Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура кипения методика определения

    Для определения воды, за исключением более старых методов высушивания в сушильном шкафу, наиболее широко применяется метод дистилляции. Этот метод нашел применение в пищевой и нефтеперерабатывающей промышленности для анализа твердых, пастообразных и других относительно малолетучих продуктов. Многие из этих методик приняты во всем мире в качестве стандартных, так как условия перегонки и требования к аппаратуре могут быть описаны достаточно четко и однозначно. Эти методики включают, как правило, отгонку воды с последующим разделением фаз. Обычно используют дистилляцию в присутствии углеводородов или органических галогенидов, которые или образуют азео-тропные смеси с водой с минимальной температурой кипения, или кипят выше 100 °С и поэтому могут служить переносчиками воды. Смесь двух или нескольких компонентов называют азеотропной в том случае, если она кипит при постоянной температуре, соответствующей данному давлению, и в процессе перегонки не изменяет своего состава. Азеотропная смесь ведет себя при перегонке как индивидуальное вещество до тех пор, пока не будет исчерпан один из входящих в ее состав компонентов (в данном случае вода). В большинстве методик анализа, использующих дистилляцию, анализируемый образец диспергируют в относительно большом объеме переносчика воды. Далее нагревают смесь до начала кипения и конденсируют образующийся пар. Конденсат собирают в градуированный приемник (конденсат разделяется на две фазы) и измеряют объем водной фазы. Азеотропные смеси с минимальной температурой кипения позволяют значительно снизить температуру, требуемую для удаления влаги, и, таким образом, осуществить определение воды в более мягких условиях, чем при обычной сушке в сушильном шкафу при атмосферном давлении. Физико-химические принципы дистилляции рассмотрены в работе [89]. [c.236]


    Метод раздельного определения содержания ТЭС и ТМС. Метод основан на значительной разнице температур кипения ТМС (110°С) и ТЭС (ЮО С). Определение проводится в два этапа. На первом этапе бензин разгонкой в перегонном приборе разделяется на две фракции н.к. — 33°С, содержащую ТМС, и фракцию 133°С — к.к., в которой находится высококипящий ТЭС. На втором этапе в каждой фракции определяется содержание свинца по методу ГОСТ 28828—90 или ранее допущенным ионометрическим методом, основанном на определении ЭДС, возникающей между фторидным и хлорсеребряным электродами при погружении их в градуировочный раствор фтористого натрия до и после введения в него продуктов разложения алкильных соединений свинца соляной кислотой по методике ГОСТ 13210—72. [c.391]

    Промышленная ГХ применяется в нефтяной промышленности чаще, чем в любой другой области. В качестве примеров применения ГХ в нефтяной и родственных отраслях промышленности можно привести определение температур кипения алифатических и ароматических углеводородов, октанового числа, а также калорийности природного газа [16.4-4-16.4-6]. Другими областями прит менения являются использование промышленной ГХ при анализе окружающей среды для контроля за атмосферой и водой [16.4-7, 16.4-8]. Примерами использования промышленной ГХ в мониторинге окружающей среды, о которых в последнее время сообщалось, является определение выбросов в атмосферу ароматических углеводородов, диоксида серы, сероводорода и образующегося при горении угля сероуглерода [16.4-9]. Развитие методик, основанных на переключении колонок, внедрении криогенных ловушек, распылительной экстракции или мембранных сепараторов, обеспечило широкую применимость ГХ в химической промышленности [16.4-10, 16.4-11]. [c.655]

