Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбонильные получение,

    Жирные кислоты каталитическим процессом превращают в кетоны, которые каталитически восстанавливают, как указано выше. Низкомолекулярные жирные кислоты в кетоны целесообразно превращать в паровой фазе над катализатором на основе окиси тория. Для превращения же высокомолекулярных кислот, как миристиновая, пальмитиновая или стеариновая, целесообразно использовать метод получения кетонов по Грюну в присутствии железа в качестве катализатора. При этом достигаются хорошие выходы кетона, содержащего 2п—1 углеродных атома п — число углеродных атомов в исходной кислоте), и карбонильная группа всегда находится точно в середине цепи молекулы. Если же проводить реакцию кетонизации, исходя из карбоновых кислот, содержащих четное и нечетное числа атомов углерода, то образуются кетоны с несимметрично расположенной карбонильной группой  [c.61]


    Первой стадией восстановления карбонильного соединения является получение соответствующего гидразона, для чего карбонильное соединение нагревают с 2—4 эквивалентами 100%-ного гидразингидрата в растворе триэтиленгликоля, содержащего небольшое количество уксусной кислоты, играющей роль катализатора. Воду, образующуюся в результате реакции, отгоняют по мере ее выделения. Повторная обработка гидразингидратом способствует получению высоких выходов гидразона. Продукт реакции не выделяют в чистом виде, а разлагают путем добавления его по каплям к горячему (200°) раствору метилата натрия или едкого кали в триэтиленгликоле. При этих у словиях гидразон разлагается на [c.508]

    Высокая температура в работающем двигателе обеспечивает значительную скорость инициирования перекисного окис.пения. Полученные перекиси быстро подвергаются термическому или каталитическому разло жению, образуя, кроме обычных карбонильных соединений и спирта, кислоты, воду и двуокись углерода. Подобное глубокое окисление до кислотных продуктов является основной причиной ухудшения качества смазочных массл в двигателях внутреннего сгорания. [c.307]

    В процессе окисления парафиновых углеводородов наряду с кислотами и другими кислородсодержащими соединениями в продуктах реакции образуется значительное количество высших жирных спиртов. В результате исследований было установлено, что в начальный период окисления скорость образования спиртов значительно превышает скорость образования кислот и карбонильных соединений. С увеличением глубины окисления парафинов содержание спиртов достигает максимума, а затем в результате дальнейших окислительных превращений начинает падать. Чтобы избежать нежелательных превращений спиртов, необходимо либо ограничить время пребывания продуктов окисления в зоне реакции, либо обеспечить защиту образовавшихся спиртов путем введения в реакционную зону ингибиторов их дальнейшего окисления. Работы, проведенные в каждом из указанных направлений, привели к разработке двух различных процессов получения высших жирных спиртов путем прямого окисления парафиновых углеводородов в жидкой фазе. [c.160]

    Извлечение высокомолекулярных кислородсодержащих соединений из их смеси с углеводородами может быть осуществлено либо путем экстракции метанолом, либо адсорбцией силикагелем с последующей раздельной десорбцией углеводородов и кислородсодержащих селективными растворителями. После отгонки десорбента полученные кислородсодержащие соединения для снижения примесей карбонильных соединений (преимущественно альдеги- [c.191]


    Природа и состав продуктов более глубокого окисления (карбонильных соединений, кислот, лактонов, сложных эфиров), полученных при различных условиях, заставляют (из-за отсутствия кинетических данных) предположить несколько схем радикальных последовательных реакций  [c.152]

    В настоящее время лишь 10% всего метилового спирта получают попутно при сухой перегонке дерева, целевым продуктом которой является металлургический кокс, а 90% — окислением низших углеводородов и гидрированием окиси углерода. Приблизительно 50—60% метилового спирта идет на производство муравьиного альдегида, 20—30% используют в качестве антифриза, остальное —в различных химических производствах или в качестве топлива. Этиловый и изопропиловый спирты используют для получения карбонильных производных уксусного альдегида и ацетона. Из втор-бутилового спирта получают в основном метилэтилкетон. [c.205]

    Этот же способ позволяет присоединять к ацетилену карбонильные производные (альдегиды или кетоны). Так, в промышленном масштабе была осуществлена реакция присоединения формальдегида к ацетилену с получением 1,4-бутиндиола. Реакцию проводят в [c.222]

