Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний при низких температурах

    Д е г и д р о генизация боковой цепи. Примером этой реакции может служить конверсия этилбензола, получаемого при алкилировании бензола этиленом, до стирола. Реакция протекает в интервале температур от 650 до 700° С или при более низких температурах, а случае применения соответствующих катализаторов. Так, Облад и др. [30] нашли, что в контакте с окисью хрома реакция проходит при 480° С. Во время мировой войны стирол, используемый для получения синтетического каучука, производился главным образом посредством процесса Доу [16] с использованием в качестве катализатора промотиро-ванной карбонатом калия и стабилизированной окисью меди, окиси железа, нанесенной на окись магния. Температура устанавливалась в интервале от 600 до 660° С. Для удаления отложившегося на катализаторе углерода использовался пар в количестве до 2,6 кг на килограмм этилбензола. Реакции дегидрогенизации также способствовало применение бензола в качестве разбавителя или низких давлений. Выходы продукта доходили до 35% за проход, а предельные выходы — порядка 90%. Время действия катализатора — год или больше. [c.107]


    Катализаторы конверсии бензиновых фракций с водяным паром при низких температурах, низком и среднем давлении. Низкотемпературная паровая каталитическая конверсия жидких углеводородов является сравнительно новым способом получения метансодержащего газа — заменителя природного газа (см. табл. 25). Процесс этот осуществляется на активных промотированных никелевых катализаторах с повышенным (до 50%) содержанием никеля при пониженных температурах (320—540° С). В качестве промотирующих добавок используют окислы следующих металлов калия, бария, магния, кальция, стронция, лантана, цезия и др. Иногда процесс проводят при рециркуляции части полученных газов (после освобождения их от двуокиси углерода). Весовое отношение пар углеводород может колебаться в пределах от единицы до шести,, а давление — от близкого к атмосферному до 30 атм. Весовая ско рость подачи жидкого сырья может доходить до 3 ч . [c.41]

    Практически можно получить состав реакционной смеси, близкий к равновесному, используя катализаторы наиболее часто применяют никель (с промоторами — окись магния или алюминия) на инертных носителях (например, каолин), что позволяет проводить реакцию при более низких температурах (650—700 °С) при этом необходим постоянный избыток водяного пара для подавления реакций термического разложения (СН4- С + 2На 2СО- СОа + [c.213]

    Растворенные в воде и находящиеся в виде кристаллов в нефти соли ведут себя различно. Хлористый натрий почти не гидролизуется. Хлористый кальций в соответствующих условиях может гидролизоваться в количестве до 10% с образованием НС1. Хлористый магний гидролизуется на 90%, причем гидролиз протекает и при низких температурах. Поэтому соли могут быть причиной коррозии нефтяной аппаратуры. Гидролиз хлористого магния [c.176]

    Так как прибавление спирта заметно повышает антидетонирующий эффект бензина, спирт вводится в некоторые специальные сорта. Однако смесь большинства бензинов со спиртом расслаивается при низкой температуре. Прибавление высших спиртов (С4, Се, Се и т. д.) действует очень сильно В( смысле понижения температуры расслаивания (до —40° и даже ниже). Поэтому в качестве примеси к бензину, кроме этилового спирта, может присутствовать один или несколько высших спиртов. Исследование такой смеси представляет большие затруднения. Пропиловые и бутиловые спирты едва растворимы в воде и отмываются ею. Но амиловые и высшие образуют с бензиновыми углеводородами нераздельно кипящие смеси. Их можно отделить от углеводородов, переводя спирты В1 двойные соединения с бромистым магнием (Челинцев) или путем окисления, переводя в альдегиды и кислоты. Методика такого рода анализов еще не разработана. [c.136]


    M не реагируют с солями кальция и магния и поэтому обладают высокой моющей способностью в мягкой, жесткой и морской воде они легко дозируются и легко растворяются растворы СМС обладают максимальным моющим действием при более низкой температуре, чем растворы мыла, при этом расход их в 1,5—2 раза меньше. [c.15]

    Наиболее полно исследованы механические свойства в области низких температур конструкционных свариваемых сплавов алюминия с марганцем и магнием. Для сплавов, упрочняемых термообработкой (типа дюралюминия), и сплавов для поковок таких данных значительно меньше. [c.142]

