Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворители для полимеризации бутадиена

    Бутадиен-нитрильный каучук получают при совместной полимеризации бутадиена-1,3 СН2=СН—СН=СН2 и нитрила акриловой кислоты СН2=СН—С=Ы. Этот каучук имеет хорошие физико-химические свойства, устойчив к действию неполярных растворителей, отличается маслостойкостью. [c.317]

    Таким образом, необходимо наличие в металлируемом соединении достаточно подвижного водорода. Растворители эфирного типа значительно облегчают реакцию переноса цепи и, кроме того, сами часто являются объектами металлирования, что служит еще одним доводом к отказу от использования их в процессах получения жидких каучуков методом каталитической полимеризации. Однако в некоторых случаях перенос активного центра возможен также в среде неполярных растворителей. Так, эффективный перенос цепи осуществляется при синтезе бутадиен-стирольных жидких каучуков, если процесс проводят в толуоле в присутствии алкоголятов калия, в качестве добавок сближающих константы сополимеризации. При исследовании кинетики полимеризации 1,3-пентадиена было показано, что если полимеризация транс-формы мономера подчиняется закономерностям полимеризации с литийорганическими соединениями, то цас-форма ведет себя иначе во всех растворителях эффективный перенос на мономер обусловливает расширение молекулярно-массового распределения и получение полимера с молекулярной массой более низкой, чем расчетная [17], [c.418]


    При полимеризации в растворе существенно облегчается отвод теплоты из реакционных объемов, перемешивание и транспортирование продуктов реакции, возможность организации непрерывного лроизводства и автоматизации управления им. Для полимеризации углеводородов и их производных (этилен, бутадиен и их производные) в качестве растворителей используются гексан, гептан, бензин, толуол, циклогексан и другие углеводороды. Очистка растворителей и реагентов от влаги и кислорода осуществляется осушением и проведением процесса в среде инертных газов. Концентрация мономера в растворе не должна превышать 20%, чтобы избежать роста вязкости системы. Для сокращения расхода растворителя его регенерируют после проведения процесса полимеризации. В образующемся полимере необходимо дезактивировать (или удалять) катализатор, так как он ухудшает свойства полимера и изделий из него (устойчивость к старению, действию химических сред и др.). [c.82]

    Медный раствор поглощает также бутадиен-1,2 и углеводороды Сз и С4 ацетиленового ряда. Последние растворимы в нем лучше бутадиена-1,3, накапливаются в растворителе и отходят вместе с бутадиеном, способность к полимеризации которого они сильно понижают. С другой стороны, ацети-лид меди легко детонирует и, кроме того, в результате реакций полимеризации образует соединения, действующие как эмульгаторы. Поэтому ацетилены должны быть удалены, что может быть сделано путем нагрева медного раствора после выделения из него бутадиена. При этом образуются продукты полимеризации, которые в последующем удаляют фильтрацией или промывкой. [c.89]

    Бутилены. Основным применением бутиленов является переработка их при помощи алкилпрования и полимеризации в компоненты моторных топлив. Из бутиленов получают также растворители. Значительная часть бутиленов перерабатывается в бутадиен. Из бутилена получают вторичный бутиловый спирт и метил- [c.78]

    Структура образующегося полимера зависит от целого ряда факторов, к числу наиболее важных относятся соотношение компонентов в катализаторе, температура реакции, природа растворителя. Кроме того, следует помнить, что даже в присутствии одних и тех же катализаторов полимеризация бутадиена и изопрена может привести к образованию продуктов различной конфигурации. В табл.2 приведен ряд данных, характеризующих влияние состава каталитических систем на структуру продуктов полимеризации. Причиной наблюдаемых отклонений, вероятно, являются различия в конфигурациях самих мономеров. Так, при комнатной температуре бутадиен приблизительно на 96% состоит из транс-изомера, в то время как изопрен при 50°С приблизительно на 85% состоит из г<мс-изомера /28/. Следует отметить, что катализаторы, под действием которых происходит образование продуктов, отличающихся [c.127]


    Получение. Бутадиен полимеризуют в растворителях— бензоле, толуоле и др. углеводородах. В зависимости от растворимости катализатора в шихте процесс носит гетерогенный или гомогенный характер. О механизме стереоспецифич. полимеризации бутадиена см. Диенов полимеризация. [c.160]