    Более 70% мирового производства изобутилена используется для получения бутилкаучука, производство которого постоянно увеличивается. Изобутилен используется также для производства полиизобутилена и ряда других продуктов. При получении бутилкаучука предъявляются особые требования к чистоте изобутилена. Особенно нежелательные примеси — влага, спирты, карбонильные и другие кислородсодержащие соединения. Содержание углеводородных примесей, главным образом 1-бутена, также должно быть ограничено. [c.724]

    Установлено, что кислород связывается с молекулами битума в виде гидроксильных, карбонильных, карбоксильных и сложноэфирных групп, В среднем в сложноэфирных группах содержится 60% химически связанного кислорода. Остальные 40 /о распределены примерно поровну между гидроксильными, карбоксильными и карбонильными группами в битумах, полученных при- температуре окисления 150 °С, а в битумах, полученных при 250 °С, на гидроксильные и карбонильные группы приходится приблизительно по 16—18% и на карбоксильные 5—8%. [c.45]

    При сульфатировании получается ряд побочных продуктов. Так, за счет дегидратирующего действия серной кислоты образуются олефины, выход которых растет для вторичных и особенно для третичных спиртов. Из-за окисляющего влияния серной кислоты образуются альдегиды и кетоны, способные к дальнейшему осмолению и конденсации (при получении ПАВ это ведет к потемнению продукта и снижению его качества). Поскольку образование олефинов и карбонильных соединений растет с повышением температуры, то ограничение ее на уровне 20—40°С является основным путем подавления нежелательных побочных реакций. По [c.318]

    Гидропероксиды прн разложении под действием повышенной температуры или катализаторов окисления действительно дают спирты и карбонильные соединения. Это разложение может иметь молекулярный механизм, однако в развившемся процессе окисления продукты образуются главным образом цепным путем. При получении спиртов звено цепи таково  [c.358]

    Первым из этих процессов, разработанным и внедренным в промышленность в 1960 г., был синтез ацетальдегида из этилена, применимый для получения и других карбонильных соединений. Затем получили развитие реакции окислительного сочетания олефинов, особенно их ацетоксилирование с получением винилацетата и других ценных веществ. [c.447]

    Наличие кислородного атома в а-положении по отношению к бензольному ядру значительно снижает прочность соединения. Различные реагенты, в том числе и водород, легко разрывают боковую цепь по связи С=0. Целью гидрирования ацетофенона может быть как частичное гидрирование карбонильной группы с получением ароматического спирта (метилфенилкарбинола), так и полное гидрирование карбонильной группы и бензольного ядра. [c.46]

    В составе полученных спиртов преобладают вторичные — до 83% (масс.). Смесь спиртов характеризуется следующими показателями кислотное число — 0 эфирное число — 8 карбонильное число — 25 йодное число — 10 гидроксильное число — 220 содержание углеводородов — 2—5% (масс.) содержание полифункциональных соединений — 15—20% (масс.). [c.180]

    Западные полубитуминозные угли США легко подвергаются ожижению и десульфированию в результате некаталитического процесса под действием синтез-газа и водорода при 400—450 °С и 27—31 МПа. Минеральные компоненты этих углей оказывают каталитическое действие на изменение соотношения СО Н2 в синтез-газе и на восстановление карбонильных групп угля, приводящее к образованию растворимых продуктов. Содержание серы и вязкость каменноугольного масла снижаются с увеличением расхода водорода при использовании как синтез-газа, так и чистого водорода, однако общее количество водорода, необходимое для получения масла одного и того же качества, в случае синтез-газа гораздо меньше, чем в случае чистого водорода. [c.335]


    Два изомерных эфира были разделены тщательной фракционной перегонкой. Этиловый эфир 5,6,7,8-тетрагидро-1-нафтойной кислоты превращают в соответствующую кислоту, которую очищают перекристаллизацией и обрабатывают химически чистым хлористым тионилом хлорангидрид кислоты перегоняют. Хлорангидрид 5,6,7,8-тетрагидро-1-наф-тойной кислоты, взаимодействуя с ди-и-тетрадецилкадмием [3, 21], образует соответствующий кетон. После очистки фракционной перегонкой карбонильное соединение восстанавливают при атмосферном давлении [39] по методу Вольфа-Кижнера полученный углеводород очищают обычным способом. [c.513]