    Но зато при работе на метаноле требуется увеличение объема топливных баков. Больше теплоты нужно подводить во всасывающую систему для испарения топлива, а это значит, что существующие системы для работы на метаноле необходимо переделывать. Постоянная температура кипения метанола затрудняет запуск двигателя при низких температурах, требует применения специальных мер, например, впрыскивания в запускаемый двигатель высоколетучей жидкости (эфира). Метанол разрушает слой полуды в топливных баках, а образующийся при этом гидроксид свинца забивает топливные фильтры и жиклеры карбюраторов. Увеличивается также коррозия двигателя и элементов топливной системы, причем особенно страдают детали из магния, алюминия и их сплавов. Кроме того, в метаноле быстро набухают и теряют герметичность многочисленные прокладки и уплотнения... [c.134]

    Еще более отрицательным действием обладают хлориды. Они откладываются в трубах теплообменников и печей, что приводит к необходимости частой очистки труб, снижает коэффициент теплопередачи. Хлориды, в особенности кальция и магния, гидролизуются с образованием соляной кислоты даже при низких температурах. Под действием соляной кислоты происходит разрушение (коррозия) металла аппаратуры технологических установок. Особенно быстро разъедается под действием гидролизовавшихся хлоридов конденсационно-холодильная аппаратура перегонных установок. Наконец, соли, накапливаясь в остаточных нефтепродуктах— мазуте и гудроне, ухудшают их качество. [c.109]

    Ди-(а-оксиэтил)бензол. Для получения этого соединения применяют обычную методику магнийорганического синтеза с некоторыми видоизменениями. После получения раствора иодистого метилмагния в эфире большую часть эфира отгоняют и прибавляют 600 мл сухого бензола. Нагревают до кипения и прибавляют к кипящей смеси раствор изофталевого альдегида в бензоле. Одновременно с прибавлением раствора изофталевого альдегида в бензоле из реакционной колбы отгоняют бензол с такой скоростью, чтобы объем реакционной смеси оставался постоянным. Разложение и выделение неочищенного продукта реакции проводят обычным образом полученное масло растворяют в эфире. Прибавление петролейного эфира с низкой температурой кипения и охлаждение способствуют кристаллизации 1,3-ди-(а-оксиэтил)бензола. Из 313 г (2,1 моля) иодистого метила, 50 г (2,1 г-атома) магния и 50 г (0,37 моля) изофталевого альдегида получают 25 г неочищенного 1,3-ди-(а-оксиэтил)бензола с т. пл. 90 выход составляет 40% от теорет. В результате перекристаллизации получают вещество с т. пл. 98° [2481. [c.203]

    Прокаливание осадка фосфорнокислого магния-аммония вместе с фильтром почти всегда приводит к образованию пирофосфорнокислого магния, содержащего мельчайшие частички несгоревшего углерода. Они придают осадку сероватый, а иногда черный цвет. Углерод при этом не выгорает даже в случае продолжительного прокаливания при высокой температуре, так как его частички находятся внутри осадка, обволакиваю-,ш,его их снаружи тонкой пленкой. Если сжигать углерод фильтра при возможно более низкой температуре, можно иногда получить осадок почти белого цвета после полного выгорания углерода повышают температуру прокаливания. [c.170]

    Нагревание магния в потоке HsS (скорость 8 см /мин), сначала при 580 С, затем при более низкой температуре (скорость H2S 15 см мин) [c.601]

    Свободный хлор тоже проявляет очень высокую химическую активность, хотя и меньшую, чем фтор. Он непосредственно взаимодействует со всеми простыми веществами, за исключением кислорода, азота и благородных газов. Такие неметаллы, как фосфор, мышьяк, сурьма и кремний, уже при низкой температуре реагируют с хлором при этом выделяется большое количество теплоты. Энергично протекает взаимодействие хлора с активными металлами — натрием, калием, магнием и др. [c.480]

    Зависимость ASf от концентрации электролитов для водных растворов представлена на рис. УП. 10. При 2°С (рис. УП. 10, с) значения ASf положительны, это означает, что структура растворов электролитов менее упорядочена, чем структура чистой воды. Только для хлорида аммония А5Г <0 в области разбавленных растворов соли. При 25°С (рис. VII. 10, б) возрастание концентраций хлоридов натрия, магния и аммония вызывает увеличение АЗх, но меньшее, чем при 2°С. Изотерма ASf= f tn) для хлорида кобальта выглядит зеркальным отображением изотермы, полученной при 2°С. Дело в том, что при низких температурах нарушение льдоподобной структуры воды катионами 0 + превышает упорядочение, вносимое координацией молекул воды этим катионом. При комнатной темпе- [c.418]


