Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты карбоновые, присоединение окисление

    Превращение органических соединений в карбоновые кислоты в результате окисления кислородом см. в разделе Радикальное замещение и присоединение . [c.202]

    Уксусную кислоту (СНзСООН) получают окислением ацетальдегида или окислением низших углеводородов (бутана, бутенов, бензина) кислородом воздуха. Заслуживает внимания способ получения уксусной кислоты присоединением оксида углерода к метанолу в присутствии карбонила родия и ионов иода при нормальном давлении. Уксусная кислота образуется также при микробиальном окислении водных растворов этанола (5—8%-ный водный раствор уксусной кислоты, так называемый винный уксус). Это наиболее важная карбоновая кислота в химической промышленности. Большое значение имеют также ее соли, применяющиеся в производстве красителей и в медицине. [c.271]


    Для УВ радикала ненасыщенных карбоновых кислот характерны реакции присоединения, окисления, полимеризации. Наиболее важными из реакций присо- [c.587]

    Поскольку карбоновые кислоты, за исключением угольной, находятся в высшей степени окисления, многие методы их получения основаны на окислении (разд. Б). Однако иногда следует предпочесть гидролиз производных кислот, находящихся в той же степени окисления (разд. А). В дополнение к методам получения кислот, основанным на окислении, в разд. В обсуждается восстановление двуокиси углерода под заголовком Карбоксилирование металлоорганических соединений . Хотя все методы получения карбоновых кислот можно было бы разделись на эти три типа, полезно отдельно рассмотреть методы, приводящие к глубоким изменениям. Поэтому добавлены разделы,, описывающие методы конденсации (разд. Г), щелочного расщепления (разд. Д), электрофильного замещения и присоединения (разд. Е) и перегруппировок (разд. Ж)- [c.220]

    В результате р-окисления жирная кислота в конце процесса распадается с образованием ацетильного производного кофермента А ( активная уксусная кислота ). Последняя через цикл три-карбоновых кислот окисляется до СО2 и воды. Ненасыщенные жирные кислоты путем присоединения водородов по месту двойных связей сначала превращаются в насыщенные, а затем протекает их окисление. [c.65]

    Для УВ радикала ненасыщенных карбоновых кислот характерны реакции присоединения, окисления, полимеризации. Наиболее важными из реакций присоединения являются гидрирование и присоединение галогенов  [c.638]

    Как известно, окислением называют реакции, связанные с потерей атомом (или молекулой) электронов. Достаточно легко установить происходящие при этом изменения в состоянии окисления реагирующих партнеров для чисто ионных реакций. Однако для превращений ковалентных органических соединений понятия окисление или восстановление далеко не всегда кажутся столь же очевидными. Действительно, если речь идет об окислении первичного спирта в карбоновую кислоту (или обратном процессе), об окислении алкенов в эпоксиды или их превращении в алканы, то ясно, что это все — типичные окислительно-восстановительные реакции. Но уже классификация в тех же терминах таких реакций присоединения по двойной связи, как гидратация или бромирование, и обратных им реакций элиминирования не кажется столь же определенной. Тем не менее и по отношению к подобного рода реакциям можно уверенно использовать понятия окисления и восстановления, если опираться на определенные формальные критерии и принять за начало отсчета степень окисления углерода в алканах (уровень окисления 0). [c.132]


    Бензольное кольцо устойчиво к действию подавляющего большинства окислителей. Однако алкильные труппы, присоединенные к бензольному кольцу, легко окисляются под действием таких окислительных агентов, как дихромат натрия в серной кислоте, оксид хрома (VI) в уксусной кислоте, перманганат калия или 20—40%-я азотная кислота. Наиболее часто для окисления боковых цепей используют соединения хрома (VI) и перманганат калия. Конечными продуктами окислительной деструкции боковых цепей являются ароматические карбоновые кислоты  [c.384]

