Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы, анализ восстановители

    Групповыми реагентами в количественном анализе катионов являются кислоты, сильные основания, аммиак, карбонаты, фосфаты, сульфиды щелочных металлов, окислители и восстановители. Объединение веществ в аналитические группы основано на использовании сходства и различий в их химических свойствах. Рассмотрим составление групп для систематического анализа на примере неорганических катионов. [c.198]


    Перенапряжение необходимо иметь в виду при вычислении напряжения разложения при выделении металлов. Явление перенапряжения дает возможность выделять ряд электроотрицательных металлов из водных растворов их солей если бы не было явления перенапряжения, то при электролизе растворов солей цинка или свинца вместо металлического цинка или свинца должен был бы выделяться только водород (см. рис. 12.3). Большое перенапряжение для выделения водорода на ртути имеет значение в полярографическом анализе, а также при использовании амальгам металлов в качестве восстановителей. [c.221]

    Образование четырех вышеуказанных окислов установлено как в процессе последовательного окисления металла, так и при исследовании восстановления высшего окисла А Од любыми восстановителями оно подтверждено рентгенографическим анализом. Сущ.ествование ранее описывавшихся соединений А гОз и последними иссле- [c.224]

    Термическое восстановление. В связи с тем, что при нагревании многие соединения ртути разлагаются [648, 915, 1005, 1030, 1236], можно отделить ртуть от многих металлов, пользуясь возгонкой металлической ртути с последующей конденсацией на металлической поверхности (медной, золотой, серебряной и др.) или на стенках сосуда. Гравиметрическое определение ртути основано на увеличении веса металлической пластинки или стеклянного сосуда. Из-за высокой летучести самих соединений ртути зти способы анализа неточны. Лучшие результаты получаются при использовании различных восстановителей. [c.75]

    Нитрат-ионы являются анионами азотной кислоты — одной ю самых сильных минеральных кислот. Она является сильным окислителем, окисляющим многие восстановители. Азотную кислоту широко используют в анализе для растворения металлов и сплавов, сульфидов и других соединений. NOj-ионы бесцветны. Нитраты — соли азотной кислоты — хорошо растворяются в воде, кроме основных солей висмута и ртути. [c.188]

    Общим принципом традиционных химических методов является применение характерных реакций для групп, подлежащих определению. Реакция должна быть не только возможно более специфичной, но и достаточно быстрой, и в ней должны участвовать реагент или продукт реакции, легко поддающиеся определению. Наибольшее применение находят реакции, в которых потребляются или образуются следующие реагенты или продукты кислоты, основания, окислители, восстановители, газы, вода, ионы металлов, малорастворимые или окрашенные соединения, комплексы. Ниже приводятся типичные реакции, применяемые в анализе функциональных групп (измеряемое вещество в уравнениях отмечено звездочкой, а определяемая группа содержится в первом соединении в представленном уравнении). [c.12]


    Щелочные металлы широко применяются в лабо раториях в качестве реагентов для синтеза и анализа активных восстановителей, а также осушителей для [c.234]

    Бориды получали вакуум-термическим методом путем взаимодействия окисла редкоземельного металла с бором или карбидом бора, игравшими роль восстановителя и борсодержащего агента. Детали этой методики получения гексаборидов р. з. э. описаны в работе [1]. Фазовый состав полученных гексаборидов контролировали с помощью химического и рентгенофазового анализов. [c.46]

    В качестве другого примера можно привести реакцию обнаружения золота с использованием фотохимического восстановления его до металла [300]. Реакцию проводят на фильтровальной бумаге, которая одновременно является хроматографическим носителем и реагентом, восстанавливающим золото(1П). Благодаря свойствам бумаги как дисперсионной среды (большая внутренняя поверхность) и как восстановителя (низкий окислительно-восстановительный потенциал) реакция между золотом и бумагой протекает быстро и количественно, что позволяет использовать эту реакцию в химическом анализе. Облучение ультрафиолетовым светом приводит к образованию металлического золота. Достоинством реакции является простота исполнения ее и высокая чувствительность (0,015 мкг Аи). Практически полное отсутствие мешающего влияния других элементов делает реакцию высокоселективной. [c.124]