    Величины Га и гв определяют состав макромолекул сополимера в большей мере, чем соотношение мономеров в исходной реакционной смеси. Например, в паре винилацетат (А) — стирол (В) константы сополимеризации составляют га = 0,01, гв = 55. Это означает, что при получении сополимера полимеризацией в массе и растворителе макромолекулы содержат существенно больше звеньев стирола, чем винилацетата. Если относительные активности сомономеров отличаются между собой незначительно, то каждый радикал с равной вероятностью взаимодействует как со своим , так и с чужим мономером. Включение мономеров в цепь при этом носит случайный характер, и образуется статистический сополимер. Такую сополимеризацию называют идеальной.. Примером системы, близкой к идеальной, является пара бутадиен-стирол. [c.55]

    Более экономичным процессом извлечения газообразных и летучих мономеров является способ обработки их при температуре от -10 до +50°С и атмосферном давлении жидкостями, с которыми они вступают в реакцию. Для этого чаще всего используют сомономеры стирол, сложные эфиры монокарбоновых кислот или общеизвестные растворители. Обработку ведут непосредственно в питающей емкости. При заполнении ее, например, стиролом давление газовой смеси возрастает, остаточный бутадиен поглощается, полученный раствор используют в качестве питания для последующей полимеризации. [c.41]

    Каучукоподобные пластические массы приготовляются полимеризацией 2-галоид-1,3- бутадиенов в присутствии воздуха, кислорода, света, нагреванием, участием катализаторов (перекиси бензоила, перекисей натрия, свинца и.ли водорода или окисленного скипидара). Можно пользоваться повышенным давлением з . Полимеризацией можно управлять прибавлением растворителей или веществ, препятствующих полимеризации (т. е. фенолов, хинонов, аминов, нитросоединений или меркаптанов). Получающиеся продукты вулканизуются при 50—180  [c.691]

    Изопрен полимеризуется в присутствии катионных катализаторов легче, чем бутадиен, однако в поведении обоих мономеров наблюдается много общего. Так, чистый изопрен под действием хлористого алюминия полимеризуется с трудом [9], тогда как в хлорированных растворителях полимеризация происходит быстро. Подобным же образом с хлорным оловом в качестве катализатора чистый изопрен полимеризуется только при температурах выше 0°, в то время как в хлористом этиле быстрая полимеризация происходит при —80° [10]. В отличие от этого бутадиен в хлористом этиле может быть заполимеризован с этим катализатором только при значительно более высоких температурах (около 20°) [11]. Активность хлористого алюминия сильно возрастает, если он присутствует в виде растворимого комплекса. В качестве комплексообразующих реагентов использовались пентен-2, триметилэтилен, нитробензол и этилацетат [12] эти соединения вызывают увеличение концентрации инициатора и могут действовать как сокатализаторы. Считают, что первый из них участвует в полимеризации, увеличивая количество действующего катализатора, что приводит к увеличению скорости полимеризации и уменьшению молекулярного веса. Однако нет веского доказательства того, что олефин не сополимеризуется с изопреном, хотя он определенно сополимеризуется с пропиленом [13] и, вероятно, с триметилэтиленом [14] влияние этих соединений следовало бы исследовать заново. Было найдено, что алкилалюмннийгалогеннды полимеризуют изопрен [15] (а также бутадиен и диметилбутадиен) только в присутствии хлористого водорода или воды в качестве сокатализаторов. Действие алкил-алюмннийгалогенидов, по-видимому, в качестве катионных катализаторов представляет интерес, так как они могут также действовать как анионные инициаторы путем реакции по связи алюминий — углерод (см. гл. 3, разд. VI). [c.301]

    Полимеризация простых диенов (бутадиен, изопрен) может инициироваться радикалами или протекать по монному механизму. Полимеризация в растворителях в промышленности вытеснена эмульсионной радикальной полимеризацией. В качестве инициаторов, вызывающих образование свободных радикалов, применяются в первую очередь перекиси (в частности, персульфаты щелочных металлов), затем ароматические диазоэфиры, алифатические азосоедкиения и т. д. находят применение также щелочные металлы (литий, натрий, калий) и комплексные соли Циглера. [c.953]