    Кроме реакции присоединения для альдегидов характерны также реакции окисления до карбоновых кислот. Взаимодействие альдегидов с аммиачным раствором оксида серебра (реакция серебряного зеркала ) и с гидроксидом меди (И) — качественные реакции на альдегиды. Кетоны окисляются только под действием очень жестких окислителей с разрывом углеродного скелета и образованием смеси карбоновых кислот и Og. [c.347]

    Поэтому раствор мыла в воде имеет щелочную реакцию. Жиры и масла, содержащие остатки непредельных карбоновых кислот, вступают в реакции присоединения по двойной углерод углеродной связи, галогенирования, полимеризации, окисления и т д Гидрогенизация широко используется в промышленности для превращения растительных масел в твердые жиры  [c.54]

    Свойства. Непредельные кислоты представляют собой или ЖИДКОСТИ, ИЛИ кристаллические вещества. Низшие кислоты растворимы в воде и обладают острым кислотным запахом. Кислоты этого ряда являются значительно более сильными кислотами (особенно те, у которых двойная связь находится рядом с карбоксильной группой), чем предельные жирные кислоты. Непредельные кислоты обладают всеми характерными свойствами органических кислот, т. е. способностью давать соли, хлорангидриды, ангидриды, сложные эфиры, амиды и прочие производные карбоновых кислот. Но, кроме того, наличие этиленовой связи придает этим кислотам способность вступать з свойственные этиленовым углеводородам реакции присоединения, а также способность легко расщепляться при реакциях окисления. [c.468]

    Важными исходными веществами для получения кетонов являются кар боновые кислоты. Этот путь получения кетонов приобрел особое значение в промышленности органического синтеза. Благодаря таким новым методам получения карбоновых кислот, как окисление парафинов или присоединение окиси углерода и воды к олефинам под давлением, во многих случаях старый способ. перегонки кальциевых солей кислот заменен каталитическими методами. [c.337]

    Кислоты ряда олеиновой кислоты обладают всеми характерными свойствами органических кислот, т. е. способностью давать соли, хлорангидриды, ангидриды, сложные эфиры, амиды и прочие производные карбоновых кислот. Но, кроме тото, наличие этиленовой связи придает этим кислотам способность вступать в свойственные этиленовым углеводородам реакции присоединения, а также способность легко расщепляться при реакциях окисления. [c.402]

    Присоединение карбоновых кислот к алкинам 16-57. Ацилирование альдегидов или кетонов 19-14. Бисдекарбоксилирование малоновых кислот 19-17. Окисление арилметанов СгОз и АсгО [c.419]

    В аналитической химии указанные методы применяют для идентификации алкилированных ароматических углеводородов, так как окислением устанавливают место присоединения алкильной группы к кольцу. Обычно для этого применяют хромовую кислоту в сернокислотном растворе или перманганат калия в щелочном растворе. Для аналитических целей следует-предпочесть перманганатное окисление, так как очистка карбоновых кислот,, полученных методом окисления хромовой кислотой, при малых количествах, бывает более трудной. Соединения с группами, чувствительными к щелочам (например, нитроалкилбензолы), требуют окисления в кислой среде. о-Ксилол хорошо окисляется до фталевой кислрты только перманганатом. [c.335]

    В последние роды много работали над выяснением мсханиз.ма биологического р-окисления. Проведенные исследования прежде всего показали, что первичным процессом является дегидрирование жирной кислоты в а, р-положении, после чего происходит присоединение воды к а, р-ненасыщенной карбоновой кислоте  [c.246]

