ее катодном осаждении из растворов комплексных солей. [c.330]

    Появление комплексов в растворе сказывается не только на равновесных потенциалах металлов, но и на величине перенапряжения и на характере катодных осадков. При переходе от простых электролитов к комплексным обычно наблюдается повышение перенапряжения и уменьшение зернистости осадков одновременно подавляется тенденция к образованию и росту дендритов. Так, се- [c.463]


    На опыте стадии образования новой фазы, поверхностной диффузии адатомов и встраивания их в кристаллическую решетку не всегда оказываются наиболее медленными в процессе электрокристаллизации. Так, часто медленной оказывается стадия разряда ионов раствора. При электрокристаллизации из комплексных электролитов медленными могут оказаться реакции диссоциации комплексных ионов X. Геришер, В. И. Кравцов и др.). Перенапряжение электрокристаллизации может быть обусловлено медленным протеканием нескольких стадий и необходимо использовать особые экспериментальные приемы для того, чтобы разделить суммарное перенапряжение на составляющие, отвечающие отдельным стадиям. [c.342]

    Электролитическое восстановление. Разряд водорода на ртутном электроде протекает с большим перенапряжением, и выделение водорода не является конкурирующим процессом при выделении ртути электролизом. Поэтому ртуть как из кислых, так и из щелочных растворов простых и комплексных солей осаждается количественно. [c.77]

    В работах [182, 183] предполагается, что выделение кадмия нз иодидных растворов в ДМФ происходит с участием иодидных комплексов состава [СсИг+.х] . При малых перенапряжениях разряжаются простые сольватированные ионы кадмия, возникающие в результате химической реакции диссоциации комплекса, при больших перенапряжениях скорость процесса определяется разрядом комплексов. Оптимальным соотношением между мольными концентрациями иодида кадмия н тетрабутиламмоний-иодида является 1 2 что соответствует образованию комплексных ионов [c.56]

    Необходимо отметить интересную особенность влияния комплексообразователей на восстановление никеля и кобальта. Для большинства катионов восстановление комплексных ионов происходит при более отрицательных потенциалах, чем восстановление простых (гидратированных) ионов. Однако для никеля и кобальта наблюдается обратная зависимость потенциалы полуволн становятся более положительными при введении комплексообразователей. Это явление объясняется тем, что гидратированные ионы никеля и кобальта (в растворе хлористого калия) восстанавливаются необратимо с большим перенапряжением. Перевод этих ионов в комплексные ионы устраняет перенапряжение и сдвигает полярографические волны в область более положительных потенциалов. [c.251]

    Электрохимическая поляризация (или перенапряжение), как было указано выше, обусловлена замедлением в протекании самой электрохимической реакции между реагирующими веществами и электронами. Выделение водорода, кислорода, галоидов, некоторых металлов из растворов простых и комплексных солей сопровождается перенапряжением. В этих случаях смещение потенциала значительно и не может быть объяснено концентрационной поляризацией. В настоящее время наиболее полно изучен вопрос о перенапряжении водорода, имеющий большое теоретическое и прикладное значение, поскольку в практическом электролизе часто происходит выделение водорода как основной или сопряженный катодный процесс. [c.336]

    Перенапряжение перехода и кинетика реакций на жидких электродах (амальгамах) в растворах, содержащих комплексные ионы [c.687]

    Состав электролита, плотность тока и другие условия должны быть подобраны так, чтобы получался очень мелкозернистый однородный слой, прочно сцепленный с подложкой. Для улучшения сцепления иногда предварительно наносят очень тонкий слой какого-нибудь металла, который образует твердые растворы и с металлом подложки, и с наносимым поверх него металлом. Образованию микрокристаллической структуры обычно способствует применение в качестве электролита комплексных соединений (чаще всего солей цианистоводородной кислоты). Растворы для нанесения гальванических покрытий могут также содержать буферные добавки, небольшие добавки поверхностно-активных веществ, которые, как установлено опытным путем, улучшают структуру покрытия, и инертные электролиты. От раствора требуется хорошая рассеивающая способность , т. е. способность давать однородное покрытие и в том случае, когда у изделия имеются выступы (они расположены ближе к аноду) или впадины (где, по-видимому, плотность тока меньше). От инертных электролитов зависит относительное количество материала, приносимого к поверхности за счет проводимости. На рассеивающую способность влияют также изменение перенапряжения (см.) при изменении плотности тока, скорость диффузии и химическая устойчивость различных комплексных ионов, имеющихся в приповерхностном слое. [c.37]