    Это позволяет значительно улучшить четкость погоноразделения и построить по результатам фракционирования так называемую кривую истинных температур кипения (ИТК) в координатах температура — выход фракций в % мае. (или % об.). Отбор фракций до 200 °С проводится при атмосферном давлении, а более высококипящих — под вакуумом во избежание термического разложения. По принятой методике от начала кипения до 300 °С отбирают 10-градусные, а затем 50-градусные фракции до температуры к.к. 475-550 °С. Таким образом, фракционный состав нефтей (кривая ИТК) показывает потенциальное содержание в них отдельных нефтяных фракций, являющихся основой для получения товарных нефтепродуктов (автобензинов, реактивных и дизельных топлив, смазочных масел и др.). Для всех этих нефтепродуктов соответствующими ГОСТами нормируется определенный фракционный состав. Нефти различных месторождений значительно различаются по фракционному составу, а следовательно, по потенциальному содержанию дистиллятов моторных топлив и смазочных масел. Большинство нефтей содержит 15-25 % бензиновых фракций, выкипающих до 180 °С, 45-55 % фракций, перегоняющихся до 300-350 °С. Известны месторождения легких нефтей с высоким содержанием светлых (до 350 °С). Так, самотлорская нефть содержит 58 % светлых, а в нефти месторождения Серия (Индонезия) их содержание достигает 77 %. Газовые конденсаты Оренбургского и Карачаганакского месторождений почти полностью (85-90 %) состоят из светлых. Добываются также очень тяжелые нефти, в основном состоящие из высококипящих фракций. Например, в нефти Ярегского месторождения (Республика Коми), добываемой шахтным способом, отсутствуют фракции, выкипающие до 180 °С, а выход светлых составляет всего 18,8 %. Подробные данные о фракционном составе нефтей бывшего СССР имеются в четырехтомном справочнике "Нефти СССР". [c.31]


    При получении веществ заданного строения по давно известным и многократно проверенным методикам при соблюдении всех условий синтеза идентификация полученных продуктов заключается только Б определении некоторых констант после соответствующей очистки. Такими константами являются для жидких веществ температура кипения при нормальном или другом, но вполне определенном давлении, абсолютная илн относительная плотность при стандартной температуре, показатель преломления нри указанной длине волны падающего света и т. д. Для твердых (при обычных условиях) веществ такой константой служит температура плавления, сравнительно мало зависящая от давления. Однако для подтверждения чистоты вещества можно использовать во многих случаях н температуру кипения прн определенном давлении. Чистоту полученного вещества часто подтверждают тонкослойной хроматографией, если разработаны условия ее проведения. Таким образом, идентификация полученного но проверенной методике вещества сводится по сути дела к оценке его чистоты. [c.63]

    Давление паров и температура кипения чистого вещества или смеси — взаимно связанные величины. Эта связь определяется физико-химическими свойствами исследуемой жидкости. Для установления этой связи можно использовать два метода 1) измерять температуру кипения при определенном давлении и 2) определять давление паров при заданной температуре. Первый метод (получил название динамического, а второй статического. В принципе оба метода равноценны. Однако в методическом отношении по технике экспериментальной работы эти методы сильно различаются. В каждом конкретном случае методика исследования выбирается с учетом зтих различий и специфических свойств Изучаемой системы. [c.41]

    Разработана методика определения иода и брома в природных водах и вытяжках из горных пород. Иод и бром концентрируют путем соосаждения их с хлоридом серебра, образующимся при добавлении к пробе раствора нитрата серебра. Хлорид-ион добавляют только в тех случаях, когда его содержание в пробе ниже 15 мг/л. Объем пробы 100 мл, при этом коллектора может быть от 6 до 40 мг в зависимости от содержания в пробе хлора. Полученный осадок растворяют в растворе аммиака, добавляют цинковую пудру и раствор оставляют на сутки. Цинк с выделившимся серебром отфильтровывают, а фильтрат выпаривают с 1 г кварцевого порошка. Кварцевый порошок, содержащий галогениды цинка, тщательно перемешивают с сульфатно-окислительной смесью и анализируют, испаряя из стеклянной колбы. Благодаря низкой температуре кипения иодида и бромида нинка (624 и 650 °С соответственно) для их полного испарения достаточен умеренный нагрев. Спектры начинают регистрировать спустя 60 с после начала нагрева при этом начинается поступление в аналитический промежуток паров галогенов. Экспозиция 90 с. В связи с тем, что пары иода и брома поступают в аналитический промежуток неодновременно, перед щелью спектрографа установлена диафрагма с фигурным вырезом, передвигаемая во время съемки спектров и позволяющая фотографировать различные во времени фазы испарения. Полученный спектр состоит из трех строчек первая соответствует времени максимального поступления паров иода, третья — времени максимального поступления паров брома, вторая — суммарный спектр всей экспозиции. Предел обнаружения составляет 10 мкг иода и брома в осадке, в пересчете на 100 мл воды — 0,1 мкг/мл. [c.258]