    А. И кетоны называют также оксосо-единениями. По старой (тривиальной) номенклатуре названия А. производят от названий соответствующих карбоновых кислот, которые могут образоваться в результате окисления А муравьиный А., или формальдегид,— простейший член ряда жирных А.— соответствует муравьиной кислоте, уксусный А., или ацетальдегид,— уксусной кислоте и т. д. По современной научной международной номенклатуре названия производят от названий предельных углеводородов с тем же строением углеродного скелета и окончанием -ал(-аль) Н—СНО — метаналь, СНд—СНО — эта-наль и т. д. Наиболее распространенные методы получения А.— окисление первичных спиртов или восстановление производных кислот. Промышленное значение имеет синтез ацетальдегида, в основе которого лежит реакция Кучеро-ва — присоединение воды к ацетилену в присутствии солей ртути (И)  [c.20]


    По-видимому, одним из первых примеров эффективного использования гемолитического присоединения для получения полициклических продуктов был синтез полициклических у-лактонов, разработанный Кори [35с]. Здесь в качестве базовой реакции было выбрано хорошо известное гемолитическое присоединение по кратньш связям а-карбонил-радикатов, образутощихся при окислении карбоновых кислот солями марганца. Основные стадии этой реакции показаны на схеме 2.140 на примере превращения стирола в лактон 418. [c.253]

    При сульфировании ацетиленовых углеводородов действие столь активных агентов, как например дымящая серная кислота, приводит не только к двукратному присоединению —ОН и —ЗОзН по тройной связи, но также к окислению и последующему разрыву связи С—С, с образованием дисульфокислоты и карбоновой кислоты. Так, при действии 65%-ного олеума на ацетилен получается метандисульфокислота (метионовая кислота), образование которой можно представить как результат следующих реакций, где первично образовавшаяся ацетальдегиддисульфокислота гидролизуется затем в метио-новую и муравьиную кислоты  [c.122]

    Среди переходных металлов в высоких степенях окисления наиболее эффективными реагентами для присоединений атомов кислорода по двойной связи являются перманганат-ион к оксид осмия (VHI). Мягкие условия реакции с перманганатом калия дают возможность превращения олефинов в гликоли с относительно высокими выходами. Однако этот окислитель может далее окислять гликоль до кеТолй нли расщеплять олефин с образованием карбоновых кислот, поэтому для эффективного окнсления важно тщательно контролировать условия реакции. Интермедиатом в этих процессах является циклический эфир марганцовой кислоты  [c.314]

    В мягких условиях Сбо проявляет высокую реакционную способность по отношению к электрофильной атаке ионом нифония в присутствии нуклеофильных реагентов - ароматических карбоновых кислот. Что касается дальнейшей функционализации, то нуклеофильность фуллеренов, проявляемая в реакциях элекфофильного присоединения в реакторе, компенсирует трудности, возникающие при элекфонном окислении молекул Сбо-Разработана удобная синтетическая методология введения в молекулу фуллерена разнообразных функциональных групп, в частности, гидроксильных и сложноэфирных. [c.139]

    Монослои карбоновых кислот также могут накладываться на поверхность кварцевого стекла в два этапа вначале проводится адсорбция многозарядных ионов металла на поверхности кремнезема, а затем обработка образца мыльным щелоком. Используются такие металлы, как кальций, барий или магний [340]. Полученная таким путем поверхность кремнезема гидрофобна, поэтому на нее можно повторно наносить покрытия в процессе флотации добавлением извести с последующим введением стеарата натрия [341]. Гаудин и Фурстенау [342] показали, что в процессе флотации кварца ионы бария, адсорбиро-ваные в слое Штерна, затем адсорбировали лаурат-ионы, которые превращали поверхность кварца в гидрофобную в этом процессе барий получил название активатора . Флотация кремнезема из руд имеет важное промышленное значение. Ионы кальция используются в качестве активатора для флотации кремнезема с добавлением мыльного щелока. Интересно, что стеарат-ионы должны также сообщать железной руде гидрофобный характер, и, таким образом, руда будет всплывать с пеной в процессе флотации. Однако, если вначале добавляется крахмал, то он, адсорбируясь на оксидах железа, сохраняет их гпд-рофильность и, таким образом, может понижать флотируемость руды. Вероятно, поликарбоксильные группы в крахмале (или в окисленном крахмале), присоединенные к поверхности оксида железа в большом числе точек, не могут замещаться стеарат-ионами, которые гидрофобА и несут точно такой же по знаку заряд, что и крахмал, поэтому не способны проникать сквозь толстый гидрофильный анионный слой адсорбированного крахмала [343]. [c.952]