    В химическом анализе чаще применяют методы избирательного восстановления. В качестве восстановителей используют газы, металлы и ионы в растворе. [c.368]

    Основное преимущество ДМК как восстановителя заключается в устранении влияния галогенов на результаты анализа. Но, как и при использовании хлорида олова, влияние сульфидов остается. Так, наличие в растворе 20 мкг 3 в виде сульфида натрия снижает абсорбцию на 50%, а 100 мкг практически полностью подавляет сигнал. Ионы теллура, селена, золота и серебра при содержании 0,6 —500 мкг снижают сигнал на 25—80%. Это объясняется тем, что перечисленные металлы восстанавливаются до элементного состояния и связывают свободную ртуть в виде амальгамы и теллурида (селенида). Щелочные и щелочноземельные металлы, цинк, алюминий, свинец, никель, кобальт, марганец, кадмий и др. не мешают анализу. Описанный метод успешно может быть использован для определения ртути в коксах и ископаемых углях. [c.237]

    Угольный порошок препятствует спеканию пробы или образованию королька. Во время горения дуги в присутствии угольного порошка в канале электрода образуется большое число мелких капелек, в результате чего испарение протекает спокойнее, фракционирование заметно ослабляется, разбрызгивание и выброс пробы уменьшаются. При анализе непроводящих материалов угольный порошок придает пробе электропроводность. Углерод является энергичным восстановителем, поэтому он оказывает и химическое воздействие на пробу во время горения дуги, восстанавливая окислы и соли до металлов, с некоторыми металлами образует труднолетучие карбиды и т. д. При этом сложные соединения разрушаются и приходят к единым молекулярным формам. Поступление пробы, смешанной с угольным порошком, в облако дуги часто определяется испаряемостью не исходных соединений, а тех форм, которые образуются в канале электрода в результате взаимодействия с угольным порошком. Эти процессы подробно рассмотрены в работе [8]. ч> /Для исследования влияния разбавления пробы угольным порошком на испарение примесей пробы [c.89]

    Многие полифенолы являются восстановителями и применяются, н-апример, для восстановления фосфорномолибденовой кислоты до сини и в других реакциях. Взаимодействие их с железом, ванадием и некоторыми другими ионами, по-видимому, начинается с комплексообразования, которое далее переходит в реакцию окисления — восстановления. В некоторых случаях металлы, в том числе не имеющие хромофорных свойств, играют роль катализаторов, способствующих окислению полифенола. Например, описаны реакции на цинк или свинец с резорцином и т. п. Такие реакции трудно регулировать, поэтому они мало применяются в фотометрическом анализе. [c.275]

    Малая избирательность реагентов, применяемых для определения платиновых металлов и золота, часто вызывает необходимость предварительного отделения определяемого элемента от сопутствующих ему металлов. В ходе анализа сложных материалов, содержащих все благородные металлы, последние, обычно, концентрируются совместно на одной из стадий анализа. Поэтому часто вначале прибегают к групповому разделению, к отделению друг от друга нескольких металлов, наиболее близких по химическим свойствам, а затем ищут пути разделения отдельных элементов. Для группового разделения используют различия в окислительно-восстановительных свойствах благородных металлов. Окислители (броматы, хлор) служат для отделения осмия и рутения от остальных благородных металлов. Восстановители (каломель, хлористую медь) применяют для отделения платины, палладия и золота от родия и иридия. Наиболее частыми сочетаниями металлов, получаемыми в результате группового разделения, являются осмий и рутений платина, палладий и золото родий и иридий. Для группового разделения, а также для отделения металлов друг от друга наряду с химическими применяют хроматографические и экстракционные методы. [c.218]


    Мешающие вещества. Поскольку тяжелые металлы в анализИ руемой пробе могут быть в виде комплексных соединений с цианид-ионами или анионами различных органических кислот, необходимо предварительное разрушение этих комплексов одним из методов, описанных в разд. 6.1. Если присутствуют бихромат-ионы, их восстанавливают добавлением гидразина или какого-нибудь другого восстановителя. Ионы трехвалентного железа связывают прибавлением раствора тартрата натрия. [c.62]

