Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение газовых смесей углеводородов

    Для анализа газов нефтепереработки, представляющих собой сложную смесь углеводородов 02-0 и некоторых неуглеводородных компонентов, применяется [2] метод газовой хроматограф в газожидкостном варианте с использованием полярных и неполярных жидких фаз и в адсорбционном варианте с применением природных синтетических и модифицированных адсорбентов [З]. Для исследования пента-амиленовой фракции бензина каталитического крекинга, а также жирного газа этого же бензина термокаталитического разложения в качестве наполнителя колонки применяли фракцию волокнистого углерода, полученного по методике [4] зернением 0,25-0,5 ш, обработанную хинолином в различных процентных соотношениях. Лучшее разделение было получено при загрузке колонки адсорбентом, содержащим 15-20 хинолина. [c.158]


    Смесь углеводородов вводят в газовый хроматограф, где она перево-дится в парообразное состояние и разделяется на колонке. Компоненты смеси после разделения регистрируются детектором. Сигнал детектора фиксируется регистрирующим прибором и выходная кривая (хроматограмма) записывается самописцем. Качественный анализ основан на определении времени выхода компонентов, которое при постоянном режиме работы хроматографа зависит от природы компонентов. Количественный анализ проводится путем измерен ния площади пиков соответствующих компонентов на хроматограмме. [c.355]

    Анализируемую газовую смесь пропускают через колонку с адсорбентом или носителем неподвижной жидкости в непрерывном потоке воздуха при одновременном нагреве хроматографической колонки. Нагрев колонки дает возможность полнее и быстрее разделять компоненты вследствие изменения их адсорбционной способности. В зависимости от состава смеси для хроматографической колонки применяют различные адсорбенты или носители с различными неподвижными жидкими фазами. Так, для разделения смеси предельных углеводородов используют газо-адсорбционную хроматографию в качестве адсорбента применяют, например, крупнопористый силикагель МСК или КСК, а для разделения смесей, содержащих также и непредельные углеводороды, — окись алюминия. Однако на указанных адсорбентах не удается выделить некоторые изомерные компоненты. В этом случае применяют комбинацию газо-адсорбционной и газожидкостной хроматографии, а именно разделительную колонку наполняют адсорбентом, смоченным небольшим количеством малолетучей жидкости. Такие адсорбенты называются модифицированными. Сочетание газо-адсорбционной и газо-жидкостной хроматографии позволяет полнее разделить сложную смесь, состоящую из большого Числа разных по своей природе компонентов. [c.144]

    Джонс [38] разделил сложную газовую смесь (На, Оз, N3, СО, СО-2, НаЗ, ННз, Н2О, углеводороды С —С5) на порапаке Q, применив двух колоночный хроматограф. Одна колонка, заполненная порапаком Q, находилась ири температуре сухого льда, и в ней разделялись азот, кислород, окись углерода, а вторая (с тем же сорбентом) — при комнатной температуре, и в ней происходило разделение метана и углекислого газа последующее программирование температуры от комнатной до 125° С позволило разделить все остальные компоненты. Наблюдалась линейная зависимость между парциальными давлениями компонентов и площадью соответствующих пиков на хроматограмме. При анализе не требовалось никакой предварительной обработки газовой смеси для удаления кислых и коррозионных газов. [c.110]


    Разделение жидких и газовых смесей. Жидкие и газовые смеси разделяют, используя различие температур кипения, различие растворимости, сорбционных, химических и других свойств компонентов смеси. Наиболее широко разделение таких смесей используют на нефтяных месторождениях. Нефть - смесь углеводородов с примесями кислородных, сернистых и азотистых соединений - разделяют перегонкой на составные части, или фракции, - бензин, лигроин, керосин, мазут и т.д. Сернистые соединения бензиновой фракции удаляют каталитической гидроочисткой - в паровой фазе на катализаторе сернистые соединения гидрируют до сероводорода, который отделяется при конденсации. [c.248]

