Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Комбинационное рассеяние теория

    Теория характеристических колебаний. Сопоставление колебательных спектров большого ко- / личества многоатомных веществ, обладающих одинаковыми группами атомов, показало, что в спектрах всегда присутствуют одни и те же или мало отличающиеся по волновым числам полосы поглощения или линии комбинационного рассеяния. На основании такого наблюдения было установлено, что некоторые волновые числа полос поглощения или линий комбинационного рассеяния можно привести в соответствие с колебаниями отдельных атомов или груии атомов в молекуле. [c.21]


    Широко используются для исследования структуры молекул и спектры комбинационного рассеяния (КР-спектры). Если через прозрачное вещество в кювете пропускать параллельный пучок света, то некоторая его часть рассеивается во всех направлениях. Если источник света монохроматический с частотой V, то в спектре рассеяния обнаруживается частота ч, равная частоте V. Этот результат вытекает как из квантовой, так и из классической теории рассеяния. Рассеяние без изменения частоты и соответственно без изменения энергии молекулы называют классическим, релеевским (по имени физика [c.145]

    Квантовая теория дает следующее объяснение спектрам комбинационного рассеяния. [c.255]

    Квантовая теория эффекта комбинационного рассеяния очень проста. Как показано на рис. XXV.2, возбужденная в результате облучения молекула может вернуться не на основной уровень, а на возбужденный (например, в отношении колебательной энергии). При этом, как видно из левых стрелок рис. XXV.2, частота испускаемого света меньше частоты рассеиваемого. Если в момент облучения молекула была в возбужденном состоянии, то, как показывают правые две стрелки (см. рис. XXV.2), частоты испускаемого света больше частоты первоначального. [c.668]

    Теорию групп также используют до проведения расчетов, чтобы знать, будет ли интеграл типа V бр. Vj Л, встречающийся в квантовой механике, отличаться от нуля. Такая информация важна для исследования в следующих областях правила отбора для электронных переходов, химические реакции, ИК-спектры, спектры комбинационного рассеяния и другие разделы спектроскопии. [c.225]

    Критики так часто неправильно трактуют это положение обсуждаемой теории, что я вынужден проиллюстрировать его еще одним примером. Вибрацию барабана можно воспринимать как шум, ее можно ощущать, прикасаясь к барабану пальцами, или, наконец, сделать видимой, положив на натянутую кожу несколько сухих горошин. Таковы три разных способа обнаружения вибрации барабана с использованием соответственно ушей, пальцев или глаз. Аналогично этому эффект комбинационного рассеяния, инфракрасная спектроскопия или нос представляют собой три разных способа регистрации молекулярных колебаний. [c.196]

    Таким образом, в частотах стоксовой (со —ш —<о ) и антистоксовой (о)д =т +сй ,.) линий комбинируются частота монохроматического излучения источника с частотой собственных колебаний молекулы. Поэтому описанное выше явление называют комбинационным рассеянием. Объяснение этого явления можно дать как на основе классической электромагнитной теории, так и на основе квантовой теории света. [c.75]


    А. И. Бродский на основании теории Дебая—Хюккеля рассмотрел влияние растворителя на электродвижущую силу раствора и определил коэффициенты активности ряда солей в спиртах и в смесях спирта с водой. Он один из первых исследовал свойства растворов электролитов оптическими методами (спектры комбинационного рассеяния, рефракция). [c.31]

    Подробно теория и практика метода комбинационного рассеяния изложена в монографиях [1, 3, 4, 5, 6] и в отдельных статьях. В каталоге [7] приведены спектры 226 углеводородов, в монографии [1] — спектры 317 углеводородов. [c.54]

    Построить кривые потенциальных энергий химических свя -зей можно на основании анализа колебательных частот молекул. Для этой цели используют данные ИК-спектров, спектров комбинационного рассеяния и флуоресценции. Обзор соответствующей литературы можно найти в монографиях [[22—24]. Здесь рассмотрим лишь простейшую теорию и основные экспериментальные данные для двухатомных молекул. [c.18]