    Щелочные металлы широко применяются в лабораториях в качестве реагентов для синтеза и анализа, активных восстановителей, а также осушителей для органических растворителей. Эти металлы относятся к наиболее активным элементам, что обусловливает их высокую пожаровзрывоопасность, а также агрессивность по отношению к тканям организма. Чрезвычайно опасны ожоги расплавленными щелочными металлами. Термические ожоги в этом случае усугубляются тяжелыми химическими ожогами. Любые операции с дисперсиями щелочных металлов, а также с металлическим калием справедливо считаются одними из самых опасных работ в химической лаборатории. [c.101]

    На рис. 74 можно видеть, что кривыеД0° для многих хлоридов пересекаются друг с другом, следовательно, взаимная их устойчивость меняется с изменением температуры. Это необходимо учитывать при анализе хлорирования многокомпонентного сырья, когда хлориды одних металлов могут быть хлорирующими агентами по отношению к другим металлам или окислам. На том же рисунке видно, что при данной температуре металл способен вытесняться из хлорида другими металлами (восстанавливаться) тем легче, чем выше егоДО°, и, наоборот чем ниже лежит кривая AG° образования хлорида, тем сильнее восстановительные свойства данного металла. Металлические титан, цирконий и гафний получают восстановлением их тетрахлоридов магнием или натрием. Кривые Д0°, Mg и Na l лежат значительно ниже кривых указанных тетрахлоридов, поэтому реакции восстановления протекают практически нацело. Выше 2000° в качестве восстановителя может быть использован водород, так как в этой области кривая для реакции (40) лежит ниже кривых для тетрахлоридов  [c.259]

    Вообще серусодержащие органические соединения, как показал А. И. Бусев, перспективны для качественного и количественного анализов. Тиосемикарбазид можно использовать в систематическом анализе, так как он одновременно представляет и комплексообразующее вещество, восстановитель и способен осаждать сульфиды металлов. Многие катионы дают ярко окрашенные осадки с дитизоном, сдиэтил-дитиокарбамином. Однако выделение их в виде однородной группы затруднительно, так как растворимость этих соединений сильно зависит от природы катиона металла. [c.149]

    После получения представительной средней пробы исследуемого материала (см. Проба аналитическая) берут обычно большую навеску (до 100 г), т.к. содержание благородных металлов, как правило, низко. Навеску смешивают с шихтой. В состав последней входят коллектор (РЬО), флюсы (кварц, бура, сода и др.), восстановители (напр., древесный уголь, крахмал), иногда окислители (PbjO , KNO3 и др.). Состав и соотношение компонентов шихты определяется составом анализируемого материала. Обычно применяют тигельную плавку - восстановительно-раство-рит. плавление навески материала с шихтой при 1000-1150 С в огнеупорных (шамотных) тиглях объемом от 300 до 800 см . При этом РЬО восстанавливается до РЬ, происходит шлакование компонентов породы и образование сплава свинца с благородными металлами (веркблей). Жидкий расплав выливают в изложницы и после охлаждения веркблей отделяют от шлака. Одновременно с РЬО могут частично восстанавливаться оксиды др. металлов (меди, сурьмы, олова, никеля и т. д.), к-рые мешают дальнейшему анализу. [c.96]