    Подобно другим олефинам, бутадиен в присутствии воздуха легко окисляется этому способствует контакт с железом, особенно ржавым, а также с некоторыми другими поливалентными металлами. При отсутствии влаги бутадиен коррозии металлов не вызывает, однако некоторые металлы и продукты их коррозии оказывают на бутадиен полимеризующее действие (табл. 9.1). Самопроизвольная полимеризация бутадиена при соприкосновении его с отдельными металлами проявляется, как правило, при температурах выше 60° С. В результате может образоваться так называемый губчатый полимер или термополимер. Нагретый газообразный бутадиен способствует быстрому росту отложившегося на стенках аппаратов и коммуникаций губчатого термополимера. Во многих случаях это пр водит не только к закупориванию, но и к разрыву труб. К металлам, не вызывающим образования и роста губчатого полимера относится медь. Возможно, медь ингибирует процесс самопроизвольной полимеризации бутадиена. Однако на заводах, получающих бутадиен по способу Лебедева, медь вследствие ее дефицитности очень редко применяется для изготовления трубопроводов и аппаратуры. На резины, пластики и лакокрасочные материалы жидкий бутадиен действует как слабый органический неполярный растворитель. [c.162]


    Пользуясь идеями и методами, уже описанными при рассмотрении двухкомпонентных систем, легко подойти к решению проблемы сополимеризации в многокомпонентных системах. Однако, как будет показано, полимеризация в многокомпонентных системах, особенно в тройных, дает такую информацию о реакционной способности определенных классов мономеров, которую нельзя получить другим путем. Более того, в течение последнего десятилетия сильно возросло промышленное значение полимеризации в многокомпонентных системах. Были развиты представления, согласно которым основные свойства материала, такие, как термостойкость, предел прочности при растяжении, эластичность, прозрачность, стойкость к действию растворителей и стабильность формы, определяются правильным выбором двух главных компонентов, а некоторые особые качества, например способность к вулканизации, окрашиваемость, реологические свойства, скорость стенания статических зарядов, ионообменные свойства задаются природой третьего сомономера. В соответствии с этим в качестве третьего компонента при получении сополимеров обычно используют глицидилметакрилат, 2-винилпиридин, акрил-амид, дивинилбензол, циклопентадиен, бутадиен и акриловую кислоту. [c.35]

    Полимеризация при помощи металлического Na проводится при низкой температуре металлом действуют на жидкий или растворенный бутадиен 5. Растворителями служат индиферентные вещества. Натрий применяют в виде проволоки, порошка, в смеси с РегОз или MgO, в виде пасты, в виде тонкого слоя, нанесенного на железную проволоку или на железный лист. Целесообразно проводить процесс в среде инертного газа, например Na или Н2, но не СО2, в присутствии которой получают технически малоценные продукты . [c.138]

    В 19612 г. фирма Ameripol In . перевела на производство полибута-диена одну из трех производственных линий (мощностью 15,2 тыс. т1год) завода БСК в г. Инститьют 45]. Из старого оборудования на заводе используются полимеризаторы (поскольку температура и давление полимеризации мало отличаются от температуры и давления полимеризации бутадиен-стирольного каучука), насосы, резервуары и упаковочные машины. Наибольшую технологическую трудность представляет сушка и удаление катализатора, а также регенерация растворителя. Получаемый полибутадиен содержит 98% г ис-изомера. Конверсия при полимеризации составляет 80%, содержание сухого вещества в полимеризаци-онном растворе —15%. [c.474]

    Процесс получения бутадиенового каучука СКД состоит из следующих стадий осушка растворителя приготовление бутадиен-толуольной шихты полимеризация, стопперирование, стабилизация и усреднение полимеризата дегазация полимеризата выделение, сушка и упаковка каучука. Вспомогательными операциями являются приготовление растворов стоппера и стабилизатора регенерация возвратных продуктов. [c.140]

