Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никелевые в органических соединениях

    НЫХ восстанавливающих агентов (природа которых связана с природой замедленной стадии выделения водорода на данном металле) позволяет истолковать значительное число опытных данных. В частности, она дает возможность объяснить существование избирательного электровосстановления (см. табл. 21.1). По-видимому, восстановление органических соединений на платиновых и никелевых катодах совершается за счет адсорбированных атомов водорода, присоединяющихся к неполярным связям (типа двойных или тройных связей) между углеродными атомами. На катодах из ртути и свинца восстановление совершается за счет ионов водорода, присоединяющихся с большей легкостью к отрицательным полярным группам (типа карбонильных или карбоксильных групп). [c.441]


    Никелевые катализаторы весьма чувствительны к действию сернистых соединений. Сероводород и серосодержащие органические соединения, входящие в состав исходной газовой смеси, взаимодействуя с никелем, образуют сульфид никеля. При этом катализатор постепенно теряет активность. В большинстве случаев катализатор, отравленный сернистыми соединениями, не восстанавливает своей активности даже при переходе на работу с очищенным газом. [c.34]

    Для синтеза аммиака и процессов гидрирования органических соединений необходим водород, значительную часть которого производят конверсией природного газа (в основном метана) с водяным паром [38, 39]. Первую стадию этого процесса осуществляют на никелевом катализаторе с получением синтез-газа, содержащего водород и окись углерода. Вторую стадию — конверсию окиси углерода с водяным паром — проводят на окислах железа и хрома. Ныне открыты катализаторы, содержащие окислы меди и медные шпинели, которые много активнее железохромовых и позволят полнее использовать СО в конверсии с водяным паром. [c.10]

    Активные никелевые гидрирующие катализаторы обладают большим сродством к сере, а наиболее активные из них действительно извлекают серу, содержащуюся в органических соединениях. Удаляя серу из сьфья, подаваемого в реактор, зти никелевые катализаторы являются своего рода предохранителями катализаторов, чувствительных к действию серы. [c.178]

    Содержание органических соединений в растворах на наших никелевых заводах колеблется в пределах 10—20 м.г л С. Оно будет тем меньшим, чем выше в анодах содержание железа и кобальта. [c.343]

    В большинстве случаев никелевый электролит специально очищают от трех главных примесей — меди, железа и кобальта. Иногда приходится принимать специальные меры для удаления из электролита свинца и цинка. Остальные примеси, присутствующие в электролите обычно в очень небольших количествах (сурьма, мышьяк и другие примеси, а также органические соединения), достаточно полно удаляются в ходе очистки от этих главных компонентов. [c.81]

    Отравляемость катализатора сернистыми соединениями. В ГИАП проведено всестороннее исследование отравляемости различных никелевых катализаторов соединениями серы [48] и установлено идентичное действие сероводорода и органических соединений серы (сероуглерода, сероокиси углерода, меркаптанов, сульфидов), так как последние в процессе конверсии под действием водяного пара или водорода в интервале температур бОО— 1100° практически нацело превращаются в сероводород  [c.128]


    Восстанавливающиеся группы в органическом соединении гидрируются с различной легкостью. По этому признаку они могут быть расположены в некоторой ориентировочной последовательности (табл. 1.1). Чем ниже положение группы в этом ряду, тем более жесткие условия требуются для ее гидрирования, так как реакционная способность любой функциональной группы зависит от структурного окружения, а при гидрировании еще и от природы катализатора. Группы, находящиеся в начале ряда, как правило, можно селективно гидрировать в присутствии находящихся в его конце, но не наоборот. Например, ненасыщенные сложные эфиры легко восстанавливаются на платиновом, палладиевом или скелетном никелевом катализаторе в эфиры насыщенных кислот, но их каталитическое гидрирование в ненасыщенные спирты удается лишь в исключительных случаях. Чтобы осуществить это превращение, чаще всего обращаются к химическим методам восстановления  [c.33]

    В литературе описано большое количество никелевых катализаторов и их модификаций. Эти катализаторы применяются в реакциях гидрирования, в частности при гидрировании ненасыщенных органических соединений. Катализаторы, применяемые в процессах гидроалкилирования, помимо никеля обычно содержат другие металлы, например вольфрам. В никелевых катализаторах, применяемых при крекинге, часто содержатся молибден и другие элементы. [c.277]