    Некоторое уточнение описанной методики требуется применительно к системам, имеющим две жидкие фазы. Поскольку бинарные трехфазные системы при постоянном давлении нон-вариантны, методика определения свойств бинарного гетероазеотропа чрезвычайно упрощается. Для этого достаточно загрузить компоненты в днстилляционную колбу в произвольном соотношении, но так, чтобы при кипении имелись две жидкие фазы, и в процессе дистилляции фиксировать температуру от- [c.108]

    При исследованиях нефтей по единой унифицированной программе широко применяется методика анализа индивидуального состава фракций прямогонного бензина н. к,— 60, 60—95 и 95— 122 °С [64, Идентификация компонентов на хроматограммах проводилась с помощью графических зависимостей логарифмов удерживаемых объемов от безразмерного критерия 2, представляющего собой отношение температуры кипения компонента к температуре опыта. Средняя относительная ошибка определения содержания индивидуальных углеводородов составляет 3—5%, чувствительность анализа 0,1—0,2 %. [c.117]

    В производственных и отраслевых лабораториях по методикам определяют групповой углеводородный состав, фракционный состав и ряд физических свойств углеводородных систем — плотность, вязкость, температуру застывания, коксуемость по Конрад-сону и т. д. Для определения фракционного состава используют дистилляцию и ректификацию. Например, по результатам отбора узких фракций строят кривые разгонки нефти или кривые истинных температур кипения (ИТК) и устанавливают потенциальное содержание в нефтях бензиновых, керосино-газойлевых, дизельных фракций. [c.46]


    Минздравом Российской Федерации утверждена методика определения афлатоксина Bi методом нормально-фазовой хроматографии [1]. Её основным недостатком при применении хроматографов серии Милихром является использование элюента, содержащего 95% диэтилового эфира. Учитывая, что температура кипения эфира 34 °С, а температура кюветного отделения микроколоночного хроматографа серии Милихром 33 - 36 °С, становится очевидно, что стандартные детекторы этих приборов полностью неработоспособны при применении указанного элюента. Таким образом, для использования нормально-фазового варианта методики определения афлатоксина В бьшо необходимо разработать элюент, пригодный для применения на хроматографах серии Милихром , [c.83]

    Существенно отличается от общепринятой разработанная для этой программы методика пересчета температур на тарелках колонны. Вместо определения температур кипения на тарелках предложен следующий итерационный метод  [c.263]

    Отсюда следует, что оптимальная методика должна быть основана на одновременном определении температуры кипения чистого растворителя и раствора в двух частях одной установки. Температуру кипения раствора точно измерить трудно. Сравнительно точные значения [c.68]

    МЕТОДИКА ОПРЕДЕЛЕНИЯ СОСТАВА И ТЕМПЕРАТУРЫ КИПЕНИЯ БИНАРНЫХ АЗЕОТРОПОВ [c.30]

    Описанную выше методику можно использовать и для определения отрицательного азеотропа и положения точки максимума на соответствующей изобаре температур кипения. [c.32]

    Для определения формы поверхности температур кипения наилучшим методом является последовательное прибавление небольших количеств одной жидкой смеси к другой в трехступенчатом эбуллиометре. Такая методика была впоследствии названа методом титрования . Экспериментатор выбирает состав исходной смеси и той смеси, при помощи которой осуществляется титрование, таким образом, чтобы пройти через интересующую его часть изобарной поверхности. [c.101]

    В предлагаемых ниже методиках основное внимание уделяется объектам исследования. В зависимости от применяемой схемы исследования нефти (см. гл. 1) состав анализируемых фракций отличается большей или меньшей сложностью. В соответствии с этим рекомендуемые условия разделения предоставляют экспериментатору определенную свободу в выборе оптимального варианта для исследования. Так, например, при анализе н-парафинов можно исследовать либо отдельные фракции (НК—200, 200—350 и 350 °С — КК), либо отбензиненную нефть целиком (200 °С — КК). Последний вариант не связан с ошибками, возникающими при ректификации нефти и менее трудоемок. Возможно, что в будущем он вытеснит в геохимических исследованиях остальные, так как позволяет с помощью одной хроматограммы оценить химический тип нефти, распределение основных групп УВ в соответствии с их температурами кипения [30] (см. гл. 11). [c.193]