    Шебекинском комбинате кубовый остаток направляется в термическую печь цеха СЖК для извлечения и облагораживания кислот. На каждую тонну высших спиртов получается свыше 200 кг смеси жирных кислот, из которых более половины представлено кислотами мыловаренной фракции. По качественной характеристике кислоты, выделенные из кубового остатка, значительно уступают кислотам, полученным по обычным схемам окисления парафинов до синтетических жирных кислот. Согласно опубликованным данным, кислоты кубового остатка после термической обработки и отгонки неомыляемых имели следующие показатели кислотное число 213, эфирное число 4,5, йодное число 39,3, карбонильное число 43,5 и содержали 9,6% неомыляемых [86]. Таким образом, раздельная переработка кубового остатка не обеспечивает производство синтетических кислот, соответствующих действующим техническим условиям. Кубовый остаток может быть переработан только совместно с омыленным продуктом цеха СЖК, хотя и в этом случае качество товарных кислот, естественно, несколько понизится. [c.165]

    Экстракция высших жирных спиртов из вторых неомыляемых может быть осуществлена с помощью метилового или этилового спиртов. Исследованиями, проведенными сотрудниками ВНИИНП [91], было показано, что противоточная экстракция метанолом в насадочной колонне при температуре 55—58° С и соотношении экстрагента к сырью 3 1 обеспечивает коэффициент извлечения кислородсодержащих веществ из неомыляемых-П в размере 85 — 87%. В полученном экстракте наряду с кислородсодержащими соединениями содержится 6—7% углеводородов. После отгонки метанола экстракт представляет собой концентрат высших спиртов с примесью значительных количеств карбонильных соединений и углеводородов. Высокое содержание,примесей ограничивает возможности непосредственного использования обезметанолен-ного экстракта. В целях снижения содержания карбонильных соединений экстракт был подвергнут гидрированию на никельхромовом катализаторе. Рекомендуемый режим гидрирования давление 300 ати, температура 180° С, объемная скорость 0,3 л1ч, подача циркулирующего водорода 1200—1500 на 1 сырья. Принятый режим позволяет почти полностью восстановить карбонильную группу до спиртов, практически не затрагивая гидроксильную группу. Гидрированные спирты омыляются щелочью для разрушения присутствующих в них эфиров. В результате омыления эфирное число спиртов снижается до 4—6 мг КОН/г. [c.170]

    Выбор метода извлечения зависит от двух основных факторов Ьт уровня технико-экономических показателей и от качественной характеристики получаемых спиртов. Метод метанольной экстракции обеспечивает более высокий процент извлечения спиртов из неомыляемых-П. В то же время в экстрагируемых спиртах содержание первичных спиртов значительно ниже, чем в случае применения метода этерификации борной киелото , и составляет 50— 55%. Это обстоятельство объясняется тем, что в процессе извлечения спиртов из вторых неомыляемых через борнокислые эфиры происходит обогащение смеси первичными спиртами за счет повышенных потерь вторичных спиртов. При экстракции спиртов из неомыляемых-П относительные потери вторичных спиртов составляют меньшую величину, что и обусловливает их более высокое содержание в конечном продукте. Кроме того, в спиртах, полученных экстракционным методом, содержится несколько больше углеводородов. В свою очередь спирты, выделенные с помощью борнокислых эфиров, характеризуются более высокими кислотными, карбонильными и эфирными числами [93]. [c.171]

    Применение низших карбонильных производных. Формальдегид, или муравьиный альдегид, — газ с температурой кипения — 21 °С (может существовать в форме твердого параформальдегида (СНаОп), мировое производство которого составляет несколько сотен тысяч тонн ежегодно. Более 50% его используют при получении пластмасс и поликонденсационных лаков (смолы формальдегида с фенолом, мочевиной, меламином и т. д.). Довольно много его расходуется также на получение пентаэритрита С(СН20Н)4 конденсацией с уксусным альдегидом, гексаметилентетрамина (уротропина), этиленгликоля (через гликолевую кислоту, получаемую взаимодействием формальдегида с окисью углерода в присутствии воды) и во многих других химических производствах (получение ацеталей, нитроспиртов, метилвинилкетона и т. д.). [c.210]

    Около 75% водорода, полученного этим методом, используют для синтеза аммиака, при гидрировании жиров, в производстве изооктана и других компонентов моторных топлив. Водяной пар также используют для получения синтетического бензина (по Фишеру — Тропшу), метилового и высших спиртов и, в последнее время, окиси углерода, необходимой для ряда синтезов карбонильных производных (оксосинтез). [c.211]