    КАУЧУК СИНТЕТИЧЕСКИЙ (СК)-высокополимерный каучукоподобный материал, получаемый полимеризацией и сополимеризацией различных непредельных соединений (бутадиен, стирол, изопрен, хлоропрен, изобутилен, нитрил акриловой кислоты) или поликонденсацией соответствующих бифункциональных производных углеводородов. Подобно И К К. с. имеет длинные макромолекулярные цепи, иногда разветвленные, со средней молекулярной массой, равной сотням тысяч, иногда миллионам. Полимерные цепи К. с. в большинстве случаев имеют двойные связи, благодаря которым при вулканизации образуется пространственная сетка, обусловливающая характерные для резины физико-механические свойства. Некоторые виды К. с. (напр., полиизо-бутиленовый, силиконовый и др.) — полностью предельные соединения, вулканизуются в присутствии органических пероксидов, аминов и др. По техническим свойствам некоторые К. с. значительно превосходят НК, но в отличие от НК в К с. при переработке требуется вводить специальные активные наполнители (сажу, активную кремнекис-лоту, оксид алюминия, каолин, мел и др.), усиливающие механическую прочность вулканизаторов. К. с. применяют для изготовления резин, резиновых изделий, автошин, транспортных лент, обуви, изделий для работы с органическими растворителями и др. [c.123]

    Содержание влаги в бутадиене и растворителе не должно превышать 10 МЛН . Исходная концентрация бутадиена в растворе определяется необходимостью отвода тепла, выделяющегося при полимеризации (1512 кДж/кг), и возможностью транспортирования высоковязкого раствора полимера по технологическим коммуникациям. При использовании ароматических растворителей концентрация бутадиена в шихте обычно составляет 10—12% (масс.), в алифатических углеводородах она может быть несколько выше, так как вязкость растворов полибутаднена в термодинамически плохих растворителях ниже. Смешение бутадиена с растворителем осуществляется непрерывным способом. Полученная шихта охлаждается до температуры —15 Ч--20°С, что позволяет компенсировать 40—50% выделяющегося тепла. [c.184]

    Правило антибатности, имеющее в своей основе термодинамич. природу, в общем сохраняет силу и в анионной полимеризации (более активным мономерам соответствуют активные центры с меньшей реакционной способностью). Однако, в отличие от радикальной иолимеризации, в анионной природа залхестителя, как правило, больше влияет на активность мономера, чем карбаниона, поэтому болео активные мономеры обычно гомополимеризуются также с большей скоростью (сказанное относится, как отмечено выше, к С. в полярных растворителях). В указанных условиях ряд активности моно,меров имеет вид этилен изопрен<бутадиен< <стирол<метилметакрилат<акрилонитрил. Эти данные показывают, что, меняя ирироду среды при одном и том же инициаторе или инициатор в одном и том же растворителе, можно получить сополимеры, отличающиеся друг от друга по составу не меньше, чем от радикального или катионного сополимера. [c.228]

    При полимеризации на литийалкилах в неполярных средах температура реакции хотя и влияет на структуру полибутаднена [38], но в пределах 40—80 °С это влияние незначительно (увеличение содержания 1,2-звеньев на 1 —1,5%), поэтому процесс синтеза можно проводить при повышенных температурах до 70—80 °С, что также способствует снижению вязкости раствора и улучшению теплообмена. Несомненно, в большей степени на образование 1,2-звеньев влияют микропримеси, содержащиеся в товарном бутадиене, и применяемый растворитель. [c.276]

    Этилен СНа = СН2, пропилеи СНз—СН = СНг, бутилен СНз—СНг—СН = СНг, бутадиен (дивинил) СНг = СН—СН = СН2, будучи очень реакционноспособными соединениями, играют важную роль в промышленности органического синтеза. Из многочисленных реакций, в которые вступают олефины, наибольшее практическое значение имеют процессы полимеризации (полиэтилен, полипропилен, полиизобутилен и др.), гидратации (спирты), хлорирования (дихлорэтан, хлористый аллил и т. п.), окисления (окись этилена), оксосинтеза и некоторые другие реакции. Широкое распространение получили процессы гидратации олефиновых углеводородов. Таким способом получаются этиловый, изопропиловый и другие спирты. Этиловый спирт по объему производства занимает первое место среди всех других органических продуктов. С каждым годом спирт, получаемый из пишевого сырья, все более и более заменяется синтетическим, гидролизным и сульфитным (см. с. 205) синтетический спирт из этилена в несколько раз дешевле пишевого и требует меньших затрат труда. Синтетический спирт широко применяется в различных отраслях промышленности для получения синтетического каучука, целлулоида, ацеталь-дегида, уксусной кислоты, искусственного шелка, лекарственных соединений, душистых веществ, бездымного пороха, бутадиена, инсектицидов, в качестве растворителя и т. п. [c.169]