    Для определения теплоемкости за рубежом существует стандартный расчетный метод ASTM D 2890. Для расчета необходимы данные разгонки топлива (по ASTM D 86 или IP 123) и плотность в °АР1, определяемая по ASTM D 287. Используя эти данные, рассчитывают с точностью до 0,1 величину наклона кривой разгонки делением на 80 разницы между значениями температур выкипания 90 и 10% топлива. Затем рассчитывают среднюю объемную температуру кипения как частное от деления на 5 суммы температур выкипания 10, 30, 50, 70 и 90% топлива, к которой затем прибавляют поправку, найденную из графика 1, приложенного к методике. По номограмме, приложенной к методу, исходя из найденного значения средней температуры выкипания и плотности исследуемого топлива, находят коэффициент Ватсона. Расчетную теплоемкость исследуемого топлива получают либо из номограммы зависимости между средней температурой выкипания, плотностью и коэффициентом Ватсона, либо расчетом по формуле  [c.39]

    Процесс велся в специально сконструированном приборе, в котором сосуд с реакционной/смесью находился в атмосфере насыщенных паров над кипящей жидкостью соответствующей температуры кипения. Для определения показателей преломления примеяялся рефрактометр типа Аббе (более подробно о методике см. предыдущие статьи и ). [c.112]

    Авторы метода указали на возможность упрощения методики путем определения коэффициента плотнос и по молекулярному весу, который в свою очередь может быть определен по другим физическим свойствам (плотности и средней температуре кипения или по вязкости при 37,8° и [c.380]

    Методика определения наличия и состава трекхкомпонентных азеотропов в принципе аналогична описанной методике исследования азеотропизма в бинаряьих системам. Различие заключается в том, что трехкомпонентные смеси при ректификации разделяются на большее число фракций, чем бинарные. Это, однако, может вызвать некоторое усложнение только при определении свойств седловидного и отрицательного азеотропов. Наличие и свойства положительных тройных азеотропов, с которыми наиболее часто приходится сталкиваться на пр актике, устанавливаются так же, как для бинарньих положительных азеотропов. Разумеется, температура ввер ху колонки должна Б этом случае сравниваться с темиература ми кипения не чистых компонентов, а образуемых И МИ бинарных азеотропов. [c.108]

    Существуют два принципиально различающихся метода определения давления насыщенных паров чистого вещества а) динамический метод — определение температуры кипения при различных давлениях б) статический метод — определение давления паров при различных температурах. Методика проведения измерения подробно описана Киницем в сборнике Губен—Вейля [30]. Милаццо [31] приводит сведения о методах и приборах, применяемых дл-я измерения [c.54]

    Особенностью этой модификации методики является более жесткая стандартизация процедуры определения. С этой целью силикагель был заменен окпсью алюминия, петролейный эфир — нормальным яентаном или прямогопной пептаповой фракцией (температура кипения 28—35" С), а вместо экстракционного аппарата Сокслета применялся специально сконструированный экстрактор (рис. 65), в котором обеспечена возможность поддержания постоянства температуры и скорости поступления растворителя. [c.442]

    Методики расчета температур кипения, точки росы и паро-жидкостного равновесия рассмотрены отдельно, поскольку каждая из них входш как составная часть во все алгоритмы расчета процесса многокомпонентной ректификации. Обычно все компоненты описываемой системы летучи, т. е. могут присутствовать в обеих фазах. Однако в данной главе разбираются также случаи, когда легкие и тяжелые компоненты находятся в одной фазе. Принимается, что константа К. для каждого компонента г не зависит от состава и является только функцией температуры и давления, а. энтальпии чистых компонентов не зависят от давления и являются только функцией температуры. Энтальпия смеси при заданной температуре Т берется как сумма произведений энтальпий чистых компонентов (определенных для данного значения Т) на их мольную долю в смеси. [c.24]