    Общие сведения. Цинк, кадмий, ртуть являются последними представителями -переходных элементов в периодах. Это обстоятельство, а также специфика полностью завершенной ( °) орбитали накладывают на химию этих элементов определенные особенности. С одной стороны, они еще похожи на своих предшественников по периоду, с другой — в большей мере, чем другие -элементы, похожи на элементы главной группы (НА). Например, сульфат цинка очень похож на сульфат магния, а его карбонат — на карбонат бериллия. Общими для всех элементов главной и побочной подгрупп второй группы являются близость оптических спектров и сравнительно низкие температуры плавления металлов. С медью, серебром и золотом элементы подгруппы цинка роднит следующее. Как и элементы подгруппы меди, они дают комплексы с МНз, галогенид- и цианид-ионами (особенно 2п и С(1). Из-за сильного эффекта взаимной поляризации их оксиды окрашены, достаточно непрочны. Электрохимические свойства в ряду 2п—Сё—Нд изменяются аналогично их изменению в ряду Си—Ад—Аи. Они легко дают сплавы. [c.555]

    Для отливки решеток и других деталей применяют сплавы свинца с сурьмой с содержанием последней от 4 до 8%. Сплавы РЬ—5Ь хорошо заполняют форму, обладают достаточной прочностью и твердостью, плавятся при более низких температурах, чем свинец. Однако эти сплавы имеют меньшую чем свинец электропроводность, и на сурьме перенапряжение для выделения водорода значительно ниже, чем на свинце. Иногда к сплавам добавляют серебро или мышьяк. Следует учесть, что хотя серебро повышает коррозионную стойкость сплава, но, так как водород выделяется на серебре с меньшим перенапряжением, чем на свинце, то попадание серебра на отрицательный электрод увеличивает саморазряд аккумуляторов. Применение добавки мышьяка для повышения коррозионной стойкости поэтому более перспективно. Важна высокая чистота применяемых свинца и сурьмы. Вредными являются примеси цинка, висмута, магния и другие, снижающие перенапряжение для выделения водорода и коррозионную стойкость сплава. [c.497]

    Электродвижущая сила первой системы около 1,8 в, второй 1,5—1,7 в и последней около 1,1 в. Эти элементы имеют хорошие удельные характеристики. Они приводятся в действие путем заполнения водой и благодаря разогреванию, происходящему от взаимодействия магния с водой, могут работать при низких температурах окружающей среды. [c.562]

    Равновесие смещается в нужном направлении, так как температура кипения магния низкая (табл. 11.3) и он в парообразном состоянии уходит из системы, конденсируясь при быстром охлаждении  [c.297]

    Нитридный метод. Галлий с азотом не реагирует даже при очень высокой температуре, с аммиаком же образует нитрид только при 900° С. В то же время щелочные и щелочноземельные металлы, железо, алюминий и другие примеси реагируют с азотом или аммиаком при более низкой температуре. Нитриды меди, цинка и кадмия образуются с трудом и легко разлагаются. Рафинируют галлий аммиаком или смесью аммиака с азотом. Мелкие галлиевые капельки пропускают через вертикальную трубу, нагретую до 800°. Этим самым избегают соприкосновения галлия с горячими стенками сосуда. Цикл очистки повторяют 15 —20 раз. При этом достигается высокая степень очистки от примесей железа, титана, алюминия, в меньшей степени от магния, цинка и т. д. Эти примеси накапливаются в нитридном шлаке и в налете на стенках реакционного сосуда [122]. [c.268]

    На рис. 81 (аО° отнесены к молю С1г) можно видеть, что при сравнительно низкой температуре протекают реакции восстановления хлоридов титана магнием до элементарного титана. С повышением температуры доминирующее значение приобретают реакции образования [c.270]

    Равновесие смещается в нужном направлении, так как температура кипения магния низкая (табл. 60) и он в парообразном состоянии [c.309]

    Восстановление тетрахлорида титана натрием. Натрий как восстановитель имеет ряд преимуществ перед магнием 1) он более активен, вследствие чего степень его использования достигает 98—99,5% при большей скорости реакции и более низкой температуре 2) чистый натрий проще получать, чем магний низкая температура плавления (97,8°) упрощает его подачу в реактор 3) образующийся при восстановлении Na l не гидролизуется в водных растворах, и реакционную [c.271]