    Активность никелевого катализатора уменьшается с увеличением содержания серы в сырье вследствие образования сульфида никеля. Органические соединения серы превращаются в углеводо- [c.464]

    Недавно был запатентован [144] препарат никеля для каталитического восстановления или гидрогенизации органических соединений. Никель-ко-бальт или медь или их смеси осаждают из аммиачного раствора или растворов их солей и обрабатывают водородом или содержащими водород газами под давлением в присутствии или в отсутствии осажденного носителя. Обработка аммиачного раствора водородом производится в присутствии каталитически активных металлов, например 119 частей хлористого никеля растворяют в 600 частях воды и 200 частях концентрированного аммиака, к которому добавлено 15 частей хлористого аммония можно добавить 2 части тонкодисперсного никеля и 150 частей кизельгура. Эту смесь затем нагревают при 100° во вращающемся автоклаве под давлением водорода в 30—35 ат, высокодисперсный никелевый катализатор осаждается на носителе. Такой катализатор можно применять как в сухом, так и в мокром виде. [c.275]

    Металлические катализаторы, в особенности никель, утратившие частично или полностью активность при гидрогенизации жиров, регенерируют нагреванием с водяным паром в автоклаве под давлением 14 ат, вследствие чего происходит омыление приставших частичек жира и катализатор осаждается из получающегося мыла [84]. Никелевый катализатор, применяемый для гидрогенизации жиров, мсжно регенерировать путем наиболее полного отделения жиров, растворения в азотной кислоте, осаждения основанием, обработки осадка муравьиной кислотой и, наконец, разложением образовавшегося формиата никеля нагреванием [117]. Никелевый катализатор, потерявший активность при гидрогенизации жиров, кипятят с разбавленным спиртом или раствором щелочи, не отделяя следов органических соединений, тщательно промывают, а затем восстанавливают в токе водорода, постепенно повышая температуру [182, 183,]. Для регенерации катализаторов, применяемых при гидрогенизации жиров, предлагалось их обрабатывать растворителями жиров, а затем реагентом, способным удалить слой окиси. После промывки следует предохранять катализатор от контакта с воздухом [337, 407]. [c.306]

    А. А. Баландин [949, 951, 952] рассмотрел последовательность реагирования различных связей сложных органических соединений в процессах гидрирования и дегидрирования на никелевом катализаторе. На основании табличных значений энергий разрыва связей, тепловых эффектов реакций, а также величин некоторых энергий связей (например, Сн-№, Со-н ), вычисленных из термохимических данных для объемных соединений, им была дана ориентировочная оценка других энергий связей, например Рс-[№1- Такая оценка является полезной, хотя и приближенной. [c.487]

    А. А. Баландин [48, 949, 951] вычислил величины энергетических барьеров реакций, идущих на никелевом катализаторе с разрывом разных связей, использовав значения энергий связей Qн-[Ni], <Эс-[№]. Ро-[Ш] из термохимических данных и из оценки последовательности реакций. На основании положения о том, что чем ниже высота энергетического барьера, тем легче протекает реакция, им было указано, в какой последовательности должны разрываться различные связи на никелевом катализаторе, и предсказано соотношение продуктов гидрогенолиза сложных органических соединений, в согласии с опытом. [c.505]


    Роль материала электрода и природы растворителя в анодном фторировании органических соединений изучена в той же работе [53]. Авторы проводили электролиз во фтористом водороде, в ацетоиитриле, этиловом спирте и в уксусной кислоте кроме того, исследовалось влияние небольших добавок воды к этим растворителям. Оказалось, что органические растворители обычно недостаточно инертны для получения удовлетворительных результатов. Никелевые и угольные аноды сравнительно легко разрушаются. Платина, хотя и более устойчива, ие вполне инертна. [c.173]

    ЭНЕРГИИ СВЯЗИ НИКЕЛЕВЫХ, ЖЕЛЕЗНЫХ, ПЛАТИНОВЫХ И ПАЛЛАДИЕВЫХ КАТАЛИЗАТОРОВ С ЭЛЕМЕНТАМИ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ [c.344]

    Ниже рассмотрены и сопоставлены величины энергий связи поверхности никелевых, железных, платиновых и палладиевых катализаторов с основными элементами органических соединений — углеродом, водородом, кислородом и азотом. [c.344]

    Выбранная нами методика приготовления скелетного катализатора обеспечивала полную воспроизводимость результатов. При гидрировании различных органических соединений в спиртовом растворе в присутствии скелетного никелевого катализатора получены следующие данные, сведенные в табл. 2. [c.164]