    Способ Ньютона для расчета температур кипения применили Амундсон и Понтинен , а также Листер и др. Они установили, что этот способ дает очень быструю сходимость при определении ге.мпературы кипения. Тем не менее методика расчета все же должна включать и некоторую проверку для того, чтобы [c.25]

    При решении примера 111-1 для обеих секций колонны была принята методика, основанная на определении температуры кипения. Возможно также применение методики, основанной на определении температуры точки росы. Далее эта методика ре-комеидуется для широкого использования, поскольку она дает быструю сходимость для углеводородных систем. [c.74]

    Следует различать дбе задачи определение группового химического состава бензинов прямой гонки и вообще фракций нефти и определение группового химического состава бензинов крекинга. Первая задача относительно проста и для ее решения имеются достаточно точные методики. Вторая задача, из-за нал11чия в смеси больших количеств ароматических и олефиновых, настолько трудна, что... до сих пор не существует такого метода анализа, который не вызывал бы известных сомнений и мог бы считаться общепризнанным Ч Рассмотрим сначала методику определения химического состава фракций прямой гонки. Взятую для исследования нефть- или нефтепродукт перегонкой разделяют на ряд фракций так, чтобы в каждой фракции иметь углеводороды данного ряда по возможности с близкими свойствами. Температурные пределы отбора легких фракций были установлены по температурам кипения простейших ароматических углеводородов вышекипящие фракции принято отбирать через пятидесятиградус-ные интервалы. Таким образом, для исследования берут фракции  [c.178]

    Для фракций, содержащих большое количество непредельных, как это имеет место в продуктах крекинга, методики определения группового химического состава разрабатывались только для бензинов и до сих пор не найдено вполне удовлетворительной методики. Как уже указывалось, основное затруднение представляет присутствие непредельных углеводородов при обработке их серной кислотой они лишь частью удаляются вместе с ароматическими в кислом гудроне, а частью полимеризуются, алкилируют ароматику и т. д., давая высококипящие продукты уплотнения. Для определения их количества и освобождения от них неароматической части, обработанный кислотой продукт подвергают вторичной перегонке, отделяя остаток, кипящий выше температуры конца кипения исходного сырья. Таким путем может быть найдено приблизительно суммарно.е содержание ароматики в непредельных. [c.181]

    Сложность состоит в том, чтобы выполнить точные измерения в диапазоне низких концентраций, поскольку в этом случае необходима лишь ограниченная экстраполяция до нуля. Эккерт и др. [260, 262] смогли провести точные эбуллиоскопические измерения при низких концентрациях путем использования дифференциальной методики. Они измеряли разность температур кипения чистого растворителя и разбавленного раствора такими приборами, которые позволяют фиксировать разность температур Ь 0,001 К. При этом можно точно найти концентрации намного ниже 0,005 мол. доли. Точный эбуллиометр был также применен авторами работы [688] для измерения концентраций ниже 3% в их программе по быстрому определению групповых вкладов в коэффициенты активности по методу ASOG, который был подробно разработан этими же авторами. [c.220]

    В результате долголетних исследований была разработана методика, позволяющая рассматривать нефтяные смеси как состоящие из псевдокомпонентов со средней температурой кипения в интервале от 5 до 10 °С и плотностью соответствующей фракции. Исходя из этих двух основных свойств, были разработаны корреляции для определения молекулярных масс, ацентрических коэффициентов, критической температуры и критического давления, а также пропорций ароматических, нафтеновых и парафиновых составляющих некоторые из этих свойств представлены в табл. 9.1. Поскольку эти корреляции выведены на основе данных, полученных при температуре ниже 650 °С, их не рекомендуется применять для анализа тяжелых остатков и, вероятно, продуктов перегонки каменного угля, содержащих главным образом циклические соединения. Для выполнения расчетов по мгновенному испарению нефтяных фракций используется метод, основанный на уравнении Соава как установлено, это наиболее точный метод из числа проанализированных Симсом и Даубертом [637], хотя следует отметить, что результаты всех этих методов неудовлетворительны при величине испарения ниже примерно 20%. [c.454]