    Структура получаемых осадков сильно зависит от условий электролиза. Если отсутствуют факторы, препятствующие процессу осаждения, то наблюдается тенденция к образованию четкой кристаллической структуры, которая как бы повторяет кристаллическую структуру металла-подложки. Энергичное перемешивание раствора электролита, повышение температуры раствора, использование простых (не комплексных) солей металлов в довольно высокой концентрации способствуют образованию осадка подобного типа. Однако при наличии факторов, мешающих процессу электроосаждения, наблюдается тенденция к образованию мелкозернистого микрокристаллического осадка. Если необходимо получить именно такой осадок, то в качестве электролита используют комплексные соли металлов, добавляют в раствор неэлектролиты, которые сильно адсорбируются на поверхности, или же работают при высоких плотностях тока и значительных перенапряжениях. [c.249]


    Величина поляризации при выделении металлов часто так значительна, что не может быть объяснена только концентрационными явлениями. В этих случаях, как и при выделении водорода, имеет место перенапряжение. Однако, зависимость перенапряжения при выделении металлов от плотности тока пе всегда выражается полулогарифмической кривой, как в случае водорода. Е5 растворах некоторых комплексных солей наблюдается прямая пропорциональность между перенапряжением и 412 [c.412]

    Образование комплексов влияет не только на равновесные потенциалы металлов, но и на величину перенапряжения, и на характер катодных осадков. При переходе от простых электролитов к комплексным обычно наблюдается повышение перенапряжения и уменьшение зернистости осадков одновременно подавляется тенденция к образованию и росту дендритов. Так, серебро, которое при электролизе раствора его нитрата выделяется на катоде почти без поляризации и дает грубые, шероховатые осадки, может быть получено в виде гладких, тонкокристаллических отложений, если применять комплексные цианистые электролиты. [c.425]

    Предположим, что на этих электродах выделяются соответствующие металлы. В первом случае, т. е. при выделении серебра, разряду его положительных ионов способствуют силы притяжения, существующие между ними и анионами, адсорбированными катодом, подобно тому, как положительно заряженная сетка ускоряет движение электронов в трехэлектродной радиолампе. Небольшому смещению потенциала в отрицательную сторону отвечает значительная скорость разряда. Поэтому даже при высоких плотностях тока перенапряжение остается незначительным. Во втором случае, т. е. при выделении цинка, не только отсутствует ускоряющее действие анионов, но может даже появиться тормозящий эффект посторонних катионов, если они присутствуют в растворе наряду с ионами цинка. Появление тормозящего эффекта легко понять, если учесть, что к моменту наложения тока в двойном слое присутствуют ионы металла и посторонние катионы, например ионы водорода. При включении тока ионы металла (в условиях, когда его выделение является основным катодным процессом) начнут разряжаться и их число в двойном слое уменьшится, в то время как число посторонних катионов, не подвергающихся разряду, останется неизменным. Убыль положительных зарядов должна быть восполнена за счет вхождения в двойной слой новых катионов, а ими могут быть как ионы металла, так и посторонние катионы. Таким образом, при смещении потенциала в отрицательную сторону (увеличении отрицательного заряда поверхности металла) доля разряжающихся катионов в двойном слое уменьшится, а доля посторонних катионов и общий положительный заряд катионной сетки увеличатся. Поступление катионов металла будет, таким образом, затруднено, и для обеспечения процесса разряда потребуется большее перенапряжение. При разряде комплексных анионов, как это, по-видимому, имеет место в случае цианистых электролитов серебрения и цинкования, соотношения меняются на обратные. Анионная сетка оказывает теперь уже не активирующее, а тормозящее действие. [c.444]