    Степень регулярности (содержание 1,4-звеньев), физико-механические и технологические свойства полнбутадиена зависят в основном от природы и соотношения компонентов комплексного катализатора, концентрации катализатора в по-лимеризационной шихте, содержания нежелательных примесей в бутадиене, растворителе и шихте, концентрации мономера в шихте и температуры полимеризации. [c.168]

    Привитые и блоксополимеры на основе В. или поливинилхлорида, в зависимости от природы второго компонента, характеризуются различными свойствами а) негорючестью (полистирол, поли-метилметакрилат, триаллилфосфат) б) высокими физи-ко-мехапич. свойствами (простые или сложные аллиловые или метакриловые эфиры, напр, диалкилфталат, диаллилмалеинат, триаллилцианурат) в) повышенной растворимостью в органич. растворителях, что особенно важно при формовании из сополимеров пленок и волокон (акриламиды) г) высокой гибкостью и эластичностью (полиакрилаты) д) высокой ударной вязкостью и низким водопоглощением (каучуки) е) высокой адгезией (пиперилен, бутадиен, изопрен, акрилонитрил, бу-тилакрплат). Волокна с хорошей накрашиваемостью получают при полимеризации 4-винилпиридина в р-ре сополимера В. с винилацетатом в метилэтилкетоне при 70 °С. Прививкой прризводных акролеина или моноокиси бутадиена на поливинилхлорид или статистич. сополимеры В. в среде кетонов, ароматич или галогенсодержащих углеводородов получены привитые сополимеры, обладающие клеющими свойствами. Выпуск сонолпморов на основе В., в тем числе и с винилиденхлоридом (см. Винилиденхлорида сополимеры), составляет 4—7% от общего количества выпускаемых полимерных продуктов на основе В., включая и поливинилхлорид (см. Винилхлорида полимеры). Наблюдается тенденция к постоянному увеличению производства сополимеров винилхлорида. [c.228]

    Полиметакриловую кислоту получают радикальной полимеризацией в массе, в растворах органических растворителей, но чаще в водных растворах. Соли полиметакриловой кислоты применяют как эмульгаторы. Сополимеры метакриловой кислоты с бутадиеном, винилацетатом, а также тройные сополимеры со стиролом и метилметакрилатом используют в качестве клеев. Метакриловая кислота используется также как сомономер при получении каучуков, органических стекол, ионообменных смол. [c.138]

    Недавно получил распространение сополимер бутадиена и стирола (СбНз-СН СНа), так называемый буна-8 , отличающийся высокой устойчивостью в отношении истирания и тепла и особенно подходящий для производства шин. Бутадиен сополимеризует-ся также с акрплнптрилом, СНз = СН — С = N, в водной эмульсии, образуя синтетический латекс, из которого получается бу -на-М , или пербунан . Продукты этого рода имеются разного качества, повидимому, различающиеся по соотношению мономеров, а мон< ет быть, и по механизму полимеризации. Они обладают высоким сопротивлением на истирание, теплостойкостью, устойчивы в отношении растворителе , медленно стареют, но плохо вальцуются вследствие твердости и обладают низким сопротивлением на разрыв. Однако при введении сажи сопротивление возрастает до значений, нревосходяпщх сопротивление на разрыв каучука. [c.444]

    Диеновые и ацетиленовые углеводороды, а также некоторые органические растворители при получении, хранении и использовании способны окисляться с образованием перекисных, гидроперекис-вых и полимерных соединений. Например, бутадиен может полимеризоваться с образованием высокомолекулярных пластических продуктов. Изопрено-изобутиленовая фракция также образует при некоторых условиях аналогичные полимеры. Полимеризация такого рода возможна и для других углеводородов. При осуществлении некоторых процессов образуются побочные высокомолекулярные продукты, которые при дальнейшей переработке осмоляются. [c.310]