    Здесь уместно упомянуть еще об одном очень интересном спектральном методе, который пока еще не получил широкого распространения в каталитических исследованиях. Речь идет о резонансном комбинационном рассеянии света, который часто позволяет получить большое число хорошо разрешенных компонент колебательной структуры. Использование этих данных для расчета поверхностей потенциальной энергии связей в каталитических комплексах и адсорбированных молекулах требует, однако, дальнейшей разработки теории колебаний в многоатомных системах и создания соответствующих автоматизированных программ для расчетов на ЭВМ. Решение этой задачи будет способствовать и более строгой интерпретации спектров фосфоресценции, а также позволит исследовать с помощью ИК-спектроскопии многие нехарактеристические колебания, которые нельзя трактовать в простом двухатомном приближении. Таким образом, перспективы дальнейшего использования спектральных методов для изучения элементарных стадий катализа достаточно широки. [c.35]

    В этой главе рассмотрены колебательные спектры органических кристаллов и показано, какую помощь могут оказать эти спектры в изучении твердого состояния органических веществ. Особое значение придается инфракрасным спектрам, но иногда по мере надобности говорится также о тех усовершенствованиях теории, которые необходимы для объяснения спектров комбинационного рассеяния этих кристаллов. [c.573]

    А. С. Давыдовым разработана теория, применимая не только к электронным спектрам кристаллов, но также к спектрам комбинационного рассеяния, инфракрасным спектрам поглощения и спектрам люминесценции в видимой и ультрафиолетовой областях спектра [115].— Прим. перев. [c.577]

    Рассеяние света молекулой как в форме релеевского рассеяния, так и в форме излучения комбинационного рассеяния основано на том, что колеблющееся Электрическое поле падающего светового луча, воздействуя на электроны, вызывает периодически изменяющийся электрический момент молекулы. Амплитуда колебания этого электрического момента тем больше, чем больше поляризуемость облучаемой молекулы. Более точная теория показывает, что интенсивность обычного рассеянного света зависит, помимо интенсивности облучающего света, только от поляризуемости облучаемой молекулы, а на интенсивность излучения комбинационного рассеяния, кроме интенсивности облучающего света, влияет изменение, которое испытывает поляризуемость вследствие непостоянства расстояний между атомными ядрами. Если на поляризуемость практически не влияют колебания ядер, так как электронное облако, окружающее одно ядро, только очень слабо воздействует на другое, то излучение комбинационного рассеяния может не обладать заметной интенсивностью. Сильное взаимное влияние электронных облаков всегда проявляется в тех случаях, когда атомы, участвующие в создании молекулы, имеют общие электроны. Поэтому спектры комбина- [c.345]

    Путем исследования инфракрасных спектров и спектров комбинационного рассеяния пара перекиси водорода можно вычислить энергию, требующуюся для совершения вибрационных и колебательных движений атомов, составляющих перекись водорода. Доля этих вибраций, а также доли трансляционного и вращательного движений в энергии всей молекулы при различных температурах можно суммировать при помощи уравнений, основанных на квантовой теории. Эта методика, позволяющая определить соотношение энергетических состояний молекулы н числа молекул в каждом таком состоянии с общей энергией системы, приводит к так называемым функциям распределения, подробные данные по которым можно найти в стандартных руководствах [81]. [c.200]

    В настоящее время широко применяются физические методы исследования для определения строения органических молекул рентгеноструктурный анализ, структурная электронография, инфракрасная спектроскопия, комбинационное рассеяние света, дипольные моменты, электронные спектры поглощения, электронный парамагнитный резонанс, ядерный магнитный резонанс. Теория химического строения раскрыла неисчерпаемые возможности для синтеза разнообразных органических веществ с заранее заданными свойствами. [c.306]


    Теория резонансного комбинационного рассеяния в газах в общих чертах описана Плачеком [20] и развита в ряде других )абот [364] (приближение поляризуемости более не применимо). Зсли частота возбуждающего излучения vo настолько близка к резонансной частоте Vpes, что разность между ними сравнима с частотой вращательных переходов молекулы, то мы говорим о резонансном вращательном комбинационном рассеянии . Теория этого эффекта для двухатомных молекул детально разработана Морозовым [365]. Показано существенное изменение распределения интенсивности вращательно-колебательных полос, а также степени деполяризации Q-ветви. Для релеевской линии степень деполяризации выражается следующим образом [366]  [c.340]