    Применение некоторых катализаторов значительно ускоряет процесс сернокислотной гидратации. Для этой цели используются соли железа, кобальта, никеля, меди, платины, серебра [41, 42], а также соединения висмута [43, 44]. Сульфат серебра [45, 46] и соли меди [47—49] сильно ускоряют гидролиз сложных эфиров серной кпслоты. Рекомендуется применять в качестве катализаторов галогениды бора пли бораты в соединении с сульфатами никеля и других тяжелых металлов [50]. Необходимые для этого реакционные условия определены Поповым [51]. При высоком давлении и высокой температуре каталитическое действие проявляют сульфаты органических оснований, например изопроииламина, анилина, наф-ти.талшна, хинолнна [52], а также сульфаты и галогениды цинка, магния, бериллия [53] и алюминия [54]. Соли алюминия обладают каталитическим действием при высоком давлении и низких температурах в водном растворе. Наконец, следует упомянуть еще кремневую или борвольфрамовую кислоту и их соли [55], однако процессы с их участием протекают прн 200—300 °С под давлением уже, в газообразной фа.зе. [c.60]

    V. Синтез 1,3-дифенил-2 метилпропана. Приготовляется реактив Гриньяра из очищениого хлористого бензила и магния. Особое внимание при получентг реактива Гриньяра из галогенидов аллильного типа должно уделяться соблюдению таких условий проведения реакции, как работа в разбавленном растворе, наличие избытка магния и поддержание низкой температуры в противном случае образующийся реактив Гриньяра вступает во взаимодействие с аллилгалогенидом. [c.512]

    Опыты К. В. Харичкова доказали, что образование нефтеподобных углеводородов из чугуна может происходить при сравнительно низкой температуре, именно при обработке чугуна на водяной бане растворами хлористого магния и поваренной соли или просто поваренной соли, но в присутствии углекислоты. В результате опыта получались маслянистые продукты, состоящие главным образом из ненасыщенных углеводородов, растворявшихся нацело в серной кислоте [ ]. [c.302]

    Алюмомагнийсиликатные катализаторы, синтезированные из менее концентрированных золей, обладают более высокой каталитической активностью, чем соответствуюп ие алюмосиликатные. Они способствуют образованию бензинов, содержащих сравнительно мало непредельных углеводородов и имеющих низкую температуру начала кипения. По мере повышения концентрации гелеобразующих растворов первоначальные активность и стабильность катализатора увеличиваются, но но достижении определенного значения начинают падать. Чем концентрированнее гелеобразующие растворы жидкого стекла и подкисленного сернокислого магния, тем тонкопористее катализаторы. Катализаторы, обладающие весьма развитой тонкопористой структурой, почти лишены переходных и крупных пор, они имеют достаточную первоначальную активность и паротермостабильность. Но после обработки паром у таких катализаторов наблюдается большое падение активности, что объясняется более тонкими и менее прочными стенками нор, которые под влиянием высокотемпературного водяного пара сжимаются и разрушаются. [c.93]

    Скелетные катализаторы, пли катализаторы Ренея, получают сплавлением активного металла, например никеля, кобальта, меди, с алюминием нли магнием, а затем последние удаляют выщелачиванием. В результате этого получаются активные, чуть ли не атомарно-дисперсные металлы. Так называемый никель Ренея весьма активен, но недостаточно селективен, очень чувствителен к термической дезактивации и химическому отравлению. Однако это не препятствует его широкому применению при гидрировании жидких растительных масел в твердые пищевые жиры, когда крайне важна способность частиц никеля оседать из продуктов гидрирования. Другой привлекательной чертой скелетных катализаторов является возможность их активации при низких температурах в простых аппаратах без отдельной установки для восстановления и даже без самой стадии вос-сгановленпя. Таким образом исключаются операции восстановления и стабилизации катализатора, что упрощает технологию. [c.110]

    Сплавы алюминия с марганцем и магнием (типа АМЦ, АМГ) хорошо деформируются и свариваются дуговой сваркой в среде аргона или автоматической сваркой по флюсу. Алюминиевые сплавы, обладающие большей прочностью, такие, как АМГ5В и АМГ6, обрабатываются несколько труднее, но могут использоваться при изготовлении аппаратов, работающих под давлением, вместо дефицитных меди и латуни, при этом значительно уменьшаются вес изделий и их стоимость. Свойства некоторых алюминиевых сплавов при низких температурах приведены в табл. 21. [c.142]

    Легирование алюминия магнием увеличивает склонность сплава к КРН, особенно, если содержание Mg превышает 4,5 %. Для ослабления воздействия, по-видимому, необходимо проводить медленное охлаждение (50 °С/ч) сплава от температуры гомогенизации, чтобы произошла коагуляция Р-фазы (AlgMga) последний процесс ускоряется при введении в сплав 0,2 % Сг [29]. Эделеану [30] показал, что катодная защита приостанавливает рост трещин, которые уже возникли в сплаве при погружении в 3 % раствор Na l. При старении сплава при низких температурах максимальная склонность к КРН отмечалась перед тем, как была достигнута наивысшая твердость. Эти данные аналогичны приведенным выше для дуралюмина. Поэтому Эделеану предположил, что склонный к КРН металл вдоль границ зерен не является равновесной р-фазой, ответственной за твердость сплава. По его мнению, склонность к КРН в области границ зерен связана с сегрегацией атомов магния, и этот процесс предшествует образованию интерметаллического соединения. По мере старения склонность к КРН уменьшается, так как выделение Р-фазы в области границ зерен идет с потреблением металла, содержащего сегрегированные атомы магния. Сходным образом, вероятно, можно объяснить поведение сплавов алюминия-с медью. [c.353]

    Последние реагируют с магнием, образуя магннйорганические соединения Fз( F2),t MgJ, способные к многообразным дальнейшим превращениям. При комнатной температуре СРзЛ не образует устойчивого реактива Гриньяра, но образует его при низких температурах с помощью соединения FзMgJ можно проводить ряд обычных реакций. [c.104]

    Водорастворимые соли, преимущественно хлористые, ведут себя по-разному Хлористый натрий (Na l) практически не гидролизуется. Хлористый кальций ( a lj) подвержен гидролизу с образованием НС1 максимум на 10%. Зато хлористый магний (Mg l,) гидролизуется на 90% даже при низких температурах по реакции  [c.32]

    Химия бериллия, соединения которого в основном ковалентны (разд. 36.7.2), очень напоминает химию алюминия (диагональное сходство)..С другой стороны, меньшие различия ионных радиусов кальция, стронция и бария очень часто обусловливают -общность реакций этих элементов. Меньший радиус иона Mg2+ -служит, например, причиной значительной растворимости сульфата (большая энергия гидратации иона Mg +), малой растворимости гидроксида (деформация поляризуемого иона ОН ) ж низкой температуры разложения карбоната магния по срав-ьяению с карбонатами кальция, стронция и бария (сильная де- [c.600]

    Для получения нитридов наиболее пригоден аммиак, который nqpeA азотом имеет некоторые преимущества. В молекуле аммиака химическая связь непрочная, и при нагревании наблюдается его разложение, которое ускоряется на поверхности металлов. Выделяющийся атомный азот активен, поэтому реакции образования нитридов идут при более низких температурах, по сравнению с реакциями, идущими с азотом. Атомный BOAqpoA восстанавливает оксидные пленки на металлах, которые ме-щают получению чистых нитридов. Небольшое количество кислорода или паров воды в аммиаке не мешает получению чистых нитридов, если исходные металлы (медь, железо, кобальт, никель и т. д.) не обладают большой активностью к кислороду. Активные металлы (магний, кальций, алюминий и т. д.) соединяются даже со следами кислорода, поэтому нитриды загрязняются оксидами. Если при нитровании использовать азот, то следы кислорода или паров воды будут переводить металлы или неметаллы в оксиды даже при небольшом сродстве к кислороду. Для получения нитридов с использованием аммиака применяют установку, изображенную на рисунке 19. [c.50]

    Диссоциация карбоната магния. Исследования процесса диссоциации Mg Os связаны с трудностями. Так, известно, что при осаждении карбоната магния из водных растворов образуется трехводный гидрат. Обезводить последний весьма сложно. Даже многочасовая сушка при 240°С не гарантирует полного удаления Н2О. Вероятно, в связн с этим были зафиксированы весьма низкие температуры разложения (373—483°С для />со, = 0,1 МПа). Более надежные результаты были установлены при исследовании Mg Os, полученного нагреванием гидрата в автоклаве при рсо, =2 МПа. [c.205]

    На получение реактивов Гриньяра оказывает влияние наличие в галогениде других функциональных групп. Так, в молекуле могут присутствовать группы, содержащие активный водород (см. описание реакции 12-22), например группы ОН, NH2 и СООН, но чтобы мог образоваться реактив Гриньяра, эти группы должны быть способны превращаться в соответствующие соли (0 , ЫН- и С00 ). Такие группы, как С = 0, С = Н, N02, СООК и др., способные взаимодействовать с реактивами Гриньяра, полностью предотвращают их образование. Как правило, к функциональным группам, наличие которых в молекуле галогенида не мешает реакции, относятся только двойные п тройные связи (за исключением концевых тройных связей), а также группы ОК и МКг. Однако р-галогеносодержащие простые эфиры при обработке магнием дают обычно продукты р-элиминирования (см. т. 4, реакцию 17-31), а а-галогеносодер-жащие простые эфиры [323] могут образовывать реактивы Гриньяра только при низких температурах в тетрагидрофуране или метилале, например [324]  [c.465]

    Металлический галлий — голубовато-белый металл. Имееет удивительно низкую температуру плавления — всего +29,78°С, в то время как температура его кипения равна 2237°С. Благодаря этой особенности галлий применяют для изготовления высокотемпературных термометров. Другая интересная особенность этого металла — способность его образовать сплавы со многими другими металлами — магнием, алюминием, свинцом, висмутом, цинком, индием, оловом, таллием, кадмием и др., имеющими низкие температуры плавления. Соединения галлия с мышьяком, сурьмой, фосфором являются полупроводниками. Их применяют в производстве транзисторов и солнечных батарей. [c.159]

    Получение и свойства. Строение кристаллических решеток. Получают эти металлы обычно электролизом расплавленных хлоридов, магний — также восстановлением оксида MgO углем в электрических печах и другими способами. Барий чаще всего получают алюминотермическим способом. Бериллий, магний и при высокой температуре кальций образуют кристаллы с гексагональной плотной упаковкой, а стронций и при низкой температуре кальций имеют кубическую гранецентрированную решетку. Для бария характерна объемноцентриро-ванная упаковка. Это различие решеток играет некоторую роль в нарушении закономерности различий плотности, температур плавления и других физических свойств. Атомы их, кроме бериллия, теряют два электрона, превращаясь в ионыЭ . Но их восстановительная способность слабее, чем у щелочных металлов. [c.275]

    Из графической зависимости изобарно-изотермического потенциала реакций восстановления RbHal иСзНа[ от температуры (рис. 22) видно, что получение Rb и s при взаимодействии их хлоридов с кальцием и фторидов с магнием и кальцием термодинамически наиболее вероятно вследствие больших отрицательных значений Д2 . Поэтому его можно осуществить при относительно низкой температуре. Однако MeF ввиду их большой гигроскопичности применять неудобно. [c.154]

    Фторид бериллия = 1327°) позволяет вести процесс с получением расплавленного бериллия, образующего корольки металла. Из восстановителей наиболее подходит магний, так как щелочные металлы, например Na, обладают низкой температурой кипения кроме того, NaF — растворимое соединение, что затрудняет извлечение остатков BeFa из шлака. Выше уже говорилось, что кальций дает с бериллием соединение aBeia и, кроме того, как товарный продукт он дороже магния и более загрязнен. [c.209]

    Закономерности строения кристаллов лантаноидов удобно проследить с помощью табл. 10. Все лантаноиды, изученные при температурах, близких к плавлению, имеют ОЦК структуру. Для прометия, эрбия и тулия надежных данных пока еще нет. У европия, расположенного в центре группы лантаноидов, ОЦК структура устойчива, по-видимому, во всей области существования твердой фазы. У остальных лантаноидов при низких температурах устойчивы фазы, имеющие плотные упаковки атомов с координационным числом 12. Лантаноиды подгруппы церия, за исключением самария и европия, при низких температурах имеют плотные упаковки атомов типа а-лантана (АВАСАВ) (Се, Рг, N(1, Рт). У церия, подобно лантану, переход от гексагональной плотной к ОЦК упаковке происходит через ГЦК упаковку атомов. а-Самарий имеет специфическую ромбоэдрическую упаковку с расположением слоев АВАВСАСВС. У лантаноидов подгруппб иттрия (Оё, ТЬ, Оу, Но, Ег, Тт и Ьи) низкотемпературная модификация имеет плотную гексагональную упаковку типа магния (АВАВ). Только у ттербия низкотемпературная фаза обладает гранецентрированной кубической упаковкой. [c.184]


Смотреть страницы где упоминается термин Магний при низких температурах: [c.417]    [c.143]    [c.74]    [c.379]    [c.176]    [c.661]    [c.601]    [c.165]    [c.166]    [c.280]   
Люминесцентный анализ неорганических веществ (1966) -- [ c.153 ]




ПОИСК







© 2025 chem21.info Реклама на сайте