    Неудовлетворительные никелевые покрытия образуются на катоде и вследствие других причин, например, из-за наличия в электролите для никелирования примесей свинца, меди, цинка, железа, органических соединений. Примеси свинца, меди и щин-ка вызывают изменение внешнего вида никелевого покрытия оно становится темным, полосатым. Наличие в ванне органических примесей вызывает на отдельных участках катода сильный блеск, хрупкость покрытия и склонность его к отслаиванию. Наличие примесей железа в растворе является причиной растрескивания или хрупкости никелевых покрытий. [c.148]

    С появлением парового риформинга, осуществляемого на чувствительных к отравлению никелевых катализаторах, производство синтез-газа, почти свободного от ядов, становится все более экономически привлекательным. В результате этого увеличивается число каталитических веществ, пригодных для использования в производстве синтез-газа. В частности, появляется возможность использования потенциальных достоинств меди. Доводы в пользу меди, приведенные в гл. 1, делают понятным выбор ее в качестве катализатора реакции конверсии СО считается, что она обладает активностью и селективностью при значительно более низких температурах, чем обычные катализаторы на основе Рёд04. В литературе описана длительная история изучения каталитических свойств меди, но уже ранние исследователи наблюдали быстрое падение активности, обусловленное не только ее чувствительностью к ядам, но также и быстрым уменьшением поверхности. Композиции меди с окисью цинка использовались в течение многих лет в качестве катализаторов гидрирования и дегидрирования органических соединений, и эти катали- [c.132]

    В отличие от никелевых катализаторов, применяемых при конверсии в од5шым паром, катализаторы на основе железа, используемые на первой стадии процесса получения водорода, не обладают такой же высокой восприимчивостью к дезактивирующему действию серы. Поэтому полученньА из кокса, загрязненного серой, синтез-газ может содержать примеси сероводорода и некоторых серусодержащих органических соединений. Допустимые концентрации серы при использо нии некоторых катализаторов составляют 5 10 -1 10 %H2S и 2 10 органической серы. Если конвертируемьА газ содержит OS, последний гидролизуется до СО и H S в ходе конверсии /8/. [c.165]

    РЕН ЕЯ НИКЕЛЬ (скелетный никель) — никелевый катализатор, изготовленный по способу Ренея в 1925 г. Получается сплавлением никеля с 20— 50% Л1 при 1200° С, затем А1 удаляют растворением его в концентрированном растворе едкого натра, после чего промывают водой и спиртом. Р. н.— серочерный или черный порошок, очень пористый. Применяют как активный катализатор гидрирования и восстановления органических соединений. Р. н. очень огнеопасен, содержит значительное количество водорода, поэтому его нужно хранить под водой или спиртом, как взрывоопасный, [c.213]

    Между лабораторным и промышленным синтезом органических соединений имеется ряд принципиальных различий. Например, цена химикатов, использованных в лабораторном синтезе, обычно не имеет решающего значения, поскольку синтез проводится в сравнительно малых масштабах. Поэтому при лабораторном восстановлении кетонов в спирты можно использовать сравнительно дорогой алюмогидрид лития, в то время как в промышленности для этих целей применяют сравнительно дешевые водород и никелевый катализатор. Другим примером дешевого реагента является кислород воздуха, с помощью которого в промышленности осуществляется ряд процессов каталитического окисления. Исходный материал для промышленных синтезов также должен быть дешевым и легкодоступным в больших количествах. Поэтому такой материал в большинстве случаев получают с помощью простейших методов из указанных выше источников сырья, прежде всего из природного газа и нефти. Применяемые растворители тоже должны быть дешевыми, а кроме того (по возможности), негорючими или хотя бы малогорючими. В то время как в лабораторных условиях не составляет проблемы провести синтез с использованием в качестве растворителя нескольких литров диэтилового эфира, применение этого растворителя в промышленном производстве вызывает большие трудности, связанные с его горючестью (складирование больших количеств растворителя, соблюдение строгих предписаний техники безопасности всеми работниками и т. д.), так что он применяется только в исключительных случаях. [c.241]

    В начале 60-х годов японский исследователь Ицумн сделал наблюдение, что скелетному никелевому катализатору можно придать асимметризующую способность, обработав его перед проведением гидрирования оптически активным веществом. Асимметрические синтезы на модифицированном скелетном никелевом катализаторе стали предметом обширных исследований этого автора (обзорная работа [151]). В качестве модификаторов испытаны различные органические соединения, обладающие оптической активностью (винная кислота, яблочная кислота, аминокислоты), модельной реакцией [c.152]