    Одним из первых успехов только что нарождавшейся стереохимии Циклических соединений явилось создание теории напряжения Байера, успешно и красиво объяснившей неустойчивость циклопропана и циклобутана и высокую стабильность соединений ряда цикло-пентана. Байер обратил внимание на то, что в трехчленных и четырехчленных кольцах по очевидным геометрическим причинам валентные углы углерода (109°28 ) должны уменьшиться до 60 и 90°, соответственно, создавая в результате значительное напряжение молекул. Наоборот, в пятичленном кольце циклопентана по той же причине углы почти точно соответствуют валентному углу. Однако дальнейшее развитие теории встретилось с неожиданными трудностями. Плоские, по представлениям Байера, кольца циклогексана, циклогептана и т. д. должны были бы характеризоваться растущим с увеличением кольца напряжением, но оказалось, что они весьма устойчивы. Особенно устойчивыми оказались циклогексан и его производные, а также синтезированные Ружичкой соединения с числом атомов С в цикле от 15 до нескольких десятков. По теории напряжения существование таких соединений вообще считалось невозможным. Правда, в дальнейшем Заксе и Мор показали, что циклогексан может быть свободен от байеровското напряжения, если его атомы углерода расположены не в плоскости, а в пространстве. Они предложили две такие пространственные модели, получившие названия кресла XI и ванны, или лодки, XII. Казалось бы, эти формы совершенно равноценны и должны отвечать двум изомерным цик-логексанам, которые, возможно, трудно или совсем неразделимы. Однако в дальнейшем различными физическими методами (с помощью спектров комбинационного рассеяния [571, ИК-спектроскопин [c.37]

    Все перечисленные выше и ряд других сведений о строении молекул получаются из спектральных данных при помощи разработанной за последние десятилетия теории колебательных и вращательных спектров. Теория относится в равной мере к инфракрасным спектрам и спектрам комбинационного рассеяния и, конечно, не может быть изложена в настоящей главо. Она подробно изложена в монографиях, к которым и отсылаем читателя. Теория вращательных и колебательно-вращательных спектров многоатомных молекул систематически изложена в прекрасной монографии Герцберга [7]. Ряд вопросов теории, особенно методы расчета колебательных частот молекул и упругих электрооптических постоянных межатомных связей, в ьаиболсе полной и совершенной форме развиты в монографии Волькенштейпа, Ельяшевича и Степанова [5] см. также [4, 12, 549а, 559] и обширную библиографию в [7]. [c.483]

    Квантовая теория эффекта комбинационного рассеяния очень проста. Как показано на рис. XXIV.2, возбужденная в результате [c.528]

    С начала 30-х годов XX в. для открытия и определения многих химических соединений (особенно органических веществ) стал применял ь-ся метод комбинационного рассеяния (КР) света — так называемый ра-ман-эффект . Эффект комбинационного рассеяния света открыли в 1928 г. независимо друг от друга Ч. В. Раман (совместно с К. С. Кришиа-ном и Венкатесвараном) в Индии при изучении спектра рассеяния жидкого бензола и отечественные ученые Г. С. Ландсберг и Л. И. Мандельштам — при исследовании спектров рассеяния кристаллов. Заметим, что эффект КР света был предсказан теоретиками и обоснован еще до его экспериментального открытия. Так, Е. Ломмель в 1871—1878 г.г. развил математическую теорию рассеяния света ангармоническим осциллятором, из которой следовало, что в спекфе его рассеяния могут проявлять- [c.45]

    Ценнейшую информацию для теории химической связи дают сведения и о пространственной анизотропии связевых рефракций. Поскольку молекулярная рефракция является скалярной величиной, для получения характеристики анизотропии должны быть привлечены дополнительные данные. Таковые могут быть получены, например, из измерений фактора деполяризации релеевского рассеяния в спектроскопии комбинационного рассеяния. Не останавливаясь на теории вопроса, выходящего за рамки данной книги, сошлемся на последнюю работу в этой области Клемента и Сорина [197], которые получили значения рефракций вдоль (Я ц ) и перпендикулярно (/ X ) оси химической связи углерод — углерод  [c.149]