    Многие исследователи пытались усовершенствовать теорию электровыделения металлов, привлекая представления об электронном строении их ионов. Одна из таких попыток принадлежит Лайонсу (1954). По Лайонсу, величина металлического перенапряжения зависит от характера электронных структур разряжающихся ионов и выделившегося на катоде металла. При этом перенапряжение будет особенно большим в двух случаях. Во-первых, если аквакомплексы (или иные комплексы) образованы ионами за счет электронов, находящихся на внутренних орбитах (внутриорбитальные комплексы), благодаря чему создаются наиболее прочные связи ионов в растворе. Во-вторых, если велика разница в электронных структурах иона и металла в этом случае требуется значительная энергия активации для их перестройки в процессе разряда. Разряжающиеся ионы имеют обычно иную структуру, чем ионы, присутствующие в растворе. Это обстоятельство связано с тем, что при адсорбции на электроде происходит частичная диссоциация простого гидратированного или комплексного иона. Освобождающиеся связи удерживают ион на поверхности электрода, причем до момента разряда идет дальнейшая перестройка его электронной структуры в направлении, сближающем ее со структурой иона в металле. Далее следует разряд или с полной дегидратацией иона, или [c.495]

    ТО перенапряжение водорода на благородном компоненте системы не играет роли . Когда два металла соприкасаются друг с другом в условиях свободного доступа воздуха, то химическому воздействию всегда подвергается более электроотрицательный из металлов. По этой причине не полностью вылуженное железо в присутствии влаги легко корродирует на воздухе. Известно, действительно, что луженое железо в случае повреждения оловянного покрытия ржавеет быстрее, чем чистое железо. Этой коррозии способствует действие коротко-замкнутых местных элементов с атмосферным кислородом Б качестве деполяризатора. В растворах лимонной и щавелевой кислот олово разъедается скорее, чем железо причина этого заключается в том, что олово образует комплексные анионы в этих электролитах и в результате его потенциал растворения оказывается более отрицательным, чем потенциал растворения железа в тех же растворах. В этих условиях олово становится анодом цепи, являющейся причиной коррозии, а железо — ее катодом [17]. В присутствии деполяризатора, так же как и без него, увеличение электропроводности жидкости ускоряет коррозию более основного металла и повышение кислотности обычно действует в том же направлении. Катодные участки ведут себя как особого рода кислородные электроды, и поэтому потенциал их, подобно потенциалу водородного электрода, с повышением кислотности становится более положительным таким образом, что э. д. с. гальванических элементов возрастает. [c.664]

    Имеются два вида поляризационных явлений при осаждении металлов на катоде. Восстановление ионов железа, никеля и кадмия при-электролизе растворов их простых солей, а также процессы электроосаждения различных металлов из растворов комплексных солей протекают при наличии поляризации перехода, связанной с замедлен ностыо самого электрохимического процесса. Электроосаждение остальных металлов совершается в условиях перенапряжения диффузии. [c.170]

    Переход катионов на катод. Возможны два предположения о механизме разряда катионов из раствора на катоде или избыточные электроны, срываясь с катода, нейтрализуют катионы в растворе, превращая их в атомы, или катионы электростатически притягиваются к тем точкам катода, где имеется избыток электронов, и, только заняв определенное место в кристаллической рещетке катода, разряжаются. В действительности, вероятно, может иметь место и тот и другой механизм процесса, в зависимости от условий. В первом случае (разряд катионов в растворе) осадок должен получаться очень мелкокристаллический, почти бесструктурный. Так, вероятно, происходит разряд при осаждении из растворов комплексных солей. Во втором случае (разряд кристаллической решетке) осадок должен обладать ясно выраженной кристаллической структурой. Это имеет место рри осаждении из растворов простых солей. Выделение металла на катоде происходит с некоторым перенапряжением, особенно при электролизе комплексных солей. [c.519]