    Никелевый электролит очень чувствителен к примесям. Так, наличие железа в электролите приводит к отслаиванию и растрескиванию покрытия. Хрупкость никелевого покрытия может появиться также при наличии в растворе некоторых органических соединений. Примесь меди и цинка вызывает образование пятнистых, полосчатых темно-серых и черных осадков чикеля. Допустимая концентрация металлов-примесей в электролите следующая 0,1 л Ре, 0,02 г л Си, 0,01 г/л Zn и 0,007 л РЬ. [c.185]

    На величину остаточных напряжений покрытий наибольшее влияние оказывают органические соединения — ненасыщенные с двойной связью (производные пиридина, хинолина и др.). Они вызывают увеличение напряжений растяжения. У никелевых электролитических покрытий остаточные напряжения снижают соединения, содержащее серу (па-ратолуолсульфокислота, паратолуолсульфамид и др.) (рис. 25). [c.100]

    Из приведенных примеров обращения активности восстанавливающихся групп при гидрировании, очевидно, следует, что, хотя их относительная реакционная способность в основном определяется химическим строением, некоторую селективность действия проявляет и катализатор, т. е. металл катализатора и модифицирующие добавки (промоторы и дезактиваторы). Платиновые катализаторы, на которых при комнатной температуре и атмосферном или слегка повышенном давлении гидрируются почти все типы органических соединений, полностью неэффективны при восстановлении карбоновых кислот и их эфиров в спирты. Хромит цинка, на котором при высокой температуре и давлении гидрируется алкокси-карбонильная группа, неактивен при восстановлении легко гидрирующейся на других катализаторах С=С-связи. Поверхностные осмиевые катализаторы, в отличие от скелетного никелевого катализатора или оксида платины, обеспечивают первоочередное восстановление карбонильной группы в а,-ненасыщенных альдегидах  [c.34]

    Способность электролита снизить степень шероховатости на поверхности основного металла, т. е. его микрорассеивающая способность, является совершенно особым свойством, называемым выравниванием. Электролит с хорошими свойствами выравнивания создает осадок, который постепенно выравнивается на поверхности основного металла по мере увеличения толщины слоя покрытия. Считают, что разница в поляризации микропи-ков и микроуглублений на поверхности основного металла влияет на соотношение скоростей диффузии ионов и адсорбции на поверхности, локально изменяя скорость электроосаждения. Свойства выравнивания обычно контролируются введением специальных добавок в электролитическую ванну, представляющих собой органические соединения (например, кумарин в растворе для нанесения никелевого покрытия). Способность к микровыравниванию и рассеиванию часто сочетается в одном растворе, но это никоим образом не обязательно. Например, у цинка хорошая рассеивающая способность, но плохая способность к выравниванию. [c.88]

    Значительный интерес имеет описание аппаратуры для получения озона и проведения реакцин озонирования органических соединений. В лабораторной практике будут весьма ценны указания по получению палладиевых и скелетных никелевых катализаторов. В некоторых синтезах не только приводится описание способов получения какого-либо одного препарата, но в примечаниях указываются также выходы и физические конс1ангы других аналогичных веществ, которые могут быть получены по той же методике. [c.5]

    Электрохимическое фторирование в безводном фтористом водороде на никелевых анодах широко используется в промышленном масштабе для получения полностью фторированных соединений [38]. Нас, однако, интересуют возможности электрохимического метода для введения небольшого числа атомов фтора в молекулу. Начиная с 1953 г. сообш,алось о селективном электрохимическом фторировании органических соединений [39-42]. Важную роль играет природа электролита [43]. В табл. 7 приведены в хронологическом порядке некоторые данные по развитию этого направления. [c.48]

    В особых случаях дегалогенировапие осуществляют специальными методами Оэ-органические соединения сплавляют с КОН в никелевой бомбе при 700—750° С [62], соединения, содержащие платиновые металлы,— нагреванием со смесью MgO и металлического магния, восстанавливающего эти -элементы до свободного состояния [565]. Металлоорганические комплексы, содержащие Ag и Вг, разлагают [307] нагреванием со щелочью в течение часа, подкисляют уксусной кислотой до слабокислой реакции, вводят цинковую пыль и после 5—40 мин. встряхивания удаляют выделившееся серебро фильтрованием через стеклянный фильтр, покрытый фильтровальной бумагой, и в фильтрате определяют Вг аргентометрическим титрованием с потенциометрической индикацией КТТ. Если необходимо определить и серебро, его растворяют в азотной кислоте и титруют с потенциометрическим контролем 0,02 М раствором КВг. [c.198]