    Происхождение комбинационного рассеяния можно понять, используя представления квантовой теории рассеяния. При столкновении с молекулами кванты света рассеиваются. Если столкновение полностью упругое, они отклоняются от первоначального направления своего движения (от источника), не изменяя энергии. Если же столкновение неупругое, т. е. происходит обмен энергией между квантом и молекулой, молекула может потерять или приобрести дополнительно энергию Д в соответствии с правилами отбора. Приче.м ДЕ должна быть равна из.менению колебательной и (или) врапдательной энергии и соответствовать разности энергий двух разрешенных ее состояний. Излучение, рассеянное с частотой, меньшей, чем у падающего света, называют стоксовым, а с частотой большей — антистоксовым. Стоксово излучение сопровождается увеличением энергии молекул (такой процесс может произойти всегда), и линия его более интенсивна (на несколько порядков), чем антисток-сова, так как в этом случае молекула уже должна находиться в одном из возбужденных состояний (рис. 32.9). [c.770]

    Элементарные реакции. Для установления М. р. привлекают как теоретич. методы (см. Квантовая химия, Динамика элементарного акта), так и мiioгoчи лeнныe эксперим. методы. Для газофазньк р-ций >io молекулярных пучков метод, масс-спектрометрия высокого давления, масс-спектрометрия с хим. ионизацией, ионная фотодиссоциация, ион-циклотронный резонанс, метод послесвечения в потоке, лазерная спектроскопия-селективное возбуждение отдельных связей или атомных групп молекулы, в т.ч. лазерно-индуцированная флуоресценция, внутрирезонаторная лазерная спектроскопия, активная спектроскопия когерентного рассеяния. Для изучения М. р. в конденсир. средах используют методы ЭПР, ЯМР, ядерный квадрупольный резонанс, хим. поляризацию ядер, гамма-резонансную спектроскопию, рентгено- и фотоэлектронную спектроскопию, р-ции с изотопными индикаторами (мечеными атомами) и оптически активными соед., проведение р-ций при низких т-рах и высоких давлениях, спектроскопию (УФ-, ИК и комбинационного рассеяния), хемилюминесцентные методы, полярографию, кинетич. методы исследования быстрых и сверхбыстрых р-ций (импульсный фотолиз, методы непрерывной и остановленной струи, температурного скачка, скачка давления и др.). Пользуясь этими методами, зная природу и строение исходных и конечных частиц, можио с определенной степенью достоверности установить структуру переходного состояния (см. Активированного комплекса теория), выяснить, как деформируется исходная молекула или как сближаются исходные частицы, если их несколько (изменение межатомных расстояний, углов между связями), как меняется поляризуемость хим. связей, образуются ли ионные, свободнорадикальные, триплетные или др. активные формы, изменяются ли в ходе р-ции электронные состояния молекул, атомов, ионов. [c.75]

    Конинестайн И. ВВЕДЕНИЕ В ТЕОРИЮ КОМБИНАЦИОННОГО РАССЕЯНИЯ СВЕТА. Пер. с англ. - М. Мир, 1975. [c.333]

    Энергия поляризации и интенсивность электромагнитного колебания изменяются в каждом случае пропорционально квадрату р, . Интенсивность рассеянной радиации слаба, а значит, Ка, равное просто а д(х/дх), мало по сравнению с д. Когда да/дх равно нулю, комбинационного рассеяния не наблюдается. Аналогично в инфракрасном спектре отсутствует поглощение, когда д х.1дх равно нулю. Можно считать, что эти выводы классической теорип соответствуют правилам отбора квантовой теории. [c.429]

    Многие химики-аналитики считают, что из числа всех спектров поглощения наиболее полезными являются инфракрасные спектры. Это связано с тем, что с помощью обычно используемых спектрометров для многих веществ нельзя наблюдать характеристического поглощения в ультрафиолетовой области спектра, тогда как в инфракрасной области все вещества дают характеристическое поглощение. Подробное рассмотрение теории и интерпретации инфракрасных спектров и спектров комбинационного рассеяния дано в монографии Герцберга [864]. Можно рекомендовать также КНИГУ Рэндала, Фаулера, Фьюзона и Дэнгла [1521], пользование которой не требует математической подготовки. Различные вопросы, связанные с применением инфракрасных спектров в качественном и количественном анализах, описаны в работах Бернса, Гоура и др. [173, 174]. [c.47]