    Определение. Качественно Р. обнаруживают в виде HgjNH2 l, HgS, а также атомно-абсорбционным, эмиссионным спектральным, фотометрич. и др. методами. Гравиметрически Р. определяют в виде металла, HgS, Hg2 l2, перйодата Hg5(IOg)2. Пробу руды разлагают при нагр., Р. отгоняется в присут. восстановителя (порошок Fe илн Си) под шубой из ZnO. Образующуюся Р. собирают на холодной золотой пластинке, к-рую по окончании анализа промывают и взвешивают. При низком содержании Р. в рудах используют кислотное разложение руд с добавлением фторида для растворения кварца и силикатов, содержащих Р. в высокодисперсном состоянии затем проводят концентрирование путем отделения примесей др. элементов экстракцией разл. комплексных соединений Р. (галогенидов, роданидов, дитиокарбаматов и др.). При прокаливании и сплав-ле.нии рудных концентратов и соединений Р. с содой Р. полностью удаляется в виде металла. Для подготовки аналит. пробы используют сочетание экстракции с термич. восстановлением и отгонкой Р. подготовленную пробу можно анализировать любым из перечисленных выше методов. Термич. восстановление используют также для качеств, обнаружения Р. даже при низких ее концентрациях. При фотометрич. определении Р. в качестве реактива используют 1-(2-пиридилазо)-2-нафтол, позволяющий определять микрограммовые кол-ва. Следы Р. также м. б. определены при помощи дитизона, используемого как гри фотометрич., так и при титриметрич. определении. [c.279]

    При выполнении этой работы учащиеся в результате наблюдения и анализа явлений получают новые знания о реакциях между металлами и солями, об электрохимическом ряде напряжений металлов, глубже вникают в сущность окислитель-Но-Босстановительиых процессов, повторяют состав и диссоциацию солей, понятие элемента и простого вещества, строение атомов и ионов металлов, их окислительно-восстановительные свойства, обогащают представление о реакциях замещения. Проделывая опыты, учащиеся совершенствуют умения обращаться с реактивами и химической посудой, фиксировать признаки реакций. Одновременно с этим достигаются цели развития логического мышления учащихся. Ведь чтобы выполнить данное задание, школьники активно сравнивают, анализируют, проводят обобщение и абстрагирование для установления закономерности поведения металлов в присутствии ионов других металлов. Определенный вклад это задание вносит и в дело формирования диалектического мышления, поскольку дает возможность учащимся обратить внимание на явление и его сущность, обнаружить диалектическую противоречивость природы элемента, совмещающего в себе функции окислителя и восстановителя, найти причину и следствие и т. д. Кроме того, задание способствует укреплению познавательного интереса учащихся, общетрудовых умений, таких, например, как умения планировать работу, распределять время и внимание при про- [c.10]

    Пробирный анализ осноран на способности соединений золота легко разлагаться при низкой температуре, на свойстве золота легко образовывать сплавы со свинцом с низкой температурой плавления и легко отделяться от него при окислительном плавлении сплава [13J. Метод пробирной плавки (например, руд) заключается в том, что руду смешивают с содой, бурой, стеклом, глетом и т. н. в такой пропорции, чтобы получить легкоплавкую смесь. Одновременно к шихте прибавляют восстановители для восстановления части глета до элементного свинца. К шихте примешивают Ag l, если серебро в руде отсутствует. При плавке весь восстановленный свинец с благородными металлами собирается на дне тигля. Полученный свинцовый сплав, освобожденный от шлака, подвергают окислительной плавке сначала в шербере, а затем на капели. [c.194]

    Наконец, их широко используют в химическом анализ К наиболее употребительным в анализе окислителям мож1 отнести азотную кислоту, ее соли, свободные галогены (хло бром, иод), пероксид водорода, царскую водку , перманган калия, дихромат калия, персульфат аммония, дисульфид аммони диоксид свинца. В качестве восстановителей применяют сер водород, свободные металлы (натрий, железо, цинк, олов алюминий), хлорид олова (II), иодоводород и его соли, тиосул фат натрия, оксалат натрия, щавелевую кислоту. [c.50]

    Применение сернистого водорода в качестве восстановителя не совсем удобно, так как отфильтровывание выделяющейся серы представляет некоторые трудности. Кроме того, сернистый водород применяется в качественном анализе, главным образом, в качестве осадителя. Если раствор содержит какой-либо окислитель (например, азотную, хлорноватую, хромовую кислоты и тому подобные вещества), сульфид-ио будет окисляться, выделяя серу. Осажденные сульфиды будут при этом загряжены серой, затрудняющей дальнейшее их исследование. Если раствор не содержит металлов, осаждающихся сернистым водородом, но в нем находятся окислители, то сера, осажденная последними, часто вызывает сомнение, не смешана ли она с некоторым количество.м осажденногО сульфида вследствие этого возникает необходимость дальнейшего исследования осадка. Такое исследование зачастую может быть избегнуто, если предварительно разрушить окислитель. [c.52]