    При выделении металла из- комплексных электролитов состав разряжающихся ионов (Ох) часто отличается от состава преобладающих в растворе комплексных частиц Ох. Точно так же в результате элементарного акта переноса заряда при процессах злектрокристаллизации возникают адатомы, которые лишь затем образуют компактный металл. Необходимо, однако, учитывать, что при чисто электрохимическом перенапряжении, когда именно ему обязано все смещение потенциала от обратимого значения при прохождении тока, т. е. когда  [c.362]

    Есин изучал совместный разряд ионов водорода с ионами металла на примерах выделения никеля, цинка и кадмия из растворов простых солей, а также цинка и кадмия из растворов комплексных соединений. Есин впервые подошел к расчету выходов металла по току в условиях его совместного разряда с водородом, исходя из уравнения водородного перенапряжения по теории замедленного разряда ионов и принимая во внимание скорость коррозии металла в кислой среде. Эти работы продолжил Лeвин (см. 38, 62, 75). [c.152]

    Процессы при заряде и разряде кадмиевого электрода аналогичны тем, которые имеют место для железного электрода. Существуют количественные различия, улучшающие работу кадмиевого электрода по сравнению с железным. Растворимость NaH dOo выше, чем NaHFe02 (10 г-мол/л), для пассивации кадмия требуется в несколько раз больше кислорода, чем для пассивации железа, В результате кадмиевый электрод лучше железного работает при низких температурах. Перенапряжение для выделения d из раствора комплексной соли не очень велико (0,11 в), а перенапряжение для выделения водорода на кадмии весьма значительно, поэтому использование тока при заряде кадмиевого электрода лучше, чем при заряде железного и достигает 85%. Наконец, поскольку потенциал кадмия на 20 мв положительнее потенциала водорода в щелочном растворе, d не может самопроизвольно растворяться в щелочи с выделением водорода. Саморазряд кадмиевого электрода очень мал и связан, главным образом, с окислением кадмиевой губки кислородом. Полезными добавками для кадмиевого электрода являются окислы никеля и некоторые органические поверхностно-активные вещества (например, соляровое масло) вредное действие оказывают таллий, кальций, марганец и свинец. В большинстве ламельных аккумуляторов дороговизна кадмия заставляет применять его в смеси с железом. Кроме того, добавка железа препятствует спеканию (усадке) кадмиевой активной массы при длительной работе и является для нее расширителем . Отно-пгение кадмия к железу в смеси берут от 1 1 до 2,7 1. Железо принимает участие в токообразующем процессе одновременно с кадмием. Стационарный потенциал железа в 5,2 и. растворе NaOH на 0,065 в отрицательней, чем у кадмия, но разряд железного электрода всегда происходит при некоторой пассивации, т. е. при несколько более положительном потенциале. Поэтому при разряде потенциалы кадмия и железа сближаются и разряд обеих составляющих может протекать одновременно. [c.517]

    Совершенно иные соотношения существуют при осаждении металлов из растворов комплексных солей. Здесь особенно заметны различные величины реакционного и диффузионного перенапряжения. В то время как у растворов простых солей анион почти всегда оказывает лишь слабое влияние на электродный потенциал, в цианистых электролитах электродный потенциал находится в сильной зависимости от концентрации свободного цианида. На рис. 6 представлены кривые катодной поляризации серебряно-цианистого электролита с содержанием свободного цианистого калия. Чем выше содержание цианида, тем отрицательнее потенциал. Неравномерность хода кривых 1 и 2 объсняется тем, что при низком содержании цианида колои-дальное цианистое серебро адсорбируется поверхностью катода и затрудняет проведение измерений. Значительное падение перенапряжения в ваннах комплексных солей при перемешивании электролита указывает на преобладание концентрационного перенапряжения. [c.22]

    Для выделения металлов также требуется некоторый избыток потенциала по сравнению с равновесным электродным потенциалом этого металла, измеряемым в отсутствие тока. Однако перенапряжение выделения металлов значительно меньше, чем газов. Только метал.лы подгруппы железа (железо, кобальт и никель) имеют перенапряжение, достигающее заметных величин даже при малых плотностях тока. Например, перенапряжение никеля в растворе N1504 при плотности тока 0,1 ма/см" равно 0,3 в, а перенапряжение ципка в подкисленном растворе пЗО равно лишь 0,012 в. Значительное перенапряжение наблюдается при выделении металлов из растворов комплексных соединений, например аммиачных и цианистых соединений цинка и серебра. [c.257]