    При высотах барьеров порядка десяти кДж/моль время поворотной изомеризации, т. е. время превращения одного ротамера в другой, имеет порядок Ю " с. К такой оценке приводит расчет на основе теории абсолютных скоростей реакций (см. 6.1). Следовательно, ротамеры нельзя разделить. Их наличие и доля устанавливаются путем изучения физических и химических свойств смеси ротамеров. Пространственное строение ротамероа различно, соответственно разлиЧа10тся и их колебательные спектры. За время жизни ротамера происходят сотни и тысячи колебаний (с частотами порядка 10 —10 с" )—ротамер успевает выдать свой спектр. Действительно, существование поворотпоа изомерии было впервые установлено Кольраушем с помощью спектров комбинационного рассеяния. Отношение интепсивпостей спектральных линий, отвечающих различным ротамерам, зависит от их содержания в смеси в соответствии с формулами (3.12). Следовательно, АЕ можно определить по температурному ходу интенсивностей спектральных линий. Так, для н-бутана найдено АЕ 2,5 кДж/моль. [c.66]

    N2. Электронографические измерения 13206, 2561], а также результаты исследования тонкой структуры инфракрасных полос поглощения [1220] и вращательного спектра комбинационного рассеяния дициана [2397] приводят к однозначному выводу о том, что молекула 3N2 является симметричной линейной молекулой и принадлежит к точечной группе симметрии D oh- Согласно теории колебаний, такая молекула должна иметь три невырожденных нормальных колебания, из которых два (с частотами vi и у%) имеют симметрию Aig и одно (Vs) — симметрию Лаи, и два дважды вырожденных колебания — симметричное Eig (ve) и антисимметричное iui Vs)- Все частоты активны в спектре комбинационного рассеяния, а частоты антисимметричных колебаний vs и Vg—и в инфракрасном спектре. [c.648]

    В2О3. За последние 10—15 лет определению строения, структурных параметров и основных частот молекулы окиси бора уделялось большое внимание. До середины пятидесятых годов эти исследования ограничивались различными оценками, основанными на использовании общих представлений теории направленных валентностей и результатах исследования спектров комбинационного рассеяния стеклообразной окиси бора. Во всех выполненных работах был сделан вывод, что молекула BjOg имеет бипирамидальную структуру (точечная группа Dg/,). Энтропия газообразной окиси бора при Т — 1600° К, вычисленная по этим данным статистическими методами, находилась в удовлетворительном согласии с величиной, вычисленной по уравнению (17) (см. стр. 29) на основании результатов калориметрических измерений теплоемкости и энтальпии окиси бора в твердом и жидком состоянии и данных по давлению ее насыщенных паров, полученных Спейсером, Найдичем и Джонстоном [3817]. Поскольку аналогичные расчеты на основании молекулярных постоянных В2О3, оцененных для угловой модели этой молекулы (точечная группа С20), приводили к резкому расхождению в значениях энтропии, вывод о бипирамидальной структуре молекулы окиси бора представлялся достаточно обоснованным. [c.709]

    В СССР большую работу по термодинамике растворов электролитов провел А. И. Бродский и его школа. Работы Бродского суммированы в его книге Досл1ди з термодинам -ки та eлeктpoxiмп розчин1в и в ряде статей. В своих работах Бродский на основании теории Дебая—Хюккеля рассмотрел вопрос о влиянии растворителя на электродвижущую силу элементов и определил коэффициенты активности ряда солей Б спиртах и в смесях спирта с водой. В этот же период Бродский, одним из первых, исследовал свойства растворов электролитов оптическими методами (спектры комбинационного рассеяния, рефракция). [c.51]

    Рассмотрение теории комбинационного рассеяния позволило Г. С. Лапдсбергу и соавторам сделать вывод о том, что при определенных и стандартных условиях наблюдения интенсивности линий и их частоты представляют параметры, характеризующие данный индивидуальный углеводород. Зная интенсивности линий в единой шкале, достаточно иметь только один-два эталонных углеводорода и сравнивать линии компонентов в спектре смеси с линиями эталонного углеводорода. При этом методе концентрация [c.53]

    Основные научные нсслсдовання относятся к физической органической химии. Разработал (1946 -1950) пути изуче1и1я интенсивности линий комбинационного рассеяния света (КР), послужившие основой создания новых методов качественного и количественного анализа органических продуктов и молекулярного структурного анализа. Открыл явление резонансного КР (1946—1952) и излучение промежуточного характера, сочетающее признаки рассеяния и флуоресценции (1963). Разработал теорию преобразования света молекулами, которая установила связи между фундаментальными молекулярнооптическими явлениями — поглощением света, рассеянием и флуоресценцией и предсказала возможности наблюдения вторичного излучения промежуточного характера. [c.617]