    Существуют различные технологические схемы окисления углеводородов С3-С4 в газовой фазе. Сущность процесса окисления сводится к следующему. Предварительно проводится смешивание воздуха или кислорода с окисляемыми углеводородами или их смесью и затем добавляют рециркулирующий газ. Смесь нагревают до температуры 350-370 °С при давлении 0,7-1,0 МПа и направляют в реактор, представляющий длинную трубу из малоуглеродистой стали. За счет экзотермического эффекта температура в реакционной зоне повышается до 425-455 °С, что является оптимальным для получения кислородсодержащих продуктов. Из реактора газовая смесь поступает на закалку и далее в систему разделения и очистки. [c.360]

    Абсорбция обычно применяется для грубого разделения смесей газообразных углеводородов. Она основана на поглощении газообразных веществ селективным растворителем (селективным абсорбентом). Разделяемую газовую смесь пропускают через абсорбционную колонну, орошаемую растворителем. Содержащиеся в газе низшие углеводороды (С —С,) не поглощаются растворителем и отводятся из верхней части колонны. Более тяжелые углеводороды абсорбируются орошающей жидкостью, из нижней части абсорбционной колонны непрерывно вытекает раствор углеводородов в абсорбенте. В отгонной колонне (десорбере) газы выделяются из раствора. Растворитель охлаждают и возвращают на абсорбцию, выделенные углеводороды разделяют ректификацией. Для более полного извлечения углеводородов из газов абсорбцию обычно проводят при повышенном давлении (12—20 ат) и охлаждении исходного газа и растворителя. [c.155]

    Компримирование с одновременным охлаждением применяется для грубого разделения паро-газовых смесей углеводородов. Разделяемую смесь сжимают до давления 15—20 ат и затем охлаждают водой (реже рассолом) парообразные углеводороды при этом конденсируются и отделяются от газов, не конденсирующихся в этих условиях. Такой метод используется для выделения газового бензина из жирных природных газов (стр. 27). [c.157]

    Для более четкого разделения газовых смесей применяют конденсационно-ректификационный метод. Смесь сжимают и охлаждают до очень низкой температуры (порядка —100 °С). При этом углеводороды С —Сд сжижаются, а метан и водород остаются в газовой фазе. Сжиженные углеводороды затем подвергают ректификации под давлением при низких температурах. Для достижения низких температур используют испарение сжиженных газов (аммиак, этилен и т. д.), а также способ дросселирования, основанный на свойстве газов сильно охлаждаться при быстром понижении давления. [c.157]

    Рассмотрим результаты исследований компонентного разделения углеводородных смесей, проведенных А. Н. Черновым [12, 18], на вихревой трубе годовой производительностью 250 млн. м смесь содержала тяжелые углеводороды (пропан, бутан, гексан, пентан и др.). Отличительная особенность конструкции (рис. 54)—наличие конденсатосборника 1, сообщающегося с камерой разделения 2 в ее начальных сечениях. Конденсат выводится из камеры вихревой трубы вместе с частью нагретого газа, который после отделения от него жидкости выводится из конденсатосборника. Диаметр цилиндрической камеры вихревой трубы >о = 0,15 м, длина = 3 м, площадь соплового ввода / с = 0,986 10- м (/г/6 = 0,5), диаметр диафрагмы )х=0,083 м. Исходная газовая смесь, не содержащая жидкости, имела давление 3,6 МПа и температуру 303 К. Исследования проводили при степени расширения е = 3...8.  [c.142]

    Принцип устройства таких аппаратов иллюстрируется рис. V. 28. Адсорбционная колонна состоит из трех рабочих секций /—III, разделенных распределительными тарелками 1, с помощью которых создается псевдоожиженный слой адсорбента. Исходная газовая смесь подается в верхнюю часть секции II. Из верха секции I отбирается непоглощенный газ — легкая фракция, из верха секции III отводится промежуточная фракция. Из секции III адсорбент с поглощенными веществами поступает в зону регенерации IV. Регенерация осуществляется путем подогрева адсорбента, движущегося плотным слоем в трубах теплообменника 2, обогреваемого глухим паром. Десорбированная тяжелая фракция отводится из-под нижней распределительной тарелки. Регенерированный адсорбент поступает в промежуточную емкость 3, откуда с помощью пневмотранспорта подается на верх адсорбционной колонны. Здесь он охлаждается, проходя плотным слоем по трубам холодильника 4. При наличии в исходной смеси трудно десорбируемых веществ их удаление осуществляется в так называемом реактиваторе 5, представляющем собой теплообменник, в котором адсорбент подогревается до более высокой, чем в десорбере, температуры. Кроме того, адсорбент обрабатывается паром, вместе с которым отводятся десорбированные вещества. В реактиватор направляется часть циркулирующего в системе адсорбента, необходимая для поддержания требуемой его активности. Установки рассмотренного типа используются, например, для разделения смесей легких углеводородов. [c.521]