    Точное определение повышения температуры кипения является значительно более затруднительным, чем измерение понижения температуры замерзания, вследствие явления перегрева и необходимости тщательнох о наблюдения за величиной давления. Кроме того, молярное повышение температуры кипения меньше, чем соответствующее понижение температуры замерзания, а поэтому ошибки при измерениях температуры кипения вызывают большую ошибку при вычислении термодинамических величин, чем ошибки в измерениях температуры замерзания. Котрель [20], а также Уэшборн и Рид [21] положили начало успешной разработке метода устранения наиболее серьезного экспериментального затруднения — явления перегрева,—а Смит [22] достиг в этом направлении наибольших успехов. Нет необходимости приводить здесь подробный обзор многочисленных методических усовершенствований последнего периода, поскольку они подробно освещены в одной из современных монографий [23] и по своему характеру аналогичны усовершенствованиям методики определения температуры замерзания. [c.270]

    По условиям эксплуатации ССМ и пластификаторы в большинстве случаев подвергаются длительному нагреванию, что обусловливает, прежде всего, потери их массы в результате испарения (см.табл.1 и 2). Испаряемость СС1 Л и лласт1Й1икаторов снижается при увеличении их молекулярной массы и определяется температурой кипения или давлением паров [2,12], Однако данные о давлении паров и температуре кипения не дагот полного представления о поведении сложноэфирного продукта при повышенной температуре, в связи с чем определяют потерю глассы при нагревании для пластификаторов обычно при 100°С за б ч [12], для ССМ - при 204°С за ,5 ч [2]. Отсутствие единой методики определения исдаряемостй затрудняет сопоставление веществ различного строения. Тем не менее, из ошпа эксплуатации ССМ известно [2], что сложные эфиры испаряются значительно меньше, чем углеводороды одинаковой молекулярной массы и тем более одинаковой вязкости. Среди сложноэфирных продуктов менее летучи эфиры П типа (см.табл.1 и 2). [c.18]

    В последнее десятилетие получили широкое развитие спектрально-флуоресцентные методы исследования органических веществ, в частности нефтей и нефтепродуктов (метод Шпольского), позволяющие значительно повысить точность работ. Предложенный метод заключается в экстрагировании из парафина масел и аренов октаном и фотографировании спектра флуоресценции этого экстрата при температуре кипения жидкого азота. Для определения содержания 1, 2-бензпирена полученный сцектр сравнивают со спектром октанового раствора 1, 2-бензпирена в концентрации 10" г/мл, снятым при тех же условиях [127]. Чувствительность определения 1,2 -бензпирена по этой методике составляет 10" °г/мл, что при использованной методике экстрагирования соответствует 0,48 10 г на 1 кг парафина. [c.83]

    Методика проведения экспериментов по определен задержки заключалась в следующем. В ку<5 загружалось индивидуальное вещество и проводилась в зависимости от его температуры кипения атмосферная или вакуумная перегонка в режиме предусмотренным ГОСТ. В процессе контролировались температура куба и верха колонки. Разница мевду загрузкой и отгоном в момент резкого подъема температуры куба ( исчезновение квдкоети ) и одновременного снижения температуры верха колонки и определяла задержку на насадке С табл. I ) [c.119]

    Даже для смесей, содержащих незначительные количества легких углеводородов, растворенных в сырой нефти и бензиновых фракциях, мeтoдики рекомендуемые БАШНИИНП, часто дают погрешность при определении температуры кипения, точки росы, доли отгона и давления кипения узких бензиновых фракций. Поэтому были разработаны методика и программа на ЭВМ "М-4030" расчета констант фазового равновесия, основанные на использовании давления сходимости (метод /КР/й ) [г], [c.35]