    Разбор спектров на основе анализа по теории групп и сравнение полученных при этом результатов со спектром комбинационного рассеяния [7, 8] позволяет установить, что колебание 450 с-И соответствует несимметричной компоненте расщепления дважды вырожденного колебания бензола и имеет симметрию Следовательно, полоса 0-0 + 450 см соответствует электронно-колебательному переходу симметрии А А А -В -В . Этот переход поляризован вдоль оси у молекулы. Как отмечалось выше, величину колебания vьB не удалось определить по спектрам поглощения паров [6], в спектре же кристалла это можно сделать чрезвычайно легко из-за различной поляризации полос, соответствующих полносимметричной и несимметричной компонентам расщепления. Третий тип поляризации, согласно анализу по теории групп для точечной группы может быть связан с переходами, поляризованными вдоль оси г молекулы. Из правил отбора следует, что такой электронно-колебательный переход возможен при возбуждении колебаний симметрии Ло. Чтобы решить вопрос о том, какое из колебаний (386 или 681 см ) имеет симметрию А.,, необходимо учесть, что сочетание колебаний симметрии Лз с колебаниями симметрии запрещено правилами отбора для электронных переходов. В спектре не обнаружена полоса 0-0 + 386 + 450 см- в то время как полоса 37 874 см- может быть интерпретирована как 0-0 + 681 + 450 см- (см. табл. 5. 3). Следовательно, электронноколебательному переходу А, - B2(A - - В -Ао), поляризованному вдоль оси 2 молекулы, по-видимому, может соответствовать переход 0-0 + 386 см- . В этом случае четвертый тип поляризации полос поглощения оказывается связанным с полосой 37 423 см (0-0-Ь 681 см ). Можно полагать, что для истолковании особой поляризации этого перехода необходимо учитывать реальную симметрию молекулы в кристалле, которая отлична от Со (см. [12] и подраздел 3, 4). [c.218]

    Теория спектров инфракрасного поглощения н комбинационного рассеяния твердых пароводородов, [c.254]

    При этом рассматриваются главным образом исследования кристаллов как таковых и не делается попыток обсуждения вопросов инфракрасной спектроскопии (или спектроскопии комбинационного рассеяния) вообще, а также результатов, которые непосредственно не относятся к кристаллическому состоянию. Теория и практика колебательной спектроскопии детально разработаны в трудах многих авторов, на работах которых в конечном счете и основывается эта глава. Здесь мы ограничимся тем, что сошлемся лишь на три таких труда, являющихся фундаментальными исследованиями в соответствующих областях. Первый — книга Герцберга [46], полно освещающая вопросы инфракрасной спектроскопии и спектроскопии комбинационного рассеяния, содержит изложение теории и данные для многих индивидуальных молекул. Второй — книга Вильсона и др. [107], содержащая наиболее современное и подробное рассмотрение проблемы колебаний. В обеих этих книгах детально обсуждается симметрия колебаний. Третья книга [105I относится скорее к введению в спектроскопию в серии изданий под редакцией Вайсбергера. Эта работа дает в общих чертах основы как теории, так и техники спектроскопии .  [c.573]

    Данные по строению твердых соединений ХеГг и XoF/ [35—40], а также инфракрасная спектроскопия и спектроскопия комбинационного рассеяния этих соединений [39, 41—46] показывают, что молекула XeFo в основном состоянии является линейной молекулой (симметрия De /,), в то время как молекула XeFi представляет собой плоский квадрат (симметрия Эти результаты можно интерпретировать в рамках полуэлширического метода МО (табл. 2). Теория правильно предсказывает относительную устойчивость различных ядерных конфигураций, хотя серьезно завышая при этом значения энергии связи [47, 48]. Минимизация энергии связи (по расстоянию между атомами Хе и F) приводит к значениям длин связи, находящимся в хорошем согласии с экспериментом [14, 16, 17 . [c.38]