    Электролиты по составу делятся на две большие группы электролиты, содержащие ионы, восстанавливающиеся без большого перенапряжения, практически не вызывающие катодной поляризации, например Си80 , 2050 , и электролиты, содержащие ионы, восстанавливающиеся с большим перенапряжением (Ре +, Со +, N1 + и комплексные ионы). Из растворов второй группы сравнительно просто получать покрытия хорошего качества, из первой — труднее, а иногда, как, например, из растворов А Н0з, невозможно. Многие комплексные электролиты, содержащие ионы, например K[Ag( N)2], широко применяемые в промышленности, ядовиты и в лабораторной практике встречаются редко, поэтому для лабораторных работ рекомендуется применение простых (некомплексных) электролитов, например НгЗО , 2п50 . [c.180]

    Цинк и кадмий относятся к металлам, которые выделяются из растворов простых солей с небольшим перенапряжением, образуя крупнокристаллические осадки. Применяемые в промышленности электролиты цинкования и кадмирования принято делить на простые кислые электролиты сернокислые, солянокислые и борфтористоводородные растворы, в которых цинк и кадмий находятся в виде гидратированных ионов, и сложные комплексные, в которых оба металла присутствуют в виде отрицательных (анионы) или положительных (катионы) ионов. К комплексным электролитам относятся щелочноцианидные, аммиакат-ные, пирофосфатные и другие. На рис. 3.17 и 3.18 приведены поляризационные кривые некоторых, используемых на практике электролитов цинкования и кадмирования. Из рисунка видно, что наибольшая поляризация характерна для цианидных электролитов, наименьшая — для сернокислых. [c.281]

    Одновременно с этими протекает также реакция 2Н+-Ь2е—> — -Нг. Выделение металла с практически приемлемым выходом по току в данном случае возможно при условии, что разряд ионов водорода будет искусственно затруднен (тем более, что перенапряжение водорода на хроме мало). Это достигается путем максимального повышения pH. Однако уже при рН = =3 образуются гидроксид Сг(ОН)з и основные соли, сильно загрязняющие металл. Выделение водорода ведет к повышению pH приэлектродного слоя. Поэтому так же, как и марганец, хром получают из сильно буфферированного аммонийными солями комплексного электролита. Таким путем удается получать плотные толстые осадки хрома как из сульфатных, так и из хлоридных электролитов, причем выход по току приближается к 50%. Процесс проводят при обязательном разделении католита и анолита диафрагмой, с свинцово-серебряными анодами. Состав электролита (в г/л) 15 СгЗ+ и 15 Сг +, 200—270 (NH4)2S04, 250—280 свободной серной кислоты в анолите, что соответствует извлечению из 1 л питающего раствора около 100 г хрома. Процесс ведут при катодной плотности тока до [c.401]

    В работах [164, 165] исследовано электроосаждение меди на вращающемся дисковом медном электроде из растворов бензолсульфоната меди в диметилформамиде в присутствии бензолсульфокислоты (БСК). Катодный процесс выделения меди протекает с высоким перенапряжением, так как медный электрод в диметилформамиде пассивируется. Выделение меди происходит при перенапряжении 400—500 мВ. При добавлении БСК на начально.м участке поляризационной кривой скорость процесса контролируется скоростью переноса заряда, так как ток не зав5у ит от скорости вращения электрода. Авторы считают, что в этом случае разряжаются комплексные ионы меди состава [Си(СбН550з)4]2 , скорость-разряда которых значительно выще, чем сольватированных ионов Си . При наличии свободной БСК разряжаются комплексные ионы с участием адсорбированных на электроде анионов БСК- Наличие адсорбционного слоя снижает энергию активации разряда в результате облегчения процесса переноса иона меди из комплекса в адсорбционный слой. [c.48]