    В тех случаях, когда речь идет о ректификационном разделении газовых смесей, газы первоначально переводят в жидкое состояние путем охлаждения и повышения давления, а затем полученную жидкую смесь ректифицируют. Применение низких температур (до. минус 70—100° и ниже) и давления до 40 ат необходимо нри разделении газовых смесей, содержащих наиболее легкие углеводороды — метан, этилен и этан. Для выделения пропана и пропилена требуются лишь небольшое снижение температуры и небольшое давление. [c.31]

    ТЗ последнее время были проведены исследования по разделению легких углеводородов путем диффузии через непористые мембраны. В качестве мембраны применяли полиэтиленовую пленку [120]. На опытной установке, примененной для этих исследований, использовали тонкостенные полиэтиленовые трубки наружным диаметром 1,57 мм и внутренним 1,14 мм. Длина каждой трубки была 1,22 м. Пучок из 36 таких трубок помещали в металлический кожух. На рис. 85 показан один из вариантов крепления трубок. Отбортованные при нагреве трубки зажимают между двумя стальными пластинами, имеющими отверстия. Разделяемая газовая смесь подается одновременно в эти трубки. Продиффундировавший через полиэтилен газ попадает в свободное пространство между трубками, заключенными в кожух, и оттуда отбирают его. [c.229]

    Для разделения абсорбцией газовую смесь пропускают через абсорбционную башню, орошаемую селективным растворителем. Содержащиеся в газе низшие углеводороды (с одним и двумя углеродными атомами в молекуле) не поглощаются растворителем и выходят из верхней части башни углеводороды с большим числом атомов углерода в молекуле абсорбируются орошающей жидкостью, и из нижней части абсорбционной башни непрерывно вытекает раствор углеводородов в абсорбенте. Выделение газов из этого раствора производят в отгонной колонне (десорбере). Растворитель после охлаждения вновь направляют на абсорбцию, а выделенные углеводороды разделяют ректификацией. Для более полного извлечения углеводородов из газов абсорбцию обычно проводят при повышенном давлении (12—20 ат) и охлаждении исходного газа и растворителя. [c.134]

    Гиперсорбер (рис. 49) представляет собой вертикальный цилиндрический аппарат (высотой 30. и и более), в котором зернистый активный уголь движется непрерывно сверху вниз. В верхней части аппарата уголь, проходя через вертикальные трубки, сушится и охлаждается (зона охлаждения). Ниже находится зона адсорбции. Поступающая в эту зону газовая смесь движется противотоком к углю, который адсорбирует более тяжелые компоненты смеси. Непоглощенные легкие углеводороды отводятся из верхней части аппарата. В нижней части аппарата — в зоне десорбции — уголь нагревается и из него "путем продувки паром выделяются поглощенные углеводороды. Для того чтобы продукты десорбции не смешивались с поступающими в гиперсорбер исходными газами, ввод подлежащей разделению газовой смеси должен производиться на 5—6 м выше места вывода десорбированного газа. При таком размещении патрубков для ввода и вывода газов слой взвешенного угля оказывает достаточное сопротивление десорбированному газу, что исключает возможность его проникновения в зону адсорбции. [c.135]