    Необходимо отметить, что большинство измерений, использующих пробы, основывается на некоторых допущениях о физическом и химическом характере пробы. Так, концентрацию примеси в полупроводниках часто определяют по измерению электрофизических свойств, например эффекта Холла, на специально вырезанных образцах. При этом обычно полагают, что в такой пробе имеются только примеси одного знака и все они полностью ионизированы. Если в реальной пробе какое-либо из этих допущений не соблюдается (а проверить это очень сложно), то при измерениях возникает ошибка, вызванная неправильностью модели. Особенно велики сложности, когда результаты измерения, производимого на твердой пробе, зависят от характера распределения в ней состава. Заранее знать этот закон нельзя. Поэтому обычно предполагается, что состав пробы однороден. Это упрощение вносит определенный вклад в увеличение погрешности методики. Учесть эту погрешность трудно, поэтому о ней чаще всего забывают. Отбирая для анализа состава жидкости насыщенный пар, легко допустить ошибку, связанную с обогащением пара легкокипя-щими компонентами. Наоборот, жидкость, находящаяся в контакте с паром, будет обогащена компонентами, повышающими температуру кипения раствора. При анализе состава порошкового материала может оказаться, что вследствие транспортировки (в таре, на ленте транспортера и т. д.) в верхних слоях материала будут более мелкие фракции, а в нижних — более крупные. В процессе транспортировки часть материала может скомковаться (это [c.19]

    Ярким примером неудовлетворительного выбора избирательных растворителей может служить методика определения форм свинца в шлаках свинцовой шахтной плавки, предложенная в 1929 г. Олдрайтом и Миллером [30]. По этой методике рекомендуется последовательная обработка навески шлака растворами а) ацетата аммония при температуре кипения для извлечения окиси и сульфата свинца б) нитрата серебра при комнатной температуре для растворения металлического свинца в) хлорида натрия, содержащего хлорид трехвалентного железа, при комнатной температуре для извлечения сульфидного свинца. В конечном остатке, по мнению авторов методики, сохраняются лишь силикаты свинца. [c.35]

    Фракция ароматических УВ с температурой кипения выше 200 °С содержит большое число изомеров с очень близкими физико-химическими свойствами, поэтому ее анализ очень сложен. Наиболее досконально исследованы из арод атических УВ этой фракции УВ ряда нафталина. Методика их определения с помощью ГЖХ нашла широкое применение при исследовании нефтей и конденсатов [15, 22, 35, 46, 80]. [c.240]

    Для определения полициклических ароматических УВ с конденсированными кольцами анализируются низкотемпературные спектры люмпнесценции при 1= —196 °С (температура кипения жидкого азота) ароматических фракций нефтей, полученных по известным методикам. Используются два способа регистрации спектров фотографический [Днкун П. П., 1961 г.] и фотоэлектрический [Персонов Р. И., 1965 г.]. [c.275]

    Если топлива имеют близкие значения теплот испарения и коэффициентов диффузии, то об их испаряемости можно судить по величине давления насыщенных паров / яас- В зависимости от состава И свойств топлива Раас опрвдвляют РАЗЛИЧНЫМИ мвтодами. Для многих компонентов ракетных топлив, представляющих собой индивидуальные вещества или смеси с узкими пределами выкипания, удобной является методика, основанная на определении температуры кипения при различных давлениях. Давление насыщенных паров при этом равно внешнему давлению. Экспериментальные данные могут быть выра кены уравнением  [c.114]

    Теплопроводность и теплоемкость жидкостей исследованы значительно меньше, чем другие физические свойства, нанример плотность или вязкость, и для большинства веществ экспериментальные результаты охватывают лишь узкий диапазон параметров состояния. Это объясняется тем, что экспериментальное определение теплофизических свойств при высоких параметрах представляет одну из сложнейших задач эксиеримен-тальной физики. Трудности эти главным образом возникают при реализации существующих методик и экспериментальных установок в области высоких температур и давлений. Именно этим можно объяснить тот факт, что имеющаяся литература дает сведения о теплопроводности большинства жидкостей в основном при температуре, не превышающей нормальную температуру кипения, а по теплоемкости эти данные характеризуют поведение жидкости в условиях комнатной температуры. [c.4]


Смотреть страницы где упоминается термин Температура кипения методика определения: [c.157]    [c.82]    [c.178]    [c.848]    [c.61]    [c.107]    [c.4]   
Углеводороды нефти (1957) -- [ c.203 , c.208 ]




ПОИСК





Смотрите так же термины и статьи:

Температура определение



© 2025 chem21.info Реклама на сайте