    Полиалломеры получаются при последовательной сополимеризации двух мономеров. В этом случае в реактор, содержащий растворитель и катализатор, состоящий из триэтилалюминия с треххлористым титаном в Соотношении А1(С2Н5)з ТЮ1з = 1,5 1, при 70—80° С и давлении 30— 32 ат подается пропилен, в результате чего начинается его полимеризация. Полимеризация проводится до желаемой степени конверсии пропилена, а затем добавляется второй более реакционноспособный мономер, аапример, этилен , в требуемом количестве и тогда завершают полимеризацию. Если второй мономер менее реакционноспособен, чем первый (например, бутен-1), то проводится дегазация реакционной массы для удаления первого мономера, для чего спускается давление. Потом следует продувка азотом, после чего вводится второй мономер. По этому методу был получен полиалломер пропилена с этиленом, пропилена с буте-иом-1, пропилена с бутадиеном, пропилена со стиролом, пропилена с ви-нилхлоридом и пропилена с изопреном. Полиалломеры представляют собой блоксополимеры с кристаллическими участками, состоящими из соответствующих мономеров. Если проводить полимеризацию заранее приготовленной смеси пропилена с этиленом, то блоксоиолимера не ползгчает-ся и остатки мономеров распределены равномерно по всей длине макромолекулы. В этом случае иолучается не кристаллический, а каучукообразный полимер. Инфракрасные спектры сополимера и полиалломера этилена с пропиленом значительно различаются, что говорит о различной их структуре. Интересно отметить, что из методики получения полиалломеров следует, что макроионы, образующиеся при полимеризации, сохраняют свою активность даже при перерыве в полимеризации, что имеет место при дегазации реакционной массы реакция начинается вновь при добавлении нового мономера в реакционную массу, из которой удален первый мономер. [c.100]

    Бутадиен, полученный приводепными выше способами, содержит бутены и другие газообразные углеводороды, от которых его необходимо отделить до полимеризации. В промышленных масштабах для очистки бутадиена применяется способ экстрактивной перегонки с фурфуролом, насыщенным водой или другими растворителями. Этот способ состоит в непрерывном введении в колонну достаточного количества растворителя, который, селективно растворяя бутадиен, сильно снижает летучесть последнего по сравнешгю с летучестью остальных менее растворимых комнонентов. Другой способ состоит в селективном растворении бутадиена в водном растворе аммиачной уксуснокислой меди (I). После первой фазы растворения на холоду следует фаза выделения бутадиена из раствора при нагревании. [c.946]

    Одно из важнейщих свойств малеинового ангидрида — участие в реакциях Дильса—Альдера. В промышленности реализованы [29] процессы конденсации малеинового ангидрида с бутадиеном, пипериленом и ЦПД, проводящиеся обычно в присутствии растворителя. Продукты конденсации малеинового ангидрида с бутадиеном и ЦПД (тетрагидро-фталевый и эндо-метилентетрагидрофталевый ангидриды) широко используются для получения пластификаторов синтетического каучука,, мочевино- и меламиноформальдегидных смол. Оба ангидрида заменяют фталевый ангидрид в производстве алкидиых смол, образуя смолы лучшего качества. Для производства тетрагидрофталевого ангидрида применяют бутадиен 98%-ной чистоты с содержанием перекисей менее 0,001%, и малеиновый ангидрид 99,5%-ной чистоты, содержащий не более 0,09% малеиновой кислоты. Для предотвращения полимеризации бутадиена в сырье вводится ингибитор—пирокатехин. Условия конденсации малеинового ангидрида с пипериленом и ЦПД аналогичны. [c.11]

    Вследствие способности связи —0—0— к гомолитическому расщеплению с образованием двух радикалов перекиси инициируют радикальные реакции. В случае применения растворителей, содерясащих перекиси, возмож.чо непредусмотренное течение реакций по радикальному механизму, которое иногда сопровождается сильным экзотермическим эффектом. Инициируемой перекисями экзотермической полимеризации подвержены такие соединения, как метилметакрилат, стирол, акриловая кислота, акрилонитрил, бутадиен, винилиденхлорид, тетрафторэтилен, хлортрифторэтилен, вннилацетилен, винилхлорид, виннлпири-дин, хлоропрен и др. При длительном контакте перечисленных [c.80]