    Однако оказалось не обязательным подводить к никеле--вым ДСК-электродам топливного элемента газообразный водород. Имеются бесчисленные органические соединения, богатые более или менее прочно связанным водородом. Никель Ренея, определяющий каталитическую активность никелевого ДСК-электрода, обладает способностью отщеплять от некоторых органических соединений водород и делать возможным его электрохимическое окисление. [c.296]

    Очень широкое применение как катализатор гидрирования получил скелетный никелевый катализатор, так называемый никель Ренея. Его получают, обрабатывая никелево-алюминиевый сплав едкой щелочью при нагревании до полного выщелачивания алюминия. Остающийся при этом мелко раздробленный никель обладает очень большой поверхностью и весьма активен. Катализатор сохраняют под водой илн под спиртом — сухой катализатор пирофо-рен. В катализаторе содержится значительное количество водорода, поэтому многие органические соединения можно гидрировать таким катализатором без введения водорода извне. Применение скелетного никелевого катализатора позволяет получать из нитро- [c.122]

    Органические соединения Никелевый Тетрацианохино-диметан поли-винилферроцен Адсорбция Неводные растворы Циклич. ВА  [c.815]

    Реак Окисл Этан, Оа, Од ции с участием i ение молекулярным кш Муравьиная кислота ( ), ацетальдегид (II), формальдегид (III), уксусная кислота (IV) л о лек у л ярн0г о кислорода лородом органических соединений Хромо-никелевая сталь (16—18% Сг, 10—14% Ni, 1,75—2,75% Мо, 0,1% С) 1—10 бор, 121—177° С, время контакта 0,5—4 сек, Оа gHe = 0,3—0,5 (мол.), Од СаНв = 0,5—1,5 (вес.). Выход I — 71,1%, 11 — 5,6%, III — 19,4%, IV — 16,4% [2788] [c.158]

    Эллис [121] приготовлял гидрирующий катализатор из соединения никеля, осажденного вместе с нерастворимым сульфатом. Фейхнер [157] приготовил аморфный никелевый катализатор для гидрогенизации органических соединений, который для предотвращения спекания наружных частиц восстанавливается при низкой температуре восстановление ведут так, что внутренние частицы остаются невосстановленными. Углекислый никель осаждается, прокаливается, промывается, высушивается и восстанавливается [75]. Окиси, гидроокиси или растворимые восстанавливающиеся неорганические или органические соли каталитически активных металлов смешивают с гидратами, содержащими двуокись кремния, или веществами, содержащими ее в больших количествах. Сухая смесь восстанавливается нагреванием с водородом. Соединения никеля дают весьма активный, стабильный, легко фильтрующийся катализатор синего цвета, пригодный для гидрогенизации жиров при температуре лорядка 180° [363]. [c.272]

    В качестве добавки при восстановлении ароматических нитросоединений часто используют хлористое олово. После окисления оно регенерируется на катоде. Для ускорения процесса восстановления применялись добавки многих других вендеств. Выше упоминалось, в частности, о применении никелевых проволок в качестве катода для восстановления нитробензола до анилина в соляной кислоте 153]. Возможно, что это восстановление протекает успешно вследствие катализа. Выход N,N-димeтилбeнзилaмннa при восстановлении N.N-диметилбензамида на свинцовом катоде в серной кислоте сильно увеличивается при добавке к католиту небо и,ших количеств окислов мышьяка или сурьмы 173]. Примером применения органического соединения в качестве промотора может служить восстановление 2-нитро-/г-цимола до 2-амиио-5-окси--//-цимола, проводимое в концентрированной серной кислоте на катоде из, юнель-металла 174] ароматические или смешанные кетоны, например бензо-фенов или ацетофенон, увелич1шают выход продукта. [c.330]