    В отличие от стирола а-метилстирол не склонен к самопроиз- / вольной полимеризации даже при 160—170 °С, однако он чрезвычайно легко окисляется кислородом воздуха в процессе хранения и даже ректификации (вследствие подсосов в систему) и сополи-меризуется со стиролом и винилтолуолами, всегда содержащимися в дегидрогенизате. Поэтому применяемые ингибиторы должны одновременно подавлять полимеризацию и автоокисление. По аналогии с производством стирола в промышленности длительное время применялись лишь такие ингибиторы, как сера и гидрохинон, - совершенно не предотвращающие превращение а-метилстирола в перекисные и карбонильные соединения, концентрация которых в готовом продукте нередко достигала 0,5—1%. Это сводило на нет все усилия по получению мономера высокой степени чистоты (99,5—99,8% основного вещества) за счет улучшения отделения А легкокипящих (стирол, пропилбензолы) и высококипящих (бутил- И бензолы, р-метилстирол) углеводородов. Наличие ацетофенона и У перекисей особенно нежелательно при анионной сополимеризации а-метилстирола, так как указанные соединения разрушают катализаторы. [c.737]

    При Д. И. Менделееве вопрос получения углеводородов путем каталитического синтеза не был разработан в-достаточной степёди. С особой показательностью он выступает в вышеупомянутых опытах Сабатье, где роль катализаторов играет никель. В носдед-нее время исследования Бергиуса показали, что гидрогенизация непредельных соединений может происходить и без наличия катализаторов, но при высоком давлении и температуре в 200— 300° С. Опыты В.. Н. Ипатьева также показали, что в случае высокого давления и- присутствия окислов металлов возможны реакции полимеризации ацетилена и его ближайших гомологов и образование ароматических углеводородов, которые при последу-юш,ей. гидрогенизации дают нафтены. Другимп исследователями произведен ряд опытов по полимеризации и гидрогенизации разного рода ненасыщенных углеводородов, в результате которых получались углеводороды аро. штического и нафтенового рядов. Одним словом, при действии воды на карбиды и в результате последующих реакций полимеризации и гидрогенизации, при наличии катализатора, пли высокого давления и температуры могла возникнуть сложная смесь углеводородов, являющихся главнейшей составной частью современных нефтей. Допуская же существование в земных недрах не только карбидных, но и карбонильных соединений железа, никеля и других тяжелых металлов, а также нитридов металлов, п принимая во внимание наличие в земной коре сульфидов, можно вполне объяснить присутствие в нефти азотистых, сернистых соединений, водорода и окиси углерода, т. е. всех второстепенных компонентов современных нефтей и все разнообразие пх. [c.304]

    Следует упомянуть две работы о применении оснований более сильных, чем гидроксид натрия в одной из них описано получение растворимых литиевых, натриевых и калиевых енолятов циклогексанона при действии твердых ЫН, NaH и КН, которое становится возможным или ускоряется в присутствии криптандов. Полученные активированные еноляты способны отрывать протоны даже от эфиров, служаи их растворителем [1309]. В другой работе отмечено, что бутиллитий не реагирует с карбонильными соединениями или карбоксилатами в присутствии криптанда [2.1.1] вместо этого идет депротонирование в а-поло-жение [1482]. [c.194]

    Подобно Р-илидам, 5-илиды также могут реагировать с карбонильными соединениями. Однако известно, что диметилсуль-фонийметилиды дают со всеми карбонильными соединениями оксираны. Напротив, диметилоксосульфонийметилиды образуют оксираны только из обычных карбонильных и циклоиропилза-мещенных соединений, полученных из сопряженных продуктов [c.259]

    Тетрахлор- и тетрабромспиросоединения получаются из некоторых непредельных стероидных кетонов [644], однако более простые непредельные карбонильные соединения дают в основном продукты осмоления. Механизм образования Н первоначально включает нормальное присоединение дихлоркарбена [680]. Затем в сильноосновной среде полученные аддукты (I) дегидрохлорируются с образованием К. Известно, что эфиры циклопропенкарбоповых кислот, подобные К, мгновенно присоединяют любой доступный нуклеофил. Так, присоединение гидроксил-иона ведет к образованию побочного продукта (L) — полуэфира замещенной янтарной кислоты. Альтернативное присоединение трихлорметильного аниона приводит к образова- [c.330]

    Ku herov реакция Кучерова — получение карбонильных соединений прямой гидратацией тройной связи в присутствии солей ртути (напр. НС-СН + HjO СН3СНО) [c.391]

    Под карбонильной коррозией понимают разрушение металлов и сплавов при воздействии на них в особых условиях окиси углерода. При нормальных условиях окись углерода по отношению к металлам инертна. Условия карбонильной коррозии металлов имеют место в процессах получения синтетических метилового, бутилового и других спиртов, протекающих при высоких давлениях и повы-шешгых температурах. Окнсь углерода при высоких температурах и давлениях может образовывать со многими металлами (особенно металлами восьмой группы периодической системы элементов) легко возгоняющиеся вещества — карбонилы  [c.153]