    При электровесовом определении металлов следует также воспрепятствовать разряду на катоде ионов водорода. Совместное выделение металла и водорода приведет к затягиванию электролиза и порче осадка. Выделение металла может смениться выделением водорода (тогда часть металла останется неосаж-денной) или вообще не произойти, если металл стоит в ряду напряжений левее водорода, а ионы его находятся в кислом или даже нейтральйом растворе. Выделению водорода можно воспрепятствовать, если резко снизить концентрацию ионов его в растворе, т. е. вести осаждение металла из щелочной среды. Однако при этом может иметь место образование нерастворимой гидроокиси определяемого металла. Чтобы не допустить этого, к раствору добавляют соответствующие вещества (соли аммония, цианистой или щавелевой кислоты и т. д.), образующие с данным катионом хорошо растворимое комплексное соединение. Таким образом, оказывается, что выделение электроотрицательных металлов чаще всего производят не из растворов их простых солеи, а из растворов, где они находятся в виде комплексных соединений. При выделении электроположительных металлов также может иметь место выделение водорода, если в ходе определения концентрация ионов выделяемого металла изменится таким образом, что потенциал электрода станет равным потенциалу разряда водорода. Однако, если к моменту начала выделения водорода металла в растворе останется столько, что таким количеством его можно будет пренебречь, то электролиз можно прекратить. Перенапряжение водорода [c.293]

    Примечательно, однако, что некоторые из рассмотренных выше ингибиторов общей коррозии (азолы, фенолы, высокомолекулярные соединения) способны одновременно подавлять и ПСР, тормозя восстановление ионов меди. Так, введение бензтриазола в раствор 0,1 М НС1+0,01 М СиСЬ приводит к значительному повышению перенапряжения процесса Си2+-1-2ё-==Си (рис. 4.23). Первоначально полагали, что в присутствии бензтриазола меняется природа комплексных ионов, разряжающихся на катоде [237]. Позднее повышение Перенапряжения реакции разряда связали с затруднениями в протекании каких-то гетерогенных химических процессов с участием соединений бензтриазола с медью [238, 239]. Природа этих процессов до конца не выяснена. [c.186]

    Цель электрогравиметрического анализа заключается в получении чистого, плотного, хорошо сцепляющегося с основой и ровного осадка, который можно промыть, высушить и взвесить. Наиболее важным свойством является сцепление осадка с электродом. Одновременное выделение на катоде металла и водорода нежелательно, поскольку в этом случае получается губчатый осадок. Кроме того, выделение водорода приводит к образованию вблизи электрода слоя щелочного раствора, что может вызвать выделение окислов или основных солей. Энергичное перемешивание, низкая плотность тока и правильный выбор анионов помогают получить ровные, хорошо сцепляющиеся с основой осадки. Влияние анионов может быть различным. Как правило, из растворов, содержащих комплексные ионы, выделяются более ровные осадки, чем из растворов простых солей. Выделению многих металлов способствует присутствие галогенид-ионов возможная причина этого состоит в том, что для ионов типа перенапряжение отличается от перенапря- [c.424]

    Состав электрол ита существенно сказывается на структуре катодного осадка. Высокая катодная поляризация и сильная адсорбция аниона, предупреждающая пассивность при электролизе растворов цианистых и других комплексных соединений (см. 32), дает возможность получать мелкозернистые осадки. Природа аниона простой соли выделяемого металла имеет иногда значение еще и потому, что перенапряжение выделения металла различно в растворах разныхН солей. Примером могут служить катодные отложения свинца, получающиеся крупнозернистыми из азотнокислых и уксуснокислых растворов, более мелкозернистыми — из растворов борофтористоводородных, кремнефтористоводородных и перхлоратцых солей, в которых перенапряжение металла больше. С повышением концентрации электролита осадки становятся более крупнозернистыми. [c.156]


Смотреть страницы где упоминается термин Перенапряжение в растворах с комплексными: [c.517]    [c.165]    [c.306]    [c.413]    [c.106]    [c.306]    [c.471]    [c.172]    [c.443]   
Электрохимическая кинетика (1967) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Комплексные растворы

Перенапряжение



© 2025 chem21.info Реклама на сайте