    С и сульфита натрия при сплавлении со щелочью б) образования пиримидина (115) после обработки натрием в жидком аммиаке структура (115) подтверждена синтезом в) кислотного гидролиза, приводящего к третьему пиримидину (116), структура которого также была подтверждена синтезом. Второй компонент расщепления сульфитом натрия был идентифицирован как тиазол (117). Окисление этого соединения азотной кислотой приводило к потере одного атома углерода и образованию известной тиазол-карбоновой кислоты (118). Наличие в (117) гидроксильной группы было доказано ацилированием и замещением на хлор при обработке хлороводородной кислотой при 150 °С. Тиазол, следовательно, содержал а- или р-гидроксиэтильный заместитель в положении 5. Последний вариант более вероятен, поскольку а) витамин был оптически неактивен б) тест (117) с йодоформом был отрицателен. Положение присоединения тиазольного цикла к пиримидиновому установлено после определения положения остатка сульфокислоты в пиримидине (114) и позднее было подтверждено синтезом. [c.628]

    Следует отметить, что отщепление кислотного остатка и образование эфиров HHTpO30iiap6oHOBbix кислот наблюдается при действии окислов азота на замещенные зфиры карбоновых кислот, содержащие не только органический ацильный радикал, но и остаток минеральной кислоты. Например, нитрозосоединения образуются при действии окислов азота на эфиры а-нитрокарбо-новых кислот, в свою очередь получающиеся при окислении зтих же нитрозосоединений. Можно было бы предполагать, что по аналогии с вторичными нитропарафинами при этом будет наблюдаться образование соединений типа псевдонитролов, содержащих нитро- и нитрозогруппы, присоединенные к а-углеродному атому. Однако реакция в этом направлении не идет, отщепляется нитрогруппа, и в молекулу вступает нитрозогруппа, в результате чего снова образуется исходный эфир нитрозокарбоновой кислоты [c.115]

    Простой одностадийный синтез у-лактонов (57) заключается во взаимодействии Мп(ОАс)з со смесью алкена и карбоновой кислоты [46]1 [схема (4.54)]. В реакции также могут быть использованы соли других металлов в высших степенях окисления, например Се (ОАс) 4 и (ЫН4УОз, однако соли по-видимому, наиболее доступны. Лактоны образуются с высокими выходами как из внутренних, так и из терминальных алкенов, а также из сопряженных и несопряженных диенов. Во всех исследованных случаях в лактонах, полученных из терминальных алкенов, атом кислорода присоединен к более замещенному положению исходного алкена. [c.161]

    Окисление органических соединений в присутствии переходных металлов и их комплексов не только приводит к разнообразным кислородсодержащим продуктам, таким, как спирты, альдегиды, кетоны, карбоновые кислоты и эпоксиды, но может также сопровождаться различными реакциями сочетания. В этой главе рассмотрено образование кислородсодержащих продуктов такие реакции, как фенольное сочетание и окислительное присоединение к алкенам обсуждались в гл. 2 и 3. В данную главу включен также раздел, посвященный дегидрогенированию. [c.322]

    Хроматографическим етодом б -чо "гтянпр,лрнг . что через 8 — 10 часов 67% углеводородов из общего количества их превращается в кислородные производные, что является весьма удовлетворительным и, пожалуй, почти оптимальным результатом в статических условиях окисления (таблицы 28, 29). За счет присоединения кислорода на 15% увеличивается суммарный весовой выход продуктов. Нерастворимые в воде высокомолекулярные кислоты жирного и нафтенового рядов составляют 46 — 55% из общего количества кислородных соединений. Технические карбоновые кислоты составляют 20 — 27%, а технические оксикислоты — 26 —39 6. Если окисленный продукт разделяется на компоненты методом горячего омыления, то в сравнительно больших количествах получаются карбоновые кислоты, если же применяется метод осаждения, то получаются преимущественно оксикислоты (таблица 28). [c.116]

    Окисление перкислотами При превращении того или иного алкена в эпоксид (оксиран) посредством окисления перкарбоповыми кислотами наблюдается такое же изменение реакционной способности алкена в зависимости от его структуры, какое характерно для электрофильного присоединения. Замещение алкильных или алкоксильных групп на винильные группы увеличивает реакционную способность субстрата. Исследованные перкислоты по своей реакционной способности располагаются в следующем порядке СРзСОзН НСОзН>СНзСОзН>СцНдСОзН. В этой реакции перкислоты восстанавливаются до карбоновых кислот. Поскольку карбоновые кислоты могут раскрывать окисные циклы посредством реакций нуклеофильного замещения, часто к реакционным смесям добавляют какое-либо нерастворимое слабое основание, чтобы нейтрализовать карбоновую кислоту. Раскрывая с помощью разнообразных нуклеофильных реагентов трехчленные циклы эпоксидов, можно получить много ценных веществ  [c.343]

    Алкен-2-алн образуют циангидрины путем строгого 1,2-присоединения с термодинамическим контролем. Продукты, будучи аллиловыми спиртами, могут окисляться оксидом марганца (IV) с образованием ацилцианидов, которые при действии метанола легко превращаются в а,р-непредельные метиловые эфиры карбоновых кислот [схема (177)]. Геометрия двойной связи сохраняет ся. Этот путь получения а,р-непредельных карбоновых кислот предпочтительнее окисления алкеналей оксидом серебра(I) [219]. [c.548]

    За прошедшие годы появилось значительное количество исследований, в которых был расширен круг галоидорганических соединений, вступающих в реакцию Арбузова, и проведены исследования по изучению ее механизма. Однако за последние 20 лет наметилось и другое, не менее важное и интересное направление исследований в химии производных кислот трехвалентного фосфора — изучение взаимодействия с органическими электрофильными реагентами, не содержащими атомов галоидов. Эта новая, многообещающая и быстро развивающаяся область фосфорорганической химии включает разнообразные превращения производных кислот трехвалентного фосфора с широким кругом соединений как насыщенного, так и ненасыщенного рядов — спиртами, перекисями и гидроперекисями, карбоновыми кислотами и их производными, аминами, альдегидами, кетонами, сернистыми соединениями, непредельными углеводородами и др. Ввиду многообразия реагентов, вступающих в реакции с соединениями трехвалентного фосфора, естественно и механизмы их протекания неоднозначны. Наряду с нуклеофильным замещением наблюдаются процессы нуклеофильного присоединения и окисления. Многие из реакций нуклеофильного замещения и присоединения осуществляются по схемам, аналогичным или близким к предложенным для классической перегруппировки Арбузова и могут рассматриваться как ее разновидности. В первой фазе происходит атака атома фосфора на атом углерода, несущий какую-либо функциональную группу или являющийся концевым в непредельной системе, по механизму бимолекулярного нуклеофильного замещения с образованием квазифосфониевого соединения или биполярного иона. Во второй фазе в результате 5д,2-реакции аниона [c.5]

    Если облучение происходит в условиях контакта с воздухом, то органические соединения заметно окисляются, так как кислород в этих условиях образует активный бирадикал 0—О . В результате его присоединения к углеводородным и другим радикалам R или к молекулам образуются радикалы перекисей, общая формула которых R—О—О . Такие радикалы называются перекисными они нестойки и в дальнейшем превращаются в органические перекиси ROOH или ROOR, которые в соответствии с теорией окисления, развивавшейся еще Н. А. Бахом, переходят в еще более устойчивые органические кислородсодерн<ащие соединения альдегиды, кетоны и карбоновые кислоты. [c.429]

    Суммированы основные работы за 1965—1970 гг. по новым реакциям электрохимического синтеза органических соединений и новым идеям в области интенсификации процессов электросинтеза. Рассмотрены реакции анодного окисления углеводородов, спиртов, альдегидов, кетонов, карбоновых кислот и соединений других классов, реакции анодного замещения и присоединения — галоидирование, цианирование, нитрование, гидроксилирование, алкоксилирование, сульфирование, карбоксилирование, алкилирование и др. Приведены сведения об образовании элементоорганических соединений при анодных и катодных процессах. Рассмотрены катодные реакции восстановления без изменения углеродного скелета — восстановление непредельных ароматических, карбонильных, нитро- и других соединений с кратными связями, образование кратных связей при восстановлении, катодное удаление заместителей, а также реакции гидродимеризации и сочетания, замыкания, раскрытия, расширения и сушения циклов, в том числе гетероциклов. Рассмотрены пути повышения плотности тока, увеличения поверхности электродов, совмещение анодных и катодных процессов электросинтеза, применение катализаторов — переносчиков, пути снижения расхода электроэнергии и потерь веществ через диафрагмы. Описаны конструкции наиболее оригинальных новых электролизеров. Таблиц 2, Иллюстраций 10, Бйбл, 526 назв. [c.291]

    Наиболее важный метод получения эпоксисоединений основан на окислении, или эпоксидировании , алкенов при действии над-карбоновых кислот НСОООН . Конечным результатом реакции является присоединение кислорода по двойной связи этот процесс происходит только цис-способом. [c.448]

    Соединение (I) при алкоголизе дейтерированным амиловым спиртом дает 3-фенилпропанол-1-0-3, а окисление его кислородом приводит к 1-фенилпропандиолу-1,3 оно легко реагирует с кетонами, ароматическими альдегидами и эфирами карбоновых кислот как металлорганическое соединение с образованием соответствующих продуктов присоединения. Например, взаимодействие комплекса (I) с бензофеноном приводит к 1,1,2-трифенилбутандиолу-1,4 (И, выход 82%) [861]. [c.394]

    Исходным материалом явился а-метилаллиловый спирт (46),. окисленный при помощи двуокиси селена в я-метилакролеин (47), который был затем сконденсирован с ацетиленидом натрия в жидком аммиаке, в результате чего был получен изопропенил-этинилкарби-нол (48). Динатриевая соль последнего (49) действием углекислоты была превращена в 3-окси-4-метилпент-4-ен-1-ин-1-карбоновую кислоту (50) , из метилового эфира которой (51) при его взаимодействии с метиловым спиртом в присутствии сложного катализатора, (трехфтористый бор, окись ртути, трихлоруксусная кислота) было, получено соеди(ение, оказавшееся лактоном 3-окси-2-метокси-4-метилг пента-1,4-диен-1-карбоновой кислоты (52). Это соединение возникает из предыдущего ( 51) в результате присоединения к нему метилового, спирта по тройной связи, причем одновременно происходит и образование лактонного кольца. В соответствии со своим строением соединение (52) дало при озонолизе формальдегид и соединение (53) , выделенное в виде 2,4-динитрофенилгидразона. Рассмотренные стадии, синтеза могут быть сведены в схему 2 (см. стр. 48). [c.47]


Смотреть страницы где упоминается термин Кислоты карбоновые, присоединение окисление: [c.49]    [c.379]    [c.132]    [c.40]    [c.132]    [c.231]    [c.897]    [c.599]    [c.319]    [c.166]    [c.599]    [c.659]   
Новые методы препаративной органической химии (1950) -- [ c.310 , c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Кислоты при присоединении карбоновых кислот



© 2024 chem21.info Реклама на сайте