    В аппаратах с мешалками 1 непрерывно илн нерио-дически готовят катализатор растворением или диспергированием его компопснтов в растворителе, выбранном для полимеризации, или в др. подходящем растворителе. Катализатор и смесь очищенных и высушенных бутадиена и растворителя подают на полимеризацию непрерывно. Полимеризаторы 2 снабжены перемешивающими устройствами и рубашками для охлаждения реакционной среды. При умеренной вязкости среды могут быть использованы мешалки турбинного типа, при достижении высокой вязкости — шнековые или лопастные со скребками. Полимеризацию проводят при темп-рах 4—60° С и давлении до 1,0 Мн/м (10 кгс/см ) в течение 0,5 — 6 ч. Реакционная масса, выходящая из последнего полимеризатора, может содержать 7—25% полимера. Для разрушения катализатора и обрыва реакции в пoлимepи, aт вводят стоппер. В вакуум-испарителе 3 благодаря снижению давления и под действием тепла из полимеризата выделяются непрореагировавший бутадиен и часть растворителя. После введения антиоксиданта полимеризат направляют в колонны для водной дегазации 5. где с помощью пара отделяют каучук от растворителя и одновременно удаляют большую часть остатков катализатора, растворимых в воде. Каучук, освобожденный от основной массы влаги в червячно-отжимном прессе 7, направляют на промывку, сушку, брикетирование и упаковку. Растворитель после очистки и осушки (на рисунке не показано) возвращают в систему полимеризации. Для выделения каучука иногда применяют также безводную дегазацию с помощью ацетона, спирта или др. соединений. В этом случае антиоксидант вводят при обработке каучука в червячно-отжимном прессе, на вальцах или др. оборудовании. [c.160]

    Сочетание обычной и экстрактивной перегонки (с фурфуролом, ацетоном или ацетонитрилом) дает возможность разделить все углеводороды С4. Полученный бутадиен имеет степень чистоты 98,7% Обычно выделение бутадиена из фракции С4 с низкой концентрацией бутадиена проводится аммиачным раствором ацетата меди. При высоких концентрациях бутадиена удовлетворительное разделение достигается экстрактивной перегонкой. Процесс экстрактивной ректификации с фурфуролом был разработан фирмой Phillips Petroleum o. в начале 40-х годов. Позже фирма ввела некоторые усовершенствования в систему растворителя и организацию контроля над процессом. В модифицированном процессе с использованием колонны экстрактивной ректификации и колонны фракционирования получают бутадиен сорта для полимеризации. [c.41]

    Разработаны способы сополимеризации изобутилена с одним или несколькими диолефинами (бутадиеном, винилциклогексе-ном, гексадиеном, изопреном, 2-метилпентадиеном, дициклопен-Тадиеном) и изучены свойства получающихся при этом полимеров. Полимеризацию обычно проводят в растворителе (галоидал-киле), при низких температурах (до —164°) в присутствии А1СЬ. Приведены схемы установок [1367—1379]. Получаемые сополимеры могут быть использованы для изготовления пресс-ком-позиций, лаков и в качестве добавок к каучукам. [c.260]

    Исследовано взаимодействие циклопентадиена н других диенов с полиэфирами из гександиола с фумаровой, малеиновой, мезаконовой и цитраконовой кислотами Диеновый синтез проводили в бензольном растворе, применяя диен в 1,2 — 3-кратном избытке или используя его в качестве растворителя ингибитором полимеризации служил ж-динитробензол. По реакционной способности к присоединению диенов в реакции ДиЛьса — Альдера ненасыщенные кислоты в полиэфирах образовали следующий ряд фумаровая > малеиновая > мезаконовая > цитраконовая. Соответственно можно расположить диены циклопентадиен > 2,3-диметилбутадиен > бутадиен > этиловый эфир сорбиновой кислоты > транс-гракс-диэтиловый эфир муконовой кислоты > фуран. [c.229]

    Алкилендилитиевые соединения могут быть получены растиранием гранулированного лития в углеводородном растворителе в присутствии алкилендигалогенида. Пентаметилендилитий является катализатором полимеризации бутадиена и сополимеризации изопрена со стиролом или бутадиеном а в сочетании с галогенидами титана, циркония или ванадия — катализатором полимеризации а-олефинов [c.19]


Смотреть страницы где упоминается термин Растворители для полимеризации бутадиена: [c.67]    [c.159]    [c.50]    [c.688]    [c.701]    [c.389]    [c.386]    [c.584]    [c.41]    [c.262]    [c.22]    [c.177]   
Технология органического синтеза (1987) -- [ c.382 ]




ПОИСК





Смотрите так же термины и статьи:

Бутадиен полимеризация



© 2025 chem21.info Реклама на сайте