    Исследовали процесс восстановления алюмината лития порошком алюминия в вакууме 0,1—0,5 мм рт ст при 1150— 1200°С Выход металлического лития достигал 90% Таким методом получают металлический литий достаточно высокой чисто ты Анализ зависимости энергии Гиббса соединений, принимающих участие в реакциях восстановления лития, от температуры показывает, что для большинства восстановителей реакцию удается осуществить лишь благодаря большой летучести лития (удалению его из сферы реакции и сдвигу тем самым равно весия) Величина AG° для соединений лития мало отличается от AG° для соединений металлов-восстановителей (Mg, Са) Поэтому литий можно получить лишь вакуумной металлотер мией [c.226]

    Гндрнды щелочных н щелочноземельных металлов в настоящее время известны как наиболее сильные восстановители и применяются при восстановлении, конденсации в органической и неорганической химии. Широко используются гидриды в фармацевтической химин и тонком химическом анализе. Гидриды обладают также каталитическими свойствами. Они отличаются большой активностью и избирательной способностью. [c.7]

    Одним из вариантов исиользования электрогенерированных галогенов в кулонометрическом анализе являются методы, основанные на превращении галогенов в соответствующие гипогало-гениты [385, 386]. В этом случае сначала генерируют хлор, бром или иод в ячейке для внешнего генерирования [387], а затем вводят полученный галоген в щелочной буферный раствор, содержащий определяемый компонент. Таким путем определяют аланин, аминомасляную кислоту, амины, аммиак, борогидриды щелочных металлов (ион 10 пригоден только для определения последних), а также роданиды, арсениты, сурьму и другие восстановители. [c.49]

    Анализ поляризационных кривых позволяет сделать вывод, в том числе и относительно выбора потенциала защиты для оборудования из стали AISI410 в исследованных средах при потенциалах, больших или равных Епо, протекает локальная коррозия или питтингообразование при потенциалах, меньших или равных Ез, коррозия не протекает, т. е. металл полностью защищен. Коррозионное поведение стали зависит от состояния ее поверхности, состава, вида кристаллической структуры, наличия различных ионов в среде, окислительно-восстановитель-ных характеристик среды. [c.92]

    В Институте химии и химической технологии АН ЛитССР (Вильнюс) проведены исследования новых титриметрических, в основном потенциометрических, методов анализа. Для ускорения медленно протекающих редокс-реакций успешно использованы катализаторы— соединения осмия и рутения. Предложены методы определения ряда окислителей и восстановителей, а также ускоренные и усоверщенствованные методы определения некоторых восстановителей и других компонентов в растворах, применяемых для получения металлических покрытий химическим путем. Разработаны редокс-методы определения благородных металлов. [c.211]

    При эмиссионном анализе битумо-в, коксов, ископаемых углей, а также золы с испарением пробы из канала электрода чаще всего в качестве разбавителя используют графитовый или угольный порошок. Угольный порошок обладает свойствами, которые делают его незаменимым разбавителем. Угольный порошок является доступным спектрально-чистым веществом. При отсутствии готового порошка его легко можно приготовить из спектральных углей. Следует отметить малолинейчатый характер его спектра. Благодаря этому даже при значительном разбавлении пробы спектрограмма образца не загромождается лишними линиями. Если при этом учесть, что в подавляющем большинстве случаев для анализа применяют угольные электроды, то легко представить преимущество угольного порошка перед другими разбавителями. Б то же время при исключительной простоте и доступности разбавления пробы угольным порошком его влияние на ход и результаты анализа весьма сложно и значительно. При анализе непроводящих материалов угольный порошок придает пробе электропроводность. Угольный порошок препятствует образованию в канале электрода крупной капли расплава во время горения дуги. В присутствии угольного порошка образуется большое количество мелких капель, в результате чего испарение пробы протекает спокойнее, фракционирование заметно ослабляется, разбрызгивание и выброс пробы уменьшаются. Углерод, будучи энергичным восстановителем, оказывает химическое воздействие на пробу во время горения дуги, восстанавливая исходные соединения до металлов, а с некоторыми из них образует труднолетучие карбиды. Сложные соединения разрушаются, и состав пробы приходит к единым молекулярным формам. [c.75]