    Для определения энергий связи поверхности металлических катализаторов с элементами органических соединений нами [6] был предложен вариант кинетического метода [7]. Результаты для никелевых катализаторов вкратце опубликованы [6]. Кинетический метод в его применении к окисным катализаторам заключается в определении энергии активации нескольких реакций, обычно дегидрогенизации углеводородов и спиртов, а также дегидратации спиртов, откуда при помощи предлагаемого соотношения между энергией активации и высотой энергетического барьера вычисляются одновременно энергии связи с углеродом, водородом и кислородом (см. стр. 351 наст. сб.). Предложенный нами вариан метода основан на определении только одной энергии связи поверхнс сти катализатора с водородом (легким или тяжелым) при помощи р -акции пара-орто-конверсии водорода или дейтерия или гомомолекулярного изотопного обмена водорода (чем избегаются неточности, связанные с наложением возможных погрешностей при измерении энергии активаций той или иной реакции). Предполагается наличие соотношения между энергией активации е и высотой энергетического барьера / реакции (представляющие собой, если реакция лимитируется стадией. адсорбции, суммарную теплоту адсорбции реагирующих соединений)  [c.346]

    Разрыв С — С-связи с присоединением водорода (гидрогенолиз) в присутствии гидрирующего катализатора — явление, сравнительно редкое в органическом катализе. Такой разрыв наблюдается либо в случае пониженной прочности связи под влиянием накопления по соседству электроотрицательных групп, например, у соединений, имеющих склонность к образованию свободных радикалов триарилметильного типа, либо в полиметиленовых кольцах с малым числом атомов углерода (циклопропан, циклобутан и их производные), для которых принимается наличие значительного байеровского напряжения, связанного с искажением валентных углов, свойственных правильному тетраэдру. Обыкновенные нормальные С — С-связи, например С — С-связи парафиновых углеводородов, оказываются достаточно прочными и в условиях, обычно применяемых при каталитическом гидрировании органических соединений, не расщепляются с присоединением водорода. Сказанное справедливо в полной мере только для тех случаев, когда в качестве катализаторов применяются благородные металлы, в частности платина. Однако в тех случаях, когда катализатором является никель, возможен гидрогенолиз С —С-связей даже в таких простых молекулах, как этан и пропан. Такого рода реакции описаны в старых работах Сабатье , в более поздних работах Тейлора с сотрудниками и недавних исследованиях, Гензеля . В последних описываются деметилирование 2, 2, 3-триметилпен-тана и 2,2-диметилбутана в присутствии никелевого катализатора и водорода и превращение их соответственно в триптан и неопентан. [c.223]

    Активация водорода является лимитирующей стадией и облегчается на катализаторах с высокой энергией связи водорода. На рисунке 3 и в таблице 1 иредставлены данные о взаимосвязи скорости восстановления га-бензохинона и нитросоединений с количеством и величиной энергии связи прочносвязанного водорода на платино-палладиевых и смешанных никелевых катализаторах на носителях [8, 24]. Результаты наших исследований свидетельствуют о значительной роли прочно-связаниых форм адсорбированного водорода в реакциях восстановления Х01Ю Ш0 адсорбирующихся органических соединений, лимитирую- [c.49]

    В связи с облегчением протекания лимитирующей стадии при более анодных значениях потенциала на скорость процесса большое влияиие оказывают строение и реакционная способность нитросоединений. На примере восстановления нитробензола и его производных на никелевых и никель-медь-железных катализаторах на глине [6] показано, что скорость реакции возрастает с увелигчением положительного значения константы заместителей Гаммета и смещения потенциала катализаторов аналогично результатам на платиновой черни [27]. Выявленная корреляция позволяет судить о реакционной способности ряда нитросоединений и скорости их восстановления по потенциалу катализатора в момент реакции. Скорость восстановления производных ди-яитродифениловых эфиров ускоряется применением смешанных протонодонорных растворителей, содержащих спирты (метанол, этанол) и аммиак 7]. Расчет числа атомов в активном центре, по Кобозеву, в случае гидрирования сложных по строению органических соединений на палладиевых катализаторах на окиси алюминия указывает на его двухатомность [8]. Универсальность двухатомного ансамбля при гидрогенизации органических соединений отмечали Кобозев и др. Она следует из принципа геометрического соответствия муль-типлетной теории Баландина. [c.51]


Смотреть страницы где упоминается термин Никелевые в органических соединениях: [c.349]    [c.339]    [c.320]    [c.99]    [c.197]    [c.122]    [c.172]    [c.345]    [c.184]   
Коррозия (1981) -- [ c.152 ]




ПОИСК







© 2024 chem21.info Реклама на сайте