    Разделение газов крекинга нефти и пиролиза нефтяного сырья на отдельные компоненты осуществляют либо абсорбционным методом, либо методом фракционированной конденсации. Абсорбционный метод разделения заключается в растворении в поглотительном масле отдельных компонентов газовой смеси. Выделенный из масла сырой продукт, представляющий смесь углеводородов, подвергается дальнейшей ректификации. Абсорбционный метод находит широкое применение для переработки главным образом естественных нефтяных газов на тяжелые фракции — пропиленовую, бутановую и пентановую. Газы же крекинга и термической переработки нефти, которые содержат значительное количество этилена и пропилена, требуют более четкого разделения, осуществляемого методом фракционированной конденсации, при котором производится непрерывный отбор образующегося конденсата. Этот метод приобрел практическое значение в установках разделения коксового и водяного газов, в гелиевой технике, а также при разделении углеводородных газов, получаемых пиролизом и крекингом нефти, с целью выделения чистых фракций метана, этана, пропана, этилена, пропилена, бутиленов, являющихся ценнейшим сырьем для новых отраслей химической промышленности. [c.283]

    Силикагели. Адсорбционная активность силикагелей связана с находящимися на их поверхности гидроксильными группами. Силикагели относятся к числу сильно полярных адсорбентов. Поэтому при анализе смеси насыщенных и ненасыщенных углеводородов непредельные углеводороды вымываются после предельных, имеющих тоже число атомов углерода в молекуле. Следовательно, если имеется смесь углеводородов Сг—Сз, то компоненты этой смеси при разделении на силикагеле будут выходить в следующей последовательности этан — этилен — пропан — пропилен. Существуют различные марки силикагелей, отличающихся по адсорбционным свойствам и, следовательно, по структурной характеристике. В практике газовой хроматографии нашли применение силикагели кем, АСМ, ШСК, АСК и др. [c.23]

    Основной областью применения газовой хроматографии был до сих пор анализ смесей низкокипящих углеводородов. При работе на полярных сорбентах достигается лучшее отделение парафинов от олефинов, чем на активированном угле. Для разделения же парафиновых углеводородов лучше применять активированный уголь, причем разделение в газовой фазе идет гораздо успешнее, чем в жидкой. Наибольших практических результатов достигла газовая хроматография при разделении низших гомологов парафинового ряда (природного газа). При этом оказалось весьма целесообразным применение вертикальных, постепенно сужающихся кверху колонн. Анализируемая смесь вводится в нижнюю часть колонны при охлаждении. Для термического вытеснения газов были предложены два варианта, давшие сходные результаты. По одному из них колонна прогревается снизу вверх при помощи узкой, медленно поднимающейся кольцеобразной печи обратная диффузия газов устраняется тем, что в колонну снизу одновременно подается ртуть (по этому методу получен график на рис. 6). По другому варианту колонна постепенно нагревается по всей длине, но при этом вдоль колонны все время поддерживается температурный градиент — понижение температуры в направлении снизу вверх [c.224]

    Наряду с сорбционными методами разделения углеводородных газов в промышленности применяют и другие, например низкотемпературную ректификацию. Сущность процесса заключается в том, что исходную газовую смесь сжимают до 3,0—3,5 МПа и затем охлаждают до минус 100—110°С. При этом происходит конденсация фракции углеводородов Сг—С5, которую далее подвергают ректификации, а водород и метан, остающиеся в газовой фазе, выводят из системы. Низкотемпературная ректификация получила наиболее широкое распространение для разделения воздуха. [c.38]

    Исходная газовая смесь проходит абсорбер, орошаемый поглотительным маслом. Легкие углеводороды Сь Сг выходят непоглощенными сверху абсорбера, а углеводороды Сз, С4 и высшие поглощаются жидким абсорбентом (маслом). В десорбере происходит выделение абсорбированных газов из поглотителя, после чего последний вновь направляется на абсорбцию газа, а выделенные из него углеводороды подвергаются более или менее грубому разделению ректификацией. [c.56]