    Возможно, что эти соединения играют важную роль в каталитических (кинетических) методах анализа, так как ион металла способствует переносу электрона от лиганда-восстановителя к лиганду-окислителю. Если олраничитыся значением подобных соединений непоаредственно в фотометрическом анализе, необходимо подчеркнуть особую роль рассматриваемого типа комплексов для химии высоковалентных металлов. В качестве примера подробнее можно рассмотреть образование некоторых окрашенных комплексов ниобия и тантала. [c.354]

    К этой же группе тройных комплексов можно отнести ряд соединений, образующихся при взаимодействии некоторых металлов с диметилглиоксимом и оловом (П). Известно, что обычный диметилглиоксимат железа (И) образуется только в аммиачной среде и разлагается при pH < 4. Однако если железо реагирует с диме-тилглиоксиматом в сильно щелочной среде, а в качестве восстановителя вводится хлорид олова (П), тогда характер образующегося комплекса совершенно изменяется. Этот комплекс устойчив к кислотам до pH 1 комплекс можно выделить в свободном состоянии, а из раствора этого комплекса олово лишь очень медленно осаждается сероводородом [80]. Интересно отметить при этом, что само по себе олово не проявляет заметной тенденции к образованию комплексов с диметилглиоксимом. Между тем совместно с железом, а также молибденом [81], рением [82] и другими образуются окрашенные комплексы, которые используются в фотометрическом анализе. Сначала предполагалось, что олово не входит в состав комплексов, а лишь играет роль восстановителя. Однако более подробное исследование показывает, что ни один из многочисленных восстановителей, испытанных в аналогичных условиях, не дает подобного эффекта не образуются подобные окрашенные соединения и в тех случаях, если брать молибден или рений любой низшей валентности, получая их растворы электролитическим восстановлением. Образование тройных соединений в системе диметилглиоксим-ион металла — олово (П) отмечалось рядом исследователей. О строении подобных соединений данные пока отсутствуют. [c.363]

    Необходимо иметь в виду, что при введении в раствор некоторых органических реагентов или других восстановителей платина может выделиться из раствора в виде металла. Значительно труднее, однако, заметить действие таких восстановителей, которые восстанавливают платину (IV) не до металла, а до двухвалентного состояния. Эта реакция не легко выявляется в разбавленных растворах. Но эта же реакция может явиться причиной ошибки в объемном анализе вследствие повышенного расхода восстановителя, если непосредственно но нему вычисляется содержание определяемого элемента в растворе, либо вследствие окисления при последующем титровании окислителем образовавшейся в процессе восстановления платины (II). Это наблюдается, например, при титровании некоторых элементов окислителем после предварительного восстановления их сернистым ангидридом. В этом случае, кроме того, происходит вторичная реакция между платиной (II) и сернистым ангидридом, в результате которой образуются комплексные сульфиты. Эти соединения устойчивы и лишь медленно превращаются в хлориды после удаления избытка сернистого ангидрида из раствора. При оксидиметри-ческом титровании таких растворов дополнительные ошибки возможны за счет окисления сернистого ангидрида, медленно выделяющегося из этих сульфитов, или за счет нег[осредственного окисления группы ЗОд в комплексном соединении платаны. [c.398]

    Окислительно-восстановительное равновесие Pt(IV) ггР1(П) используется в анализе для объемного определения платины. Способность платинитов и платинатов восстанавливаться до металлического состояния сильными восстановителями используется для количественного весового определения платины или для извлечения платины из растворов, содержащих некоторые неблагородные металлы. В качестве восстановителей применяют в этих Случаях водород в момент выделения (цинк, магний, железо в кислой среде), гидразин, гидроксиламин, муравьиную кислоту или формиат натрия, каломель, хлористый хром, хлористый титан, аскорбиновую кислоту и др. [c.13]

    Многие комчлексные аммиакаты растворимы в воде, однако известны и очень плохо растворимые соединения. Связь аммиака с платиновыми металлами очень прочна, поэтому к растворам комплексных аммиакатов не применимы обычные методы определения платиновых металлов. Например, из аммиачных растворов платина не осаждается сероводородом, а органическими восстановителями выделяется лишь частично. Поэтому при анализе никогда не следует вводить в раствор аммиак, в частности, нельзя пользоваться им для нейтрализации растворов. [c.56]

    Метод анализа основан на отделении золота от платины при помощи нитрита натрия и осаждении платины в виде металла восстановителем. Выделенные металлы очищают от примесей других элементов обработкой минеральными кислотами. 1 г сплава растворяют в царской водке U 3), раствор выпаривают до малого объема, разбавляют водой до 200 мл и обрабатывают 50%-щьгм раствором NaN02 (ем. гл. IV, стр. 131). Полученный осадок отфильтровывают на плотный фильтр, наполненный бумажной пульпой. Фильтрат сохраняют для определения платины. Осадок вместе с фильтром обрабатывают H2SO4 (1 5), золото отфильтровывают и промывают горячей водой. При этом гидраты окисей неблагородных металлов переходят в раствор. [c.284]

    СТЫМ водородом или выделяют РЬ(ЫОз)г концентрированной азотной кислотой [817]. Специфичны и не сопровождаются потерями примесей химические реакции восстановления металлов в кислых >астворах. В качестве восстановителя при анализе чистых ртути 1273] и серебра [1274] предложена муравьиная кислота. Серебро при восстановлении его солей образует коллоид, и для полного удаления его из раствора вводят ртуть с целью образования амальгамы. Реакции осаждения труднорастворимых солей сильных неорганических кислот, характерными примерами которых служат выделение Са, Ва [325], Sr [633] и РЪ [331] в виде сульфатов, РЬ в виде РЬС1г [204, 1206] и Bi в виде Bib [333] достаточно избирательны и протекают при значительной концентрации кислоты. Высокоселективное осаждение элементов основы органическими реагентами требует значительных затрат дефицитных реактивов, чистота которых часто не отвечает необходимым требованиям. Методы разделения, включающие осаждение циркония миндальной кислотой [518, стр. 483], молибдена а-бензоиноксимом [329] и никеля диметилглиоксимом [326], из-за небольшой исходной навески являются скорее способами отделения неблагоприятной для спектрального определения основы, чем методами концентрирования. [c.309]

    Хром. В качестве теркостабилизирующей и ингибирующей добавки для сохранения подвижности буровых растворов при высоких забойных температурах используют хроматы и бихроматы щелочных металлов. Хотя добавки их не превышают десятых долей процента, оцейивать содержание токсичного хрома в отходах бурения в некоторых случаях будет необходимо. Хром (VI) в щелочных растворах чаще всего находится в виде хромат-ионов. В присутствии восстановителей шестивалентный хром может перейти в трехвалентный. Поэтому обычно определяют общее содержание хрома в растворе или твердой фазе в зависимости от цели анализа. В справочной литературе для анализа хрома в воде рекомендуются титриметрический метрд определения хрома (VI) с сульфатом железа (II) и колориметрический метод определения с дифенилкарбазидом. Этими же методами определяют и общее содержание хрома в пробе. Содержание хрома (III) устанавливают по разности результатов определения общего и шестивалентнбго хрома. [c.160]


Смотреть страницы где упоминается термин Металлы, анализ восстановители: [c.130]    [c.194]    [c.445]    [c.193]    [c.14]    [c.153]    [c.14]    [c.97]    [c.254]    [c.480]    [c.698]    [c.745]   
Методы аналитической химии Часть 2 (0) -- [ c.63 , c.229 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановитель



© 2025 chem21.info Реклама на сайте