    Как видно из этих данных, тепловой эффект возрастает с повышением глубины окисления, особенно при образовании карбоновых кпслот из углеводородов (реакция 4), при деструктивном окислении парафинов (реакция 6) н ароматических систем (реакция 7). Л1енее экзотермичны процессы образования карбонильных соединений из углеводородов (реакции 2, 3 и 8) и карбоновых кислот пз альдегидов (реакция 5). Тепловой эффект еще заметнее снижается при получении спиртов из углеводородов (реакция 1) и а-оксидов из олефинов (реакция 9), но остается довольно высоким. [c.356]

    Получение карбонильных соединений из олефинов основано на сравнительно давно известной стехиометрической реакции хлористого палладия с олефинами, при которой Рс1С12 восстанавливается до металла  [c.447]

    П зн гидрировании ненасыщенных альдегидов и кетонов реакция может протекать в трех разных направлениях 1) селективное гидрг рование ненасыщенной углерод-углеродной связн с сохранением карбонильной группы 2) восстановление карбонильной группы с сохранением ненасыщенной связн 3) гидрирование всех функциональных групп и получение насыщенного спирта  [c.503]

    В последние годы в качестве возможных источнтаов углеводородного питания микроорганизмов в процессе получения микробной биомассы привлекают внимание окисленные производные парафинов - жирные спирта, кислоты, карбонильные соединения, эфиры [II-I5]. Вследствие более высокой растворимости в воде, по сравнению с обычньмн парафинами, эти соединения легче усваиваются микроорганизмами. что дает возможность сократить длительность выращивания биомассы и снизить затраты на перемешивание и аэрацию среды. Уменьшение интенсивности тепловыделения при ферментации облегчает отвод тепла, а изменение поверхностно-активных свойств субстрата способствует понижению пенообразования. [c.271]

    Оксид углерода реагирует с углеродистой сталью, образуя пентакарбонил железа Ре (СО) 5, который, разлагаясь на катализаторе, покрывает его слоем дисперсного железа, усиливающего побочные реакции образования метана, что, в свою очередь, нарушает оптимальный температурный режим. Для предотвращения карбонильной коррозии стенки колонны и некоторые другие детали футеруются медью или выполняются нз высоколегированной стали. Полученный мстанол-сырец очищают от кис-Рис. 65, Схема колопиы ЛОТ, сложных эфиров, высших спиртов, пеп-синтсза метанол.и такарбоинла железа, получая чистый мети- [c.168]

    Полученная эмульсия после отстоя и отбора части неомыляемых проходит через автоклав 7, в котором при температуре 210 °С и давлении 2,45 МПа завершается разрушение трудноомыляемых компонентов и происходит отделение первых неомыляемых . Мыльный раствор с концентрацией до 70% (масс.) поступает в трубчатую печь 8 для термической обработки, в ходе которой при нагреве до 340 С происходит деструктивное разрушение окснкислот и лактонов. При этом имеет место и частичное декарбоксилирование жирных кислот, снижающее их общий выход. Из печи расплавленное масло после снижения давления от 2,45 до 0,22 МПа и охлаждения поступает в сепаратор 10, где происходит отделение газообразных продуктов разложения, СО и вторых неомыляемых от расплавленного мыла. Вторые неомыляемые после охлаждения возвращаются в смеситель 1. Расплавленное мыло, лишенное примесей, подается в емкость И для приготовления мыльного клея . Здесь оно смешивается с водой и превращается при этом в 40%-ный водный раствор так называемого облагороженного мыла . В емкости 12 мыльный клей обрабатывается 92%-ной серной кислотой. При этом выделяются сырые кислоты, содержащие до 5,3% (масс.) неомыляемых веществ и имеющие относительно высокие карбонильное и эфирное числа (соответственно 10—18 и 4—9). Сырые жирные кислоты подвергаются в дальнейшем ректификации с получением ряда товарных фракций (на рисунке не показано). Качество товарных мыловаренных кислот иллюстрируется данными, приведенными в табл. 6.1. [c.176]


Смотреть страницы где упоминается термин Карбонильные получение,: [c.286]    [c.431]    [c.542]    [c.692]    [c.223]    [c.13]    [c.148]    [c.395]    [c.81]    [c.438]    [c.547]    [c.191]    [c.192]    [c.327]    [c.218]   
Общий практикум по органической химии (1965) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте