Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика метод функций

    Термодинамические параметры реакций определяются термодинамическими свойствами веществ, участвующих в реакции. Важнейшими из этих свойств являются внутренняя энергия, энтальпия, энтропия, теплоемкость, энергия Гиббса (изобарно-изотермический потенциал), энергия Гельмгольца (изохорно-изотермический потенциал). Как показывает статистическая термодинамика, каждая из термодинамических функций отражает в совокупности влияние всех особенностей состава, внутреннего строения и условий существования веществ. Использование термодинамических величин для характеристики химических свойств веществ и параметров химических реакций дает возможность количественно отражать влияние этих факторов. Вместо того чтобы определять, как то или иное изменение в строении молекул (характер связи между атомами, расстояние между ними и др.) влияет на положение равновесия в данной реакции (что большей частью и недостижимо), мы, пользуясь термодинамическим методом, оперируем такими функциями, которые дают возможность отразить это влияние суммарно и в более доступной форме. [c.14]


    В технической термодинамике, поскольку содержание предмета сводится к анализу работы различных машин, рассматриваются круговые процессы. Поэтому изучение предмета целесообразно построить на методе циклов. В химической же термодинамике возможно применение и иного метода. Ведь в химии и химической технологии осуществляются процессы, в результате которых система из одного состояния переходит в другое, отличное от исходного. По отношению к практическому применению химического процесса принцип цикла нерационален. Поэтому часто пользуются методом функций, основанным на независимости изменения свойств системы от характера процесса, тем более, что он проще метода круговых процессов. При помощи метода функций можно рассматривать многие сложные задачи, решение которых с помощью метода круговых процессов гораздо труднее и иногда приводит к громоздким операциям. [c.15]

    По энергиям связи можно рассчитать теплоты образования радикалов. Энтропии и теплоемкости радикалов рассчитывают методами статистической термодинамики. На основе выполненных расчетов разработаны полуэмпирические методы нахождения АЯ°об, 5°, С°р для радикалов. Наиболее распространенным является метод Бенсона, который позволяет находить термодинамические функции радикалов как сумму соответствующих величин для групп, составляющих радикал [61]. Описание метода Бенсона для молекул дано в гл. X. [c.284]

    При написании этой книги автор пытался сочетать ограниченный объем книги с необходимостью рассмотрения большого числа реакций и процессов. Автор пытался также учесть интересы широкого круга читателей.. Некоторые обращаются к книгам по термодинамике, чтобы, не прибегая к расчетам, почерпнуть информацию о теплотах, константах равновесия и равновесных составах широко используемых реакций. Других интересуют табличные данные о стандартных термодинамических функциях, по которым можно выполнить расчеты для новой реакции, а также литературные данные для аналогичных реакций. Наконец, третьи интересуются состоянием методов термодинамического расчета реакций углеводородов и их производных, поскольку ставят своей задачей усовершенствование известных или разработку новых расчетных процедур. [c.7]

    Таким образом, при помощи уравнений (IV, 50)—(IV, 57) выведена зависимость ряда термодинамических функций от сумм по состояниям. Чтобы рассчитать методом статистической термодинамики термодинамическую функцию, нужно вычислить ее части, соответствующие разным видам движения молекул. Из (IV, 47) следует, что [c.158]


    Поэтому из многих характеристических функций наибольшее значение в термодинамике приобрели пять — О, Н, F, G и S. Однако еще Максвелл указывал, что на опыте невозможно непосредственно определить функции F(V, Т) или G(p, Т) и извлечь из этого все указанные преимущества. Метод характеристических функций долгое время играл другую роль его использовали в теоретической термодинамике для нахождения уравнений, связывающих между собой различные термодинамические параметры, а свойства конкретных систем по-прежнему описывали с помощью уравнений состояния Др, V, Т) и теплоемкостей. Положение дел изменилось после возникновения статистической термодинамики. Методы статистической термодинамики действительно позволяют вычислять F V, Т) или G(p, Т) для систем, описываемых не слишком сложными молекулярными моделями. Поэтому в статистической термодинамике метод характеристических функций удается использовать в его наиболее полной форме — с помощью одной функции F V, Т) или G(p, Т) найти численные значения всех интересующих нас термодинамических параметров. [c.67]

    Метод активности в термодинамике является формальным приемом и заключается, как видно из изложенного, во введении новой функции состояния, промежуточной между химическим потенциалом и концентрацией. Он ничего не дает для понимания причин, вызывающих то или иное отклонение данного раствора от закона идеальных растворов. Однако этот метод обладает существенными положительными свойствами—упрощает формальную математическую разработку термодинамики растворов. [c.208]

    Книга представляет собой сборник задач по термодинамике и статистической физике с подробными решениями. Задачи охватывают широкий круг вопросов от задач на законы термодинамики, фазовые переходы, флуктуации различных величин, до задач на вариационные принципы термодинамики необратимых процессов. Разбираются также задачи по кинетической теории переноса в газах и металлах, по физике плазмы и применению метода функций Грина в статистической физике. [c.383]

    Однако решение любой конкретной задачи методами статистической физики сложно и в первом приближении, которым в большинстве случаев можно ограничиться, может быть достаточно легко проведено методами феноменологической термодинамики. Между этими методами существует определенная связь, которая позволяет рассчитывать недостающие для термодинамики характеристические функции. [c.10]

    В книге кратко описаны методы расчета некоторых параметров фазовых переходов, наиболее существенных для термодинамики химических реакций, в частности процессов перехода из жидкого или кристаллического состояний в состояние идеального газа и обратно при равновесных или при стандартных условиях. Однако автор не затрагивал свойств растворов и методов их расчета, а также специфических особенностей расчетов для области высоких давлений, так как это потребовало бы значительного увеличения объема книги. По тем же причинам не рассмотрены реакции образования комплексных соединений и методы статистической термодинамики, но описаны некоторые методы практического расчета термодинамических функций, основанные на выводах статистической термодинамики. [c.7]

    Термодинамическое исследование физических явлений основывается на использовании начал термодинамики. Само применение начал термодинамики для решения физических задач осуществляется двумя способами. В соответствии с этим различают два метода термодинамики метод циклов (круговых процессов) и метод термодинамических потенциалов (или метод характеристических функций). [c.99]

    К настоящему времени наиболее приемлемой является функция распределения ф(с ), предложенная в работе [115] по методу статистической термодинамики, [c.83]

    В нашей стране обобщающая монография по термодинамике нефтехимических процессов издана в 1960 г. (А. А. Введенский. Термодинамические расчеты нефтехимических процессов. ГОНТИ, Л., 1960, 576 с.). Эта превосходно написанная для своего времени книга в определенной степени устарела по следующим причинам. Ее значительная часть посвящена анализу разрабатывавшихся в 50-е годы методов определения стандартных термодинамических функций, которые сейчас практически не используются. Конкретный термодинамический анализ выполнен для тех реакций, которые получили промышленное применение в 30-е —50-е годы. Практически нет данных о химических равновесиях в системах с несколькими фазами, о равновесиях в растворах. Основная конкретная информация относится к простым реакциям. [c.6]

    Учитывая это, автор включил в книгу раздел, обосновывающий расчетные соотношения в книге даны термодинамические функции углеводородов и их производных, а также описаны наиболее общие и точные методы расчета этих функций приведены данные о термодинамике простых и сложных реакций, используемых в нефтехимическом синтезе, переработке нефти, угля, природного газа. [c.7]


    В книгу не включен анализ методов статистической термодинамики, используемых для расчета термодинамических функций углеводородов и их производных, поскольку этот раздел постоянно и хорошо рассматривается в учебной литературе. [c.7]

    Предлагаемый курс химической термодинамики в отличие от традиционных учебников имеет следующее расположение материала. Вначале на основе трех законов термодинамики составляются аналитические выражения термодинамических функций для химически и фазово однородных и неоднородных систем. Затем рассмотрены методы применения термодинамических функций для расчета равновесий в идеальных и неидеальных смесях веществ. [c.4]

    Статистическая термодинамика дает возможность рассчитать значения функций Зт, Нт—Но, От—Но, Ср и др. Пока такие расчеты возможны практически лишь для газов и веществ с несложными молекулами. Экспериментальной основой расчетов служат данные о строении молекул (межатомные расстояния и пр.) и данные о спектрах. Сложность и большая трудоемкость расчетов раньше сильно затрудняли использование этого метода. Однако развитие счетной техники и применение электронных счетных машин позволило преодолеть указанные трудности, и в настоящее время большое число новых данных получается этим путем в особенности для высоких температур. [c.220]

    Для ряда случаев феноменологический подход с использованием механики гетерогенных сред и неравновесной термодинамики позволяет описывать гетерогенные системы. Этот метод наиболее применим к турбулизированным системам, когда каждую фазу можно характеризовать своей температурой, концентрацией и другими термодинамическими функциями, т. е. при отсутствии значительных градиентов температур и концентраций в каждой фазе в элементарном объеме гетерогенной смеси. Такое допущение вполне применимо к процессу ректификации в условиях барботажа. [c.142]

    Применение методов статистической физики к решению проблем химической термодинамики привело в 20-х годах к созданию статистической термодинамики и к возможности определять значения основных термодинамических функций веществ в состоянии идеальных газов на основе данных о строении молекул и о спектрах веществ. Правда, и в настоящее время возможности этого метода практически ограничиваются лишь простыми молекулами или молекулами, для которых такие расчеты упрощаются вследствие их симметрии. Однако большое значение имела прежде всего возможность определить значения энтропии и других величин двумя независимыми методами — методами классической термодинамики на основе калориметрических определений и методами статистической термодинамики на основе данных о строении молекул и их спектрах. В большинстве случаев этими двумя методами были получены хорошо согласующиеся значения энтропии, что. явилось убедительным доказательством надежности каждого из них. Позднее были выяснены и причины наблюдаемых в известных случаях расхождений, что привело к возможности использовать эти расхождения для определения параметров, относящихся к строению молекул (энергетический барьер внутреннего вращения и другие). В дальнейшем развитие радиоспектроскопии расширило экспериментальные основы расчетов, а использование электронно-вычислительных машин облегчило проведение их. В результате методы статистической термодинамики нашли широкое применение для определения основных термодинамических функций разных веществ в газообразном состоянии при самых различных внешних условиях и значительно способствовали быстрому увеличению фонда имеющихся данных. Однако эти методы сами по себе не дают в настоящее время возможности определять тепловые [c.18]

    Методы статистической термодинамики дают возможность определять непосредственно значения функции (Ог — Н° 1т. Использование же в качестве базисной температуры 298,15 К очень удобно в первую очередь в тех случаях, когда имеются данные для высокотемпературных составляющих энтальпии (Яг — Н°29 1т и эн- [c.26]

    При ОК Uo = Но, которое в настоящее время неизвестно. Экспериментально с помощью низкотемпературной калориметрии или путем расчета методами статистической термодинамики определяются только значения Ht — Hq, Ut —Uo, Gt — Go и т. д. . Возникающие вследствие этого затруднения при расчете изменения данной функции по свойствам компонентов можно преодолеть, если вместо абсолютных значений этих функций в уравнение О ввести изменения их при таких реакциях, которые при алгебраическом суммировании их уравнений после сокращения дают уравнение рассматриваемой реакции. Можно представить различные пути таких расчетов, но, конечно, предпочтительным является тот, при котором основные и вспомогательные значения изменений рассматриваемой функции определяются достаточно надежно и точно. [c.53]

    Наряду с указанными величинами в справочных изданиях, обзорных и оригинальных работах часто приводятся (также в табличной форме для ряда температур) значения теплоемкости (Ср), энтальпии (я —Яо) и энтропии (5г), а также функций (я -я )/7 и От-Нт) т для г,, равной О К или 298,15 К. Эта форма публикации является обычной для определений, выполненных методами статистической термодинамики. Интерполяционные уравнения при этом ке даются. [c.62]

    Курс физической химии и химической термодинамики в высших учебных заведениях невелик по объему, часто предлагается к изучению самостоятельно, что предъявляет к нему особые требования как в отношении содержания, так и размеров каждого из разделов. Предлагаемый нами краткий курс химической термодинамики включает необходимые разделы физической химии, что позволяет в достаточно полной мере освещать методы исследования физических и химических процессов на базе термодинамических функций, а также иллюстрировать теоретические разделы задачами и контрольными вопросами. [c.3]

    Были развипы следующие мегоды неравновесной термодинамики метод термодинамических функций Ляпунова (вблизи и вдали от равновесия), вариационный принцип минимума производства энтропии, анализ производства энтропии дпя определения движущих сил и закономерностей в кристаллизации. Движущие силы кристаллизации помимо разности химических потенциалов содержат также энтальпийную составляющую, характеризующую тепловую неравновесность системы. Рассмотрена роль этих вкладов для систем с высокими тепловыми эффеетами при кристаллизации, например, ортофосфорной кислоты Анализ производства энтропии системы с фазовыми превращениями позволил подтвердить распределение Хлопина для макрокомпонента и примеси (случай полного термодинамического равновесия), получить новые закономерности (и проверить их на ряде систем) для распределения компонентов при частичном равновесии. На основе вариационного принципа минимума производства энтропии определены закономерности для стационарных форм роста кристаллов, предельного пересыщения и т.д. Используя метод избыточного производства энтропии нашли новый класс осцилляторов, роль которых могут играть процессы кристаллизации, протекающие за счет химической реакции Используя кластерную теорию пересыщенных растворов, методы нелинейной динамики, было создано математическое описание, учитывающее колебания (в том числе и на термодинамической ветви) в кристаллизации, определены причины их возникновения. Разработаны алгоритмы управления (с обратной связью и без неё) хаотическими колебаниями в системах с кристаллизацией [c.21]

    Основным методом изучения равновесия в химических системах и процессов, протекающих равновесно в таких системах, является метод термодинамических функций, развитый работами Г. Гельмгольца и Дж. В. Гиббса. Рассмотрим кратко сущность 3-х законов термодинамики. [c.6]

    Выведите уравнение Клаузиуса—Клапейрона методом термодинамических функций, на основе уравнения 1-го и 2-го законов термодинамики с применением калорических коэффициентов, по уравнению Максвелла, по зависимости термодинамической функции от Р и методом термодинамического цикла. [c.187]

    В 1869 г. Ф. Массье вводит представление о характеристических функциях, а Дж. В. Гиббс в 1875 г. развивает термодинамику химических неоднородных систем на основе понятия о химическом потенциале и вводит в термодинамику новую функцию— свободную энтальпию (или энергию Гиббса по современной терминологии). Гиббс вводит в термодинамику метод термодинамических функций, позволяющих составлять любые термодинамические уравнения, которые ранее выводили методом термодинамических циклов. Этот метод был более удобным, простым при составлении термодинамических уравнений для изучаемого процесса, но он менее наглядный по сравнению с методом термодинамических циклов. В 1882 г. Г. Гельмгольц открывает термодинамическую функцию — свободную энергию, которую по современной терминологии вызывают энергией Гельмгольца—А. Он же вывел уравнение зависимости А=А Т), которое получило название уравнения Гиббса—Гельмгольца. [c.14]

    Подчеркивается доминирующая роль поверхностных явлений в дисперсных системах с высокоразвитой границей раздела фаз. Достаточно доступно излагается термодинамика гетерогенных систем по методу избытков термодинамических функций Гиббса. Важное место занимает раздел, в котором ставится вопрос о нетривиально-сти термодинамического описания микрогетерогенных систем, не являющихся в принципе равновесными, и о природе их устойчивости, с выделением роли флуктуаций, лиофилизации в результате адсорбции (по Ребиндеру), специфики поведения тонких слоев и проявления расклинивающего давления. [c.5]

    В сборнике содержится около 900 задач, которые отражают основные разделы химической термодинамики первое и второе начала, где рассматриваются два метода приближенного вычисления тепловых эффектов, расчеты термодинамических функций и химического равновесия, закономерности фазового равновесия в одно и двухкомпонентных системах, термодинамика растворов. Каждому разделу предпослано краткое теоретическое введение, которое содержит математическое обоснование изучаемого вопроса, приведены примеры решений типичных задач. Все величины выражены в системе СИ. [c.208]

    В пособии изложены основные законы термодинамики, рассмотрено введение в химическую термодинамику термодинамических функций и их применение для расчета химических процессов рассмотрено применение термодинамических методов к расчету свойств гомогенных систем и индивидуальных веществ, смешанных по вещественному и фазовому составу систем. Обсуждена термодинамика идеальных и неидеальных систем, необратимых процессов-самопроиз-вольиых и несамопроизвольных, термодинамика координированных систем. [c.1]

    Теория химической связи и строения молекул излагается на основе теории Шрёдингера. Расчеты абсолютных энтропий и констант равновесия ведутся на основе постулата Планка и т. п. Если данная закономерность может быть выведена несколькими способами, то в книге выбирается наиболее строгий и общий путь. Так, например, в химической термодинамике мы отказались от метода циклов и все выводы даем при помощи метода функций. [c.3]

    В термодинамике растворов полезную роль играет метод функций смешения. Функцией смешения называют изменение данной величины при образовании раствора заданного состава из чистых компонентов при постоянном общем давлении и температуре. Для большинства целей достаточно определить ЛОсмеш. так как изменение остальных термодинамических величин легко найти, используя свойства С как характеристической функции. [c.100]

    За истекшие годы то, что сделал Гиббс, дополнено было только в одном отношении, а именно были установлены способы теоретического и эмпирического вычисления потенциалов. Развитие статистики сделало возможным теоретическое вычисление потенциалов газов из оптических данных, а для твердых тел — из констант упругости. Эмпирическое определение потенциалов химически простых веществ тепловой закон Нернста позволил свести в основном к изучению зависимости теплоемкости от температуры. Для химических соединений нужно знать еще предел, к которому стремится теплота образования при понижении температуры до абсолютного нуля. Для растворов эмпирическое вычисление потенциалов как функций концентрации было сведено Льюисом к определению по экспериментальным данным активности, в связи с чем гальваническая цепь сделалась важнейшим измерительным прибором экспериментальной термодинамики. Метод Льюиса не внес в термодинамику ничего принципиально нового. Тем не менее он оказался плодотвбрным, так как привел эмпирику в области растворов к разумной стандартизации. Помимо того, метод Льюиса вызвал попытки молекулярно-теоретического расчета активности. [c.205]

    В ряде работ Немцова используются методы современной статистической термодинамики — метод проектирующих операторов Цванцига-Тори и неравновесного статистического оператора Зубарева. В этом случае коэффициенты вязкости и другие кинетические коэффициенты выражены временными корреляционными функциями, точный вид которых рассчитывается с помощью некоторого кинетического уравнения или другими методами. Хотя такой подход не привязан к определенному виду кинетического уравнения, для расчета коэффициентов вязкости обычно используется уравнение Фоккера-Планка. [c.80]

    Практикум содержит работы iio основным paJдeлaм фнничсско химии. В пособии рассмотрены методы физико-химических измерении, обработки экспериментальных данных и способы их расчетг)в. Большое внимание уделено строению вещесто, первому началу термодинамики, фазовому равновесию 13 одно-, двух- и многокомпонентных системах, химическому равновесию в гомогенных системах и др. Интерес представляют работы по молекулярной спектроскопии и кинетике гомогенных и гетерогенных [)еакций. Изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. Введены работы по расчету сумм состояния и термодинамических функций. [c.2]

    Третье издание практикума существенно отличается от первых двух изданий. Получили значительное развитие работы по молекулярной спектроскопии, а работы по атомным спектрам сокращены — в связи с изменениями учебных планов. В практикум введены новые работы, знакомящие со спектральными методами изучения свойств молекул и определения молекулярных констант веществ, работы по расчету сумм состояния и термодинамических функций на основе непосредственно полученных опыть ых данных. Студенты знакомятся с применением методов статистической термодинамики для расчета химических равновесий. Существенно изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. [c.4]

    Внесение заряженной частицы в кластер из молекул воды приводит, естественно, к резкой перестройке их структуры. Взаимное расположение молекул вокруг иона определяется, в основном, их ориентацией в поле иона. Как и в случае кластеров, состоящих только из молекул воды, термодинамика кластеров, содержащих ионы, достаточно подробно изучена экспериментально масс-спектрометрическими методами [407, 408]. Однака эти методы не могут дать информацию о структуре. Мало полезны для выяснения структуры и квантовохимические методы [308, 409], поскольку расчеты проводятся для кластеров, структура которых постулируется а priori. Но, разумеется, значение квантовохимических расчетов огромно. Вез них, в частности, было бы невозможно разработать систему реалистических потенциалов, описывающих взаимодействие ионов с молекулами воды. Необходимо, однако, отметить, что, согласно квантовохимическим расчетам, равновесные расстояния ион — атом кислорода воды приблизительно на 20 пм короче наиболее вероятных расстояний в соответствующих кристаллогидратах. Подробное рассмотрение этого вопроса [386] вынудило нас ввести в аналитические потенциальные функции, аппроксимирующие результаты квантовохимических расчетов, поправки, обеспечивающие согласие расстояний ион — атом кислорода, получаемых в процессе численных экспериментов, с кристаллохимическими данными. Авторами работ по моделированию кластеров, состоящих из ионов и молекул воды, подобные поправки не вносились [410—412]. [c.145]

    Хотя условие равновесия можно записать в форме MnnHMy ма О (или F) или в форме закона действующих масс, не следует думать, что эти формы принципиально различаются. В обоих случаях используют одни и те же общие соотношения химической термодинамики и термодинамические функции веществ Но метод минимизации О (или F) формулируется таким образом, что он непосредственно подготовлен для использования процедуры нахождения решения численным методом на ЭВМ путем поиска минимума функции многих переменных и программируется так, что не требует последовательного выполнения этапов А — Г традиционного подхода. [c.113]

    Применение машинной техники при расчетах термодинамических функций методами статистической термодинамики сильно облегчило получение новых данных. В настоящее время большую часть новой информации в этой области, в особенности для высоких температур, получают с помощью электронных счетных машин. На основе результатов, полученных разными методами, создаются справочные сводные таблицы, содержащие взаимно согласованные значения основных термодинамических свойств веществ для разных условий их существования. В первую очередь такие таблицы были разработаны для углеводородовпозднее и для ряда других групп неорганических и органических соединений. [c.20]

    Из названных функций только теплоемкость, энтропия, а также функции (От- — Яг,)/Г и [Н°т — Яз,)/ могут быть определены для какого-нибудь данного вещества. Теплоемкость определяйт экспериментально или рассчитывают, как производную энтальпии по температуре, а энтропию при использовании постулата Планка определяют на основе измерения низкотемпературной теплоемкости и теплот фазовых переходов или рассчитывают методами статистической термодинамики . Функции (Ог— Нт)1т и (Яг — Яг,)/Г рассчитывают на основе экспериментальных данных< Остальные же функции (Н,0,и,А) при любой температуре содержат в качестве слагаемого значение внутренней энергии данного вещества [c.52]

    В. учебной литературе по вычислительной математике (напрнмер, в [63]) не описано каких-либо общих методов исследования сходимости метода Зейделя. Для системы уравнений (21) можно использовать следующий путь доказательства сходимости. Расслютрим задачу решения системы как равносильную ей задачу нелинейного программирования пои ка минимума некоторой функции Р переменных Х1- Термодинамика (с точностью до множителя ЯТ) подсказывает нам такой вид  [c.30]

    Большое значение свободной энергии разведения для термодинамики растворов основано на том, что эту величину (и вместе с ней также Asi и AAi) можно легко определить разными экспериментальными методами. В частности, для бинарных растворов термодинамические свойства полностью определены, если известен Ajij как функция мольной доли Х2 во всей области концентраций. Из изотермиче-скп-изобарной формы уравнения Гиббса—Дюгема следует [c.138]


Смотреть страницы где упоминается термин Термодинамика метод функций: [c.25]    [c.222]    [c.47]    [c.209]    [c.234]   
Химическая термодинамика Издание 2 (1953) -- [ c.13 ]




ПОИСК





Смотрите так же термины и статьи:

Методы термодинамики

метод правило фаз тепловая функция химическая термодинамика



© 2025 chem21.info Реклама на сайте