    Одним из методов изучения состава растворов, а также структуры индивидуальных веществ является метод спектрального анализа, подразделяющийся на абсорбционный, эмиссионный и метод спектров комбинационного рассеяния. Сущность спектрально-аналитических методов состоит в том, что излучение от подходящего источника, тем или иным способом яро-шедщее через вещество или излученное самим веществом, приобретает сложное строение характерного вида (спектр). На фоне непрерывного излучения наблюдаются области более или менее резкого изменения интенсивности различной величины, называемые полосами поглощения — в случае спектров поглощения или линиями испускания — в случае эмиссионных спектров. Это явление, как известно, обусловлено квантовым характером колебательно-вращательных движений как самих молекул, так и элементов, их составляющих. Квантовая теория, на которой мы здесь останавливаться не будем, показывает, что каждое вещество должно обладать индивидуализированным, характерным только для данного вещества набором значений колебательных частот уг, а следовательно, возможностью поглощения или испускания только строго определенных порций энергии при переходе из одного колебательного состояния в другое, так как известно, что энергия излучения Ei и частота связаны соотношением = /гу , где Н — константа Планка. [c.414]

    В последние годы структура стекла широко изучалась разносторонними методами исследования [2725—2763, 3045— 3084]. Так, Тарасов [2725, 2726], используя разработанный им метод определения низкотемпературной теплоемкости, показал, что особенность структуры силикатных и других неорганических стекол кроется в том, что они обладают полимерным анионом и мономерным катионом. Гросс и Колесова [2727], на основании изучения спектров комбинационного рассеяния многих стекол, показали на примере щелочносиликатных стекол, что в них имеет место постепенный переход от структуры стеклообразного кремнезема к структуре стеклообразного метасиликата щелочного металла, подобно тому, как это наблюдается для случая смешанных кристаллов. Флоринская и Печенкина [2728, 2729], основываясь на результатах, полученных методом инфракрасной спектроскопии, рассматривают стекла как сложные и неоднородные соединения, содержащие зоны с упорядоченным строением — кристаллиты. Расположение атомов в них такое же, как в кристаллах силикатов или кремнезема. Существует постепенный переход от наиболее упорядоченной части этих зон к беспорядку и обратно — к порядку в соседних кристаллитах. Формирование группировок, из которых в дальнейшем образуются кристаллиты, начинается очень рано, еще в расплаве стекла выше температуры ликвидуса. В пользу кристаллитной теории строения стекла приводятся и другие соображения [2730—2747]. Однако в отдельных работах утверждается, что некоторые виды стекол имеют структуру беспорядочной сетки [2748]. Как показал Порай-Кошиц [2749],пользуясь рентгеноструктурным методом, невозможно сделать окончательные выводы о правильности той или иной гипотезы о строении стекла. Полученные с помощью этого метода данные подтверждают обе гипотезы — как о кристаллитной структуре, так и о структуре беспорядочной сетки. По мнению автора, получения окончательного ответа на вопрос о размерах упорядоченных областей в однокомпонентных телах можно ожидать в результате их исследования электронномикроскопическим методом. [c.460]

    Предметом высокоразрешенной спектроскопии комбинационного рассеяния является изучение вращательной структуры спектров газообразных веществ. Исследование проводится в первую очередь для получения данных о структуре молекул. Если вращательная структура на полученном спектре оказывается разрешенной, то анализ спектра позволяет в принципе вычислить моменты инер-ции, а следовательно, межъядерные расстояния и углы между связями в молекуле. Такие исследования дают также информацию о симметрии молекул, вращательно-колебательном взаимодействии и, в некоторых случаях, о ядерном спине и статистике, которой подчиняются ядра. В настоящей статье делается попытка обобщить успехи, достигнутые в этой области, рассказать о технике эксперимента, о возможностях и ограничениях метода и дать краткий очерк теории вопроса. [c.115]


Библиография для Комбинационное рассеяние теория: [c.133]   
Смотреть страницы где упоминается термин Комбинационное рассеяние теория: [c.489]    [c.5]    [c.457]    [c.38]    [c.139]    [c.599]   
Успехи спектроскопии (1963) -- [ c.126 ]




ПОИСК





Смотрите так же термины и статьи:

Квантовая теория эффекта комбинационного рассеяния

Комбинационное рассеяние

Общая теория комбинационного рассеяния света

Спектры комбинационного рассеяния квантовая теория

Теория дисперсии. Рассеяние. Комбинационное рассеяние

Теория комбинационного рассеяния свет



© 2025 chem21.info Реклама на сайте