    Перед подачей в блок низкотемпературного разделения газовую смесь освобождают от легкозамерзающих водяных паров и углекислоты в двух параллельно включенных установках, орошаемых водным раствором смеси моноэтаноламина (16—19%) и диэтиленгликоля (72—76%). Для более основательного просушивания газ проходит через адсорбер, заполненный активным бокситом и слоем синтетического цеолита. На первом этапе разделения газовую смесь охлаждают до —51° при давлении 31 ат. При этом конденсируются тяжелые углеводороды. Их отделяют и выводят с обратным газовым потоком. Вслед за тем газ охлаждают до —157° ожижаются легкие углеводороды и частично азот. Газо-жидкостную смесь передают в сепаратор, где давление снижено до 16 ат, температура до —160°, и затем промывают в специальной колонне жидким азотом. Этим заканчивается получение сырого продукта, содержащего 79% Не, 20,8% Мг, 0,1 % Нг, и менее 0,1% легких углеводородов. [c.109]

    При абсорбционном методе можно использовать более низкое давление и более высокие температуры. Газовая смесь под давлением в противотоке контактирует с поглотительным маслом, в котором растворяются все углеводороды, имеющие 2 и более атомов углерода. Метан и водород при этом не абсорбируются и выводятся с установки. Затем газообразные углеводороды выделяются из поглотительного масла и разделяются ректификацией, что после удаления водорода и метана не представляет значительных трудностей. Освобожденное от газообразных углеводородов поглотительное масло возвращается на установку. Выделение газов из поглотительного масла можно провести таким образом, что при этом уже будет иметь место разделение на фракции с определенным числом атомов углерода. Дальнейшее разделение на отдельные компоненты путем перегонки не представляет труда. Часто получаемая при фракционировании чистота уже достаточна для последующей переработки. Абсорбционный метод обладает большими достоинствами для концентрпрования газов с небольшим содержанием олефиновых углеводородов. [c.45]

    Из аппарата 2 абсорбент, содержащий растворенные газы, поступает в десорбер 8 первой ступени, где часть газов выделяется из раствора вследствие снижения давления с 10 до 1,2 ат и продувки растворителя ацетиленом, поступающим из десорбера 12 второй ступени. В десорбере 8 происходит почти полное разделение газов большая часть ацетилена и другие ацетиленовые углеводороды остаются в растворе, а часть ацетилена и остальные газы вытесняются из раствора. Эта газовая смесь — так называемый возвратный газ, содержащий до 65% С2Н2 и примеси (СО2, СО, Нг и др.), компрессором направляется в абсорбер 2. Растворитель, вытекающий из десорбера 8 первой ступени, перека чивается в десорбер 12 второй ступени, предварительно нагреваясь в теплообменнике 13. [c.14]

    Мембранная установка включает 12 мембранных аппаратов, каждый из которых имеет внутренний диаметр 0,1 м и длину 3,0 м, и смонтирована на площади около 60 М-. Продувочные газы, содержащие после стадии синтеза и конденсации около 2% (об.) аммиака, под давлением 14 МПа направляют в скруббер водной промывки для окончательного улавливания КНз. Газовая смесь, очищенная от аммиака и содержащая 62,3% (об.) водорода, 20,9% (об.) азота, 10,4%, (об.) метана и 6,4% (об.) аргона, проходит через 8 последовательно установленных аппаратов I ступени очистки. Пермеат I ступени, содержащий 87,3% (об.) водорода, под давлением 7,0 МПа подают на вторую ступень компрессора свежей азотоводородной смеси и возвращают в производство. Ретант после I ступени разделения направляют на 4 последовательно расположенных мембранных аппарата П ступени. Обогащенный до 84,8% (об.) по водороду газовый поток под давлением 2,5 МПа возвращают на I ступень компрессора свежего газа и далее в цикл. Суммарная степень выделения водорода—87,6%. Обедненный водородом [г=20,8% (об.) И,] ретант после И ступени установки сжигают в трубчатой печи конверсии углеводородов. Работу установки хорошо иллюстрирует табл, 8.4. [c.278]

    Если для отделения метана и водорода использовать абсорбционный метод, можно ограничиться более низкими давлениями и значительно более высокими температурами. Абсорбциоппый метод заключается в том, что газовую смесь приводят в соприкосновение с поглощающим маслом, движущимся противотоком к газу. Абсорбцию проводят под давлением в условиях, прп которых в масло растворяются углеводороды с двумя и больше атомами углерода, тогда как метан и водород не поглощаются и покидают установку в виде остаточного газа. После этого из поглощающего масла отгоняют углеводороды, которые затем разделяют ректификацией. Поскольку метан и водород удалены, эту ректификацию осуществить гораздо легче. После отпарки углеводородов поглощающее масло возвращают на абсорбционную установку. Газы можно отпаривать от масла и таким образом, чтобы одновременно происходило разделение углеводородов на фракции по числу атомов углерода это облегчает дальнейшее выделение индивидуальных углеводородов ректификацией. [c.149]

    Технологическая схема синтеза углеводородов при атмосферном давлении в газовой фазе представлена на рис. 7.1. Очищенный синтез-газ нагревается в подогревателе (2) и поступает в реактор (1). После реактора парогазовая смесь охлаждается в оросительном холодильнике 4 оборотной водой. При охлаждении выделяется конденсатное масло, которое в смеси с водой выводится снизу холодильника. После отделения масла газовая смесь проходит установку адсорбции (5), где активным углем извлекают газовый бензин и газоль (смесь углеводородов СрСе с небольшим количеством СО, СОз, NS, Нг). Адсорбер периодически продувается паром получаемым с сепараторе (3). Парогазовая смесь направляется на разделение. Синтез-газ после адсорбера (5) проходит подогреватель (6) и поступает в реактор второй ступени (7). Далее процесс аналогичен первой ступени. [c.108]

    Жидкие продукты из сепаратора высокого давления 5 дросселируются в сепаратор среднего даапения 7, из которого в виде газовой фазы отбираются легкие углеводороды 1- 4, а также сероводород и аммиак. Эта газовая смесь очищается от сероводорода в абсорбере моноэтаноламином (на схеме не показано) и направляется на установку разделения углеводородных газов на сухой газ (С1-С2) и сжиженный газ — углеводороды С3-С4. [c.282]

    Регенерацию адсорбента проводят путем ступенчатой десорбции. Давление первой ступени десорбции выбирается таким, чтобы выделяющаяся из аппарата смесь имела примерно тот же состав, что и исходная газовая смесь, поступающая на очистку. Газы первой ступени десорбции могут быть присоединены к исходному потоку, и вновь подвергнуться очистке. Цель второй ступени десорбции — наиболее полное удаление поглощенного монооксида углерода — наилучшим образом будет достигнута при минимально возможном давлении на этой ступени. Процессы КБА пригодны также для очистки циркулирующего водорода риформинга (при этом 60-70 % подвергаемого очистке водорода можно получить концентрацией 99,9 % и более), для разделения углеводородных газов и для очистки газов от кислородсодержащих компонентов. Например, одна из оптимальных схем очистки водорода риформинга от примесей углеводородов ряда i-Сю (США), реализуется в двух адсорберах, в нижней части которых размещен крупнопористый силикагель, а в верхней — активированный уголь. Силикагель эффективно и обра- [c.576]

    На НПЗ для разделения нефтезаводских газов применяются преимущественно два типа газофракционирующих установок, в каждый из которых входят блоки компрессии и конденсации ректификационный — сокращенно ГФУ абсорбционно-ректификационный — АГФУ. На рис. 4.23 и 4.24 приведены принципиальные схемы ГФУ для разделения предельных газов и АГФУ для фракционирования жирного газа и стабилизации бензина каталитического крекинга (на схемах не показаны блоки сероочистки, осушки, компрессии и конденсации). В блоке ректификации ГФУ (см. рис. 4.23) из углеводородного газового сырья сначала в деэтанизаторе I извлекают сухой газ, состоящий из метана и этана. На верху колонны 1 поддерживают низкую температуру подачей орошения, охлаждаемого в аммиачном конденсаторе-холодильнике. Кубовый остаток деэтанизатора поступает в пропановую колонну 2, где разделяется на пропановую фракцию, выводимую с верха этой колонны, и смесь углеводородов С4 и выше, направляемую в бутановую колонну 3. Ректификатом этой колонны является смесь бутанов, которая в изобутановой колонне 4 разделяется на изобутановую и бутановую фракции. Кубовый продукт колонны 3 подают далее в пентановую колонну 5, где в виде верхнего ректификата выводят смесь пентанов, которую в изопентановой колонне 5 разделяют на н-пентан и изопен- [c.150]

    Помимо указанного выше случая жидкостной адсорбционной хроматографии, предположение о существенном влиянии Н-связи на разделение выдвигалось также и для случая газораспределительной хроматографии. Для разделения 15 алифатических аминов Джеймс [1031] пропускал газовую смесь через последовательно включенные колонки с различными по способности к образованию Н-связи стационарными фазами. Джеймс, Мартин и Смит [1033] увеличили эффективность разделения ряда аминов путем изменения состава жидкой фазы. Брэдфорд, Харвей и Чокли [257, 884 ] применили аналогичный метод для разделения ненасыщенных углеводородов. В этом случае в качестве стационарной фазы использовалось полярное соединение, образующее Н-мостик с двойными связями. [c.280]

    Для разделения олефинов посредством полимеризации был предложен целый ряд катализаторов. Horsley предажил пропускать газообразную смесь, содержащую олефины, над катализатором, представляющим собою кислый фосфат кадмия, при 150—200° под давлением выше атмосферного. При этих условиях гомологи этилена претерпевают полимеризацию, превращаясь в жидкие углеводороды, этилен же остается без изменения. Mi hel указывает на то, что если пропускать газовую смесь через суспензию хлористого алюминия в инертном растворителе (например в декалине) при атмосферном или уменьшенном давлении, то гомологи этилена полимеризуются, а этилен может быть выделен в весьма чистом состоянии. [c.163]

    Хроматографическое разделение нормальных и изопарафиновых углеводоредов топлив производится на хроматографических колонках, заполненных порошкообразным цеолитом. Смесь углеводородов вводится в колонку из такого расчета, чтобы адсорбированный слой занимал не более половины адсорбента. Десорбция адсорбированных компонентов производится последовательным вытеснением их низко-кипящими изо- или нормальными парафиновыми углеводородами. При хроматографии в газовой фазе десорбция компонентов может проводиться повышением температуры, снижением давления или отдувкой продувочным газом [53]. [c.38]

    На колонках Голея в сравнительно короткое время можно разделтить газовые смеси, кипящие в узком температурном интервале. Так, через систему с капиллярными колонками была пропущена синтетическая смесь углеводородов Сг—Се, содержащая насыщенные и ненасыщенные углеводороды с двойными и тройными связями (рис. 8). Из 19 компонентов смеси было выделено 17. Эта смесь содержит значительно больше компонентов, чем обычно находится в природной пробе, и анализ иллюстрирует большие возможности разделения газов при использовании капиллярных колонок. Колонка состояла из секции в 30 м, содержащей полипропиленгликоль, и секции в 60 с диметилсульфоланом, соединенных последовательно. [c.146]

    Схема извлечения криптона и ксенона из воздуха. Эти газы получают как цен-ные побочные продух5ты при разделении воздуха. Цифрами обозначены 1 — основной аппарат для разделения воздуха на кислород и азот (он состоит из двух сочлененных ректификационных колонн конденсатор нижней колонны служит испарителем верхней) 2 — дополнительная колонна для отделения криптона и ксенона 3 — испаритель дополнительной колонны 4 — дефлегматор (конденсатор) дополнительной колонны 5 — испаритель, в который из колонны 3 поступает кубовая жидкость, обогащенная Кг и Хе 6 — газгольдер 7 — контактный аппарат, в котором выжигают углеводороды, 8 — абсорбер для поглощения СОд. Из последней ректификационной колонны выходит газовая смесь, в которой 50—757о криптона и ксенона [c.159]

    Для более четкого разделения газовых смесей применяют метод глубокого охлаждения. Газовую смесь сжимают и охлаждают до очень низкой температуры (порядка минус 100°). При этом более тяжелые углеводороды (Сз—С5) сжижаются, а метан и водород остаются в газовой фазе. Жидкую смесь углеводородов С —С5 далее подвергают ректификации также под давлением и при низких температурах. Для достижения низких температур использ)гют главным образом способ дросселирования, основанный на свойстве сжатых газов сильно охлаждаться при быстром понижении давления. [c.136]

    Проверка работы колонки и эффективности разделения газовых смесей может быть проведена путем определения числа теоретических тарелок по методу Р. Д. Оболенцева и А. Ф. Фроста [12]. Для этой цели проводят на исследуемой колонке разгопку бинарной смеси углеводородов известного состава. Путем точной дозировки составляют, наиример, смесь из к-бутана и изобутилена. Состав этой смеси может быть определен, как это указано выше, при помощи химических методов. Проведя разгонку смеси при нормальном режиме работы колонки и отобрав 40% газа от общего взятого его количества, определяют содержание изобутилена и к-бутана химическим методом. Отсюда рассчитывают число теоретических тарелок по уравнению [c.113]

    Анализируемый газ, выходящий из дегазатора глинистого раствора, проходит через ротаметр 4, барботер 5 с раствором щелочи и нонадает в газоотборник б. При соответствующем повороте крана 7 порция газа поступает в один из газоотборников, после чего промыва1от воздухом подведенные к газоанализатору каучуковые трубки (мимо газоотборника). Поворотом крана 7 проба газа подается на анализ, и одновременно включается обогрев соответствующей колонки 1 или 2). При прохождении газовой смеси через колонки тяжелые углеводородные газы адсорбируются силикагелем и затем выделяются непрерывным потоком воздуха при нагреве силикагеля. Анализируемая газовая смесь поступает в колонкп 1 ж 2 поочередно. Разделение газовой смеси связано с замедленным (за счет теплоизоляции) прогревом силикагеля и различием коэффициентов адсорбции индивидуальных углеводородов. Длина каждой из колонок около 35 см, диаметр около 2 см. [c.199]

    Если анализируемая смесь содержит как низкокипя-щие компоненты (Не, Нг, N2, Ог, СО, Аг, СН4), так и газы, кипящие при более высоких температурах (СО2, N20 и др.), то в большинстве работ для анализа применяют комбинацию двух или нескольких колонок. В начальный период разработки методов газовой хроматографии использовали колонки, заполненные активированным углем и силикагелем, позднее начали применять сочетание колонок с молекулярными ситами и силикагелем. Иногда комбинировали колонки с молекулярными ситами с колонками для тазо-жидкосгной хроматографии (главным образом для разделения смесей, содержащих углеводороды). Когда были предложены в качестве адсорбентов п<р)истые полимеры, то начали пря1менять сочетание колонок, заполненных этими сорбентами, с колонками, содержащими силикагель. Реже используют oмбинaц ии колонок, заполненных пористыми полимерами, с колонками, содержащими активированный уголь, или молекулярные сита. [c.31]

    Компрессионный метод. Пропан, пзобутан и н-бутан иогут быть переведены из газообразного состояния в жидкое при обычной температуре путем сжатия их до давления насыщения. Из рассмотрения диаграмм состояния (см. рис. 2 3 и 4) следует, что, например, для конденсации пропана при температуре -f 20° С потребуется его сжать до 8,5 ата, изобутан — до 3,05 ата и н-бутан до 2 ата. Если газовую смесь, содержащую пропан и изобутан, сжать так, чтобы их парциальные давления достигли соответственно 8,5 и 3,05 ата, то при температуре -1-20° С эти компоненты начнут выпадать в виде жидкости. Если парциальное давление наров бутана в исходном газе велнко (жирный газ), то давление насыщения будет достигнуто при сравнительно небольшом сжатии и, следовательно, при небольшой затрате энергии. Тощий газ приходится сжимать до высоких давлений и затрачивать много энергии, поэтому компрессионный метод извлечения тяжелых углеводородов из их смеси с легкими применяется главным образом для предварительного разделения очень жирных газов с основной целью — выделение бензинов. П -этом попутно выделяются и жидкие газы. Схема компрессионной [c.32]


Смотреть страницы где упоминается термин Разделение газовых смесей углеводородов: [c.205]    [c.300]    [c.133]    [c.377]    [c.121]    [c.58]    [c.92]   
Основы технологии синтеза каучуков (1959) -- [ c.4 , c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Смеси разделение



© 2025 chem21.